Improved glycemic control with minimal systemic metformin exposure: Effects of Metformin Delayed-Release (Metformin DR) targeting the lower bowel over 16 weeks in a randomized trial in subjects with type 2 diabetes

Robert R Henry, Juan P Frias, Brandon Walsh, Sharon Skare, John Hemming, Colleen Burns, Thomas A Bicsak, Alain Baron, Mark Fineman, Robert R Henry, Juan P Frias, Brandon Walsh, Sharon Skare, John Hemming, Colleen Burns, Thomas A Bicsak, Alain Baron, Mark Fineman

Abstract

Objective: Metformin use is restricted in patients with renal impairment due to potential excess systemic accumulation. This study evaluated the glycemic effects and safety of metformin delayed-release (Metformin DR), which targets metformin delivery to the ileum to leverage its gut-based mechanisms of action while minimizing systemic exposure.

Research designs and methods: Participants (T2DM [HbA1c 7-10.5%], eGFR ≥60 mL/min/1.73m2, not taking metformin for ≥2 months) were randomized to QD placebo (PBO); QD Metformin DR 600, 900, 1200, or 1500 mg; or to single-blind BID Metformin immediate-release (IR) 1000 mg. The primary endpoint was change in HbA1c for Metformin DR vs. PBO at 16 weeks in the modified intent-to-treat (mITT) population (≥ 1 post-baseline HbA1c while on study drug), using a mixed-effects repeated measures model.

Results: 571 subjects were randomized (56 years, 53% male, 80% white; BMI 32.2±5.5 kg/m2; HbA1c 8.6±0.9%; 51% metformin naive); 542 were in the mITT population. Metformin DR 1200 and 1500 mg significantly reduced HbA1c (-0.49±0.13% and -0.62±0.12%, respectively, vs. PBO -0.06±0.13%; p<0.05) and FPG (Caverage Weeks 4-16: -22.3±4.2 mg/dL and -25.1±4.1 mg/dL, respectively vs. -2.5±4.2 mg/dL p<0.05). Metformin IR elicited greater HbA1c improvement (-1.10±0.13%; p<0.01 vs. Placebo and all doses of Metformin DR) but with ~3-fold greater plasma metformin exposure. Normalizing efficacy to systemic exposure, glycemic improvements with Metformin DR were 1.5-fold (HbA1c) and 2.1-fold (FPG) greater than Metformin IR. Adverse events were primarily gastrointestinal but these were less frequent with Metformin DR (<16% incidence) vs. Metformin IR (28%), particularly nausea (1-3% vs 10%).

Conclusion: Metformin DR exhibited greater efficacy per unit plasma exposure than Metformin IR. Future studies will evaluate the effects of Metformin DR in patients with type 2 diabetes and advanced renal disease.

Trial registration: Clinicaltrials.gov NCT02526524.

Conflict of interest statement

RRH is a consultant and/or advisor for Alere/Abbott, AstraZeneca, Boehringer Ingelheim/Lilly, Bristol Myers Squibb, Elcelyx, Ionis, Intarcia, Janssen, Lexicon, Ligand, Merck, Novo Nordisk, Sanofi, Sanofi Regeneron, and Servier; and has received research grants from Astareal, AstraZeneca, Lexicon, Lilly, ViaCyte, NIH-NIDDK, Novo Nordisk, VA NODES and Xeris. JPF has received research support from AbbVie, Allergan, AstraZeneca, Boehringer Ingelheim, BMS, Elcelyx, Eli Lilly, Genentech, IONIS, Janssen, Johnson and Johnson, Lexicon, Ligand, Madrigal, Merck, Mylan, Myovant, Novartis, Novo Nordisk, Ogeda, Pfizer, Sanofi, TaiwanJ, Theracos, and Viking; and has participated in advisory boards and consulting with AstraZeneca, BMS, Echosens, Elcelyx, Johnson and Johnson, Ligand, Novo Nordisk, and Sanofi. MF, JH, SS, CB, TB, AB, and BW are employees of and hold stock in Elcelyx Therapeutics. No other potential conflicts of interest relevant to this article were reported. The sponsor (Elcelyx Therapeutics) contributed to study design, data collection, analysis, writing the report, and the decision to submit the report for publication; this does not alter adherence to PLOS ONE policies on sharing data and materials.

Figures

Fig 1. Study flow diagram.
Fig 1. Study flow diagram.
Fig 2. Systemic exposure and glycemic efficacy…
Fig 2. Systemic exposure and glycemic efficacy of metformin DR and metformin IR.
Upper Panel: Metformin systemic (plasma) exposure (A) observed at trough (median) and (B) steady state AUC0-24h (geometric mean [95%CI]) estimated from trough and post-dose sampling. Middle Panel: Efficacy presented as (C) HbA1c change at Week 16 (LS mean + SE) and (D) Caverage Week 4–16 change in fasting glucose from baseline (LS mean + SE). Lower Panel: The efficacy/exposure relationship of 1500 mg Metformin DR and 2000 mg Metformin IR represents HbA1c (E) and fasting glucose improvement (F) per unit of systemic metformin exposure. Efficacy/exposure data are HbA1c (LS mean reduction from baseline at Week 16) or reduction in fasting glucose (Caverage Week 4–16) divided by calculated metformin exposure (AUC0-24h); data are normalized to Metformin IR 2000 mg. Data are from the mITT Population (n = 542), with the exception of modeled steady-stated metformin AUC0-24h (ITT population; n = 571). * p

Fig 3. Time to occurrence of gastrointestinal…

Fig 3. Time to occurrence of gastrointestinal treatment-emergent adverse events.

Probability of any gastrointestinal treatment-emergent…

Fig 3. Time to occurrence of gastrointestinal treatment-emergent adverse events.
Probability of any gastrointestinal treatment-emergent adverse event (top figure) or nausea/diarrhea events (bottom figures). Abbreviations: CI = Confidence interval; DR = Delayed-release; HR = Hazard ratio; IR = Immediate-release; Met = Metformin; TEAE = Treatment-emergent adverse event. Data are from the ITT Population (n = 571).
Fig 3. Time to occurrence of gastrointestinal…
Fig 3. Time to occurrence of gastrointestinal treatment-emergent adverse events.
Probability of any gastrointestinal treatment-emergent adverse event (top figure) or nausea/diarrhea events (bottom figures). Abbreviations: CI = Confidence interval; DR = Delayed-release; HR = Hazard ratio; IR = Immediate-release; Met = Metformin; TEAE = Treatment-emergent adverse event. Data are from the ITT Population (n = 571).

References

    1. Graham GG, Punt J, Arora M, Day RO, Doogue MP, Duong JK, et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 2011;50(2):81–98. Epub 2011/01/19. 10.2165/11534750-000000000-00000 .
    1. Vidon N, Chaussade S, Noel M, Franchisseur C, Huchet B, Bernier JJ. Metformin in the digestive tract. Diabetes Res Clin Pract. 1988;4(3):223–9. Epub 1988/02/19. .
    1. Tucker GT, Casey C, Phillips PJ, Connor H, Ward JD, Woods HF. Metformin kinetics in healthy subjects and in patients with diabetes mellitus. Br J Clin Pharmacol. 1981;12(2):235–46. Epub 1981/08/01. ; PubMed Central PMCID: PMC1401849.
    1. Bailey CJ, Wilcock C, Scarpello JH. Metformin and the intestine. Diabetologia. 2008;51(8):1552–3. Epub 2008/06/06. 10.1007/s00125-008-1053-5 .
    1. Bailey CJ. Biguanides and NIDDM. Diabetes Care. 1992;15(6):755–72. Epub 1992/06/01. .
    1. Wang DS, Kusuhara H, Kato Y, Jonker JW, Schinkel AH, Sugiyama Y. Involvement of organic cation transporter 1 in the lactic acidosis caused by metformin. Mol Pharmacol. 2003;63(4):844–8. Epub 2003/03/20. .
    1. Protti A, Russo R, Tagliabue P, Vecchio S, Singer M, Rudiger A, et al. Oxygen consumption is depressed in patients with lactic acidosis due to biguanide intoxication. Crit Care. 2010;14(1):R22 Epub 2010/02/23. 10.1186/cc8885 ; PubMed Central PMCID: PMC2875537.
    1. Glucophage (metformin hydrochloride) and Glucophage XR (extended-release) US Prescribing Information. Princeton, NJ: Bristol-Myers Squibb; 2017.
    1. Misbin RI, Green L, Stadel BV, Gueriguian JL, Gubbi A, Fleming GA. Lactic acidosis in patients with diabetes treated with metformin. N Engl J Med. 1998;338(4):265–6. Epub 1998/01/24. 10.1056/NEJM199801223380415 .
    1. Peters N, Jay N, Barraud D, Cravoisy A, Nace L, Bollaert PE, et al. Metformin-associated lactic acidosis in an intensive care unit. Crit Care. 2008;12(6):R149 Epub 2008/11/28. 10.1186/cc7137 ; PubMed Central PMCID: PMC2646313.
    1. Hung SC, Chang YK, Liu JS, Kuo KL, Chen YH, Hsu CC, et al. Metformin use and mortality in patients with advanced chronic kidney disease: national, retrospective, observational, cohort study. Lancet Diabetes Endocrinol. 2015;3(8):605–14. 10.1016/S2213-8587(15)00123-0 .
    1. Almirall J, Briculle M, Gonzalez-Clemente JM. Metformin-associated lactic acidosis in type 2 diabetes mellitus: incidence and presentation in common clinical practice. Nephrol Dial Transplant. 2008;23(7):2436–8. Epub 2008/04/05. 10.1093/ndt/gfn152 .
    1. Connelly PJ, Lonergan M, Soto-Pedre E, Donnelly L, Zhou K, Pearson ER. Acute kidney injury, plasma lactate concentrations and lactic acidosis in metformin users: A GoDarts study. Diabetes Obes Metab. 2017;19(11):1579–86. Epub 2017/04/23. 10.1111/dom.12978 ; PubMed Central PMCID: PMCPMC5655780.
    1. Lucis OJ. The status of metformin in Canada. Canadian Medical Association journal. 1983;128(1):24–6. Epub 1983/01/01. ; PubMed Central PMCID: PMC1874707.
    1. Glucophage Summary of Product Characteristics (United Kingdom). Feltham, Middlesex: Merck Serono; 2017.
    1. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. Management of hyperglycaemia in type 2 diabetes, 2015: a patient-centred approach. Update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia. 2015;58(3):429–42. Epub 2015/01/15. 10.1007/s00125-014-3460-0 .
    1. Brazg R, Xu L, Dalla Man C, Cobelli C, Thomas K, Stein PP. Effect of adding sitagliptin, a dipeptidyl peptidase-4 inhibitor, to metformin on 24-h glycaemic control and beta-cell function in patients with type 2 diabetes. Diabetes Obes Metab. 2007;9(2):186–93. 10.1111/j.1463-1326.2006.00691.x .
    1. Wanner C, Lachin JM, Inzucchi SE, Fitchett D, Mattheus M, George JT, et al. Empagliflozin and clinical outcomes in patients with type 2 diabetes, established cardiovascular disease and chronic kidney disease. Circulation. 2017. Epub 2017/09/15. 10.1161/circulationaha.117.028268 .
    1. Perkovic V, Agarwal R, Fioretto P, Hemmelgarn BR, Levin A, Thomas MC, et al. Management of patients with diabetes and CKD: conclusions from a "Kidney Disease: Improving Global Outcomes" (KDIGO) Controversies Conference. Kidney international. 2016;90(6):1175–83. 10.1016/j.kint.2016.09.010 .
    1. Dekkers CCJ, Wheeler DC, Sjostrom CD, Stefansson BV, Cain V, Heerspink HJL. Effects of the sodium-glucose co-transporter 2 inhibitor dapagliflozin in patients with type 2 diabetes and Stages 3b-4 chronic kidney disease. Nephrol Dial Transplant. 2018. 10.1093/ndt/gfx350 .
    1. Moen MF, Zhan M, Hsu VD, Walker LD, Einhorn LM, Seliger SL, et al. Frequency of hypoglycemia and its significance in chronic kidney disease. Clin J Am Soc Nephrol. 2009;4(6):1121–7. Epub 2009/05/09. 10.2215/CJN.00800209 ; PubMed Central PMCID: PMCPmc2689888.
    1. Alsahli M, Gerich JE. Hypoglycemia, chronic kidney disease, and diabetes mellitus. Mayo Clinic proceedings. 2014;89(11):1564–71. Epub 2014/10/13. 10.1016/j.mayocp.2014.07.013 .
    1. Papademetriou V, Lovato L, Doumas M, Nylen E, Mottl A, Cohen RM, et al. Chronic kidney disease and intensive glycemic control increase cardiovascular risk in patients with type 2 diabetes. Kidney international. 2015;87(3):649–59. Epub 2014/09/18. 10.1038/ki.2014.296 .
    1. Chu YW, Lin HM, Wang JJ, Weng SF, Lin CC, Chien CC. Epidemiology and outcomes of hypoglycemia in patients with advanced diabetic kidney disease on dialysis: A national cohort study. PLoS One. 2017;12(3):e0174601 Epub 2017/03/30. 10.1371/journal.pone.0174601 ; PubMed Central PMCID: PMCPmc5371333.
    1. Shih CJ, Wu YL, Lo YH, Kuo SC, Tarng DC, Lin CC, et al. Association of hypoglycemia with incident chronic kidney disease in patients with type 2 diabetes: a nationwide population-based study. Medicine. 2015;94(16):e771 10.1097/MD.0000000000000771 ; PubMed Central PMCID: PMCPMC4602688.
    1. Yu TM, Lin CL, Chang SN, Sung FC, Kao CH. Increased risk of stroke in patients with chronic kidney disease after recurrent hypoglycemia. Neurology. 2014;83(8):686–94. Epub 2014/07/18. 10.1212/WNL.0000000000000711 .
    1. Jensen JB, Sundelin EI, Jakobsen S, Gormsen LC, Munk OL, Frokiaer J, et al. [11C]-Labeled metformin distribution in the liver and small intestine using dynamic positron emission tomography in mice demonstrates tissue-specific transporter dependency. Diabetes. 2016;65(6):1724–30. Epub 2016/03/20. 10.2337/db16-0032 .
    1. Lee N, Duan H, Hebert MF, Liang CJ, Rice KM, Wang J. Taste of a pill: organic cation transporter-3 (OCT3) mediates metformin accumulation and secretion in salivary glands. J Biol Chem. 2014;289(39):27055–64. 10.1074/jbc.M114.570564 ; PubMed Central PMCID: PMC4175343.
    1. Pentikainen PJ, Neuvonen PJ, Penttila A. Pharmacokinetics of metformin after intravenous and oral administration to man. Eur J Clin Pharmacol. 1979;16(3):195–202. .
    1. Proctor WR, Bourdet DL, Thakker DR. Mechanisms underlying saturable intestinal absorption of metformin. Drug Metab Dispos. 2008;36(8):1650–8. Epub 2008/05/07. 10.1124/dmd.107.020180 .
    1. Wilcock C, Bailey CJ. Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica. 1994;24(1):49–57. Epub 1994/01/01. 10.3109/00498259409043220 .
    1. Napolitano A, Miller S, Nicholls AW, Baker D, Van Horn S, Thomas E, et al. Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus. PLoS One. 2014;9(7):e100778 10.1371/journal.pone.0100778 ; PubMed Central PMCID: PMC4079657.
    1. Duca FA, Cote CD, Rasmussen BA, Zadeh-Tahmasebi M, Rutter GA, Filippi BM, et al. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nat Med. 2015;21(5):506–11. 10.1038/nm.3787 .
    1. Buse JB, DeFronzo RA, Rosenstock J, Kim T, Burns C, Skare S, et al. The primary glucose-lowering effect of metformin resides in the gut, not the circulation. results from short-term pharmacokinetic and 12-week dose-ranging studies. Diabetes Care. 2016;39(2):198–205. Epub 2015 Aug 18. pii: dc150488. 10.2337/dc15-0488 .
    1. DeFronzo R, Fleming GA, Chen K, Bicsak TA. Metformin-associated lactic acidosis: Current perspectives on causes and risk. Metabolism. 2016;65(2):20–9. 10.1016/j.metabol.2015.10.014
    1. DeFronzo RA, Buse JB, Kim T, Burns C, Skare S, Baron A, et al. Once-daily delayed-release metformin lowers plasma glucose and enhances fasting and postprandial GLP-1 and PYY: results from two randomised trials. Diabetologia. 2016;59(8):1645–54. 10.1007/s00125-016-3992-6 ; PubMed Central PMCID: PMCPMC4930485.
    1. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528(7581):262–6. Epub 2015/12/04. 10.1038/nature15766 ; PubMed Central PMCID: PMCPmc4681099.
    1. McCreight LJ, Bailey CJ, Pearson ER. Metformin and the gastrointestinal tract. Diabetologia. 2016;59(3):426–35. 10.1007/s00125-015-3844-9 .
    1. Bakris G, Taylor A, Walsh B, Burns C, Fineman M. Metformin exposure with gut-restricted delayed-release metformin in CKD Stage 4 does not exceed that of current metformin used on-label: results from population PK modelling. Diabetologia. 2017;60((Suppl 1)):S114 (Abstract 244). 10.1007/s00125-017-4350-z.
    1. Ruberg SJ. Dose response studies. II. Analysis and interpretation. Journal of biopharmaceutical statistics. 1995;5(1):15–42. Epub 1995/03/01. 10.1080/10543409508835097 .
    1. Bailey RA, Wang Y, Zhu V, Rupnow MF. Chronic kidney disease in US adults with type 2 diabetes: an updated national estimate of prevalence based on Kidney Disease: Improving Global Outcomes (KDIGO) staging. BMC Res Notes. 2014;7:415 Epub 2014/07/06. 10.1186/1756-0500-7-415 ; PubMed Central PMCID: PMCPmc4091951.
    1. Lalau JD, Kajbaf F, Bennis Y, Hurtel-Lemaire AS, Belpaire F, De Broe ME. Metformin Treatment in Patients With Type 2 Diabetes and Chronic Kidney Disease Stages 3A, 3B, or 4. Diabetes Care. 2018;41(3):547–53. Epub 2018/01/07. 10.2337/dc17-2231 .

Source: PubMed

3
Se inscrever