The application of an allogeneic bone screw for osteosynthesis in hand and foot surgery: a case series

Klaus Pastl, Wolfgang Schimetta, Klaus Pastl, Wolfgang Schimetta

Abstract

Introduction: The allogeneic bone screw transplant is a new osteosynthesis device making the use of foreign fixation material obsolete for various kinds of indications. Moreover, it is integrated into the recipient bone by natural bone remodeling without harming the surrounding tissue. The aim of this study was to determine the efficacy and safety of the transplant for osteotomy and arthrodesis in hand and foot surgery and to evaluate the clinical importance of the device.

Materials and methods: A single-surgeon case series of 32 patients who had undergone hand or foot surgery with the application of an allogeneic bone screw with an average follow-up time of 1 year is reported. Clinical data were reviewed to evaluate the pain levels and satisfaction of the patients and the frequency and type of complications occurring during the healing process. Routine radiography and computed tomography were reviewed to determine the fusion rate, the ingrowth behavior of the transplant and the possible occurrence of transplant failure.

Results: High patient satisfaction was paired with low postoperative pain levels and a low complication rate. 97% of the patients were free of pain at the timepoint of the second follow-up examination, the mean time of recovery of full mobility was 50.1 ± 26.1 days after surgery. Wound healing disturbance occurred only in two cases. Bony consolidation of the osteotomy or arthrodesis gap as well as osseointegration of the transplant was seen in all cases. No transplant failure or transplant loosening occurred.

Conclusions: The application of the allogeneic bone screw resulted in a 100% fusion rate while the patient burden was low. The transplant is safe and suited for various kinds of osteosynthesis in hand and foot surgery.

Keywords: Allogeneic bone screw; Allograft; Hand and foot surgery; Osteosynthesis; Osteotomy and arthrodesis; Shark Screw® transplant.

Conflict of interest statement

Klaus Pastl is CEO at surgbright GmbH. Wolfgang Schimetta declares no conflict of interest.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Examples of the application of the allogeneic screw in foot surgery. Radiographs showing the incorporation of the transplant used for an MTP I arthrodesis of a patient with type 2 diabetes and peripheral arterial occlusive disease a on the day of surgery, b 20 months after surgery and radiology showing the incorporation of the allogeneic screw used for a Lapidus arthrodesis c 6 weeks and d 12 months after surgery. Transplants are marked by arrows
Fig. 2
Fig. 2
Examples of the application of the allogeneic screw in hand surgery. Postoperative radiographs showing the transplant used for a four-corner fusion a 10 weeks after surgery, b 20 months after surgery. Postoperative radiographs of an IP arthrodesis of the thumb c on the day of surgery, d 12 months after surgery. Transplants are marked by arrows
Fig. 3
Fig. 3
Computed tomography images of a a Lapidus arthrodesis 11 weeks after surgery, b a four-corner fusion 10 weeks after surgery and c a TMT II joint arthrodesis 6 weeks after surgery, all showing bony consolidation of the arthrodesis and the incorporation and partial remodeling of the allogeneic screw

References

    1. Goldberg VM, Akhavan S. Biology of bone grafts. In: Lieberman JR, Friedlaender GE, editors. Bone regeneration and repair. Totowa, NJ: Humana Press; 2005. pp. 57–65.
    1. Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact Mater. 2017;2:224–247. doi: 10.1016/j.bioactmat.2017.05.007.
    1. Khan SN, Cammisa FP, Sandhu HS, et al. The biology of bone grafting. J Am Acad Orthop Surg. 2005;13:77–86. doi: 10.5435/00124635-200501000-00010.
    1. Pruss A, Perka C, Degenhardt P, et al. Clinical efficacy and compatibility of allogeneic avital tissue transplants sterilized with a peracetic acid/ethanol mixture. Cell Tissue Bank. 2002;3:235–243. doi: 10.1023/A:1024697515420.
    1. Barbeck M, Donkiewicz P, Blume O, et al. Allogene Knochenersatzmaterialien. Implantol J. 2017;7:20–24.
    1. Gomes KU, Carlini JL, Biron C, et al. Use of allogeneic bone graft in maxillary reconstruction for installation of dental implants. J Oral Maxillofac Surg. 2008;66:2335–2338. doi: 10.1016/j.joms.2008.06.006.
    1. Lomas R, Chandrasekar A, Board TN. Bone allograft in the UK: perceptions and realities. Hip Int. 2013;23:427–433. doi: 10.5301/hipint.5000018.
    1. Schwier V. Osteosynthese mit Corticalisschrauben. Monatsschr Unfallheilkd Versicherungsmed. 1957;60:109–112.
    1. Zaborszky Z. Use of homeoplastic bone screw in the treatment of pseudarthroses. Symposia Biologica Hungarica. 1967;8:323–328.
    1. Hommel HJ. Bones as osteosynthesis material. Beitr Orthop Traumatol. 1967;14:571–574.
    1. Grasser H. Osteosynthesis with bone screws. Dtsch Zahnarztl Z. 1968;23:313–320.
    1. Obwegeser JA. Bioconvertible screws made of allogenic cortical bone for osteosynthesis following sagittal split ramus osteotomy without postoperative immobilisation. J Craniomaxillofac Surg. 1994;22:63–75. doi: 10.1016/s1010-5182(05)80013-7.
    1. Obwegeser JA. Resorbier- und umbaubare Osteosynthesematerialien in der Mund-, Kiefer- und Gesichtschirurgie. Mund Kiefer GesichtsChir. 1998;2:288–308. doi: 10.1007/s100060050077.
    1. Böhler N, Obwegeser JA, Pastl K. Clinical results with screws made by homologous bone as a resorbable implant for the fixation of osteochondral fragments. JATROS Orthopädie & Traumatologie Rheumatologie. 1997;56:168.
    1. Böhler N, Obwegeser J, Pastl K (1997) Die Anwendung homologer Knochenschrauben bei osteochondralen Defekten. Kongressband DGOT
    1. Busam ML, Esther RJ, Obremskey WT. Hardware removal: indications and expectations. J Am Acad Orthop Surg. 2006;14:113–120. doi: 10.5435/00124635-200602000-00006.
    1. Sansone V, Pagani D, Melato M. The effects on bone cells of metal ions released from orthopaedic implants. A review. Clin Cases Miner Bone Metab. 2013;10:34–40. doi: 10.11138/ccmbm/2013.10.1.034.
    1. Reith G, Schmitz-Greven V, Hensel KO, et al. Metal implant removal: benefits and drawbacks—a patient survey. BMC Surg. 2015;15:96. doi: 10.1186/s12893-015-0081-6.
    1. Sheikh Z, Najeeb S, Khurshid Z, et al. Biodegradable materials for bone repair and tissue engineering applications. Materials (Basel) 2015;8:5744–5794. doi: 10.3390/ma8095273.
    1. Prakasam M, Locs J, Salma-Ancane K, et al. Biodegradable materials and metallic implants—a review. J Funct Biomater. 2017 doi: 10.3390/jfb8040044.
    1. Hayes MHS, Patterson DG. Experimental development of the graphic rating method. Psychological Bulletin. 1921;5:98–99.
    1. Lane EJ, Proto AV, Phillips TW. Mach bands and density perception. Radiology. 1976;121:9–17. doi: 10.1148/121.1.9.
    1. Prall WC, Kusmenkov T, Schmidt B, et al. Cancellous allogenic and autologous bone grafting ensure comparable tunnel filling results in two-staged revision ACL surgery. Arch Orthop Trauma Surg. 2020;140:1211–1219. doi: 10.1007/s00402-020-03421-7.
    1. Dickson DR, Mehta SS, Nuttall D, Ng CY. A systematic review of distal interphalangeal joint arthrodesis. J Hand Microsurg. 2014;6:74–84. doi: 10.1007/s12593-014-0163-1.
    1. Kocak E, Carruthers KH, Kobus RJ. Distal interphalangeal joint arthrodesis with the Herbert headless compression screw: outcomes and complications in 64 consecutively treated joints. Hand (N Y) 2011;6:56–59. doi: 10.1007/s11552-010-9295-3.
    1. Jakubek M, Enzendorfer M, Fiala R, Trieb K. Interphalangeal arthrodesis using an intramedullary nitinol implant: a prospective study. Eklem Hastalik Cerrahisi. 2017;28:87–91. doi: 10.5606/ehc.2017.52924.
    1. Arata J, Ishikawa K, Soeda H, Kitayama T. Arthrodesis of the distal interphalangeal joint using a bioabsorbable rod as an intramedullary nail. Scand J Plast Reconstr Surg Hand Surg. 2003;37:228–231. doi: 10.1080/02844310310016403.
    1. Patel A, Damodar D, Dodds SD. Dorsal plate fixation for distal interphalangeal joint arthrodesis of the fingers and thumb. J Hand Surg Am. 2018;43:1046.e1–1046.e6. doi: 10.1016/j.jhsa.2018.03.049.
    1. Rutkow IM. Orthopaedic operations in the United States, 1979 through 1983. J Bone Joint Surg Am. 1986;68:716–719. doi: 10.2106/00004623-198668050-00011.
    1. Sanderson PL, Ryan W, Turner PG. Complications of metalwork removal. Injury. 1992;23:29–30. doi: 10.1016/0020-1383(92)90121-8.
    1. Cochran G van B (1988) Orthopädische Biomechanik. Ferdinand Enke Verlag Stuttgart
    1. Pilz W, Blankenburg G. Mechanische Kennwerte von Knochenersatzwerkstoffen unter Berücksichtigung verschiedener Entnahmeparameter. Knochenersatzmaterialien und Wachstumsfaktoren. 1997;58:162–170.
    1. Ungethuem M, Winkler-Gniewerk W (1984) Metallische Werkstoffe in der Orthopädie und Unfallchirurgie. Thieme Stuttgart New York
    1. Cowin SC. Bone Mechanics Handbook. Subsequent: CRC Press Inc, Boca Raton, FL; 2001.
    1. Bergsma JE, de Bruijn WC, Rozema FR, et al. Late degradation tissue response to poly(L-lactide) bone plates and screws. Biomaterials. 1995;16:25–31. doi: 10.1016/0142-9612(95)91092-d.
    1. Gutwald R, Pistner H, Schwartz G, Mühling J. Biodegradation of poly(L-lactide) screws in femur of guinea-pigs. Biomed Eng. 1995;40:49–50.
    1. Weiler A, Hoffmann RF, Stähelin AC, et al. Biodegradable implants in sports medicine: the biological base. Arthroscopy. 2000;16:305–321. doi: 10.1016/S0749-8063(00)90055-0.
    1. Zaidenberg EE, Roitman P, Gallucci GL, et al. Foreign-body reaction and osteolysis in dorsal lunate dislocation repair with bioabsorbable suture anchor. Hand (N Y) 2016;11:368–371. doi: 10.1177/1558944715627632.
    1. McCarty LP, Buss DD, Datta MW, et al. Complications observed following labral or rotator cuff repair with use of poly-L-lactic acid implants. J Bone Joint Surg Am. 2013;95:507–511. doi: 10.2106/JBJS.L.00314.
    1. Nho SJ, Provencher MT, Seroyer ST, Romeo AA. Bioabsorbable anchors in glenohumeral shoulder surgery. Arthroscopy. 2009;25:788–793. doi: 10.1016/j.arthro.2008.08.018.
    1. Barber FA, Dockery WD. Long-term absorption of poly-l-lactic acid interference screws. Arthroscopy. J Arthroscopic Related Surg. 2006;22:820–826. doi: 10.1016/j.arthro.2006.04.096.
    1. Chevallier R, Klouche S, Gerometta A, et al. Bioabsorbable screws, whatever the composition, can result in symptomatic intra-osseous tibial tunnel cysts after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2019;27:76–85. doi: 10.1007/s00167-018-5037-9.
    1. Böstman OM, Pihlajamäki HK. Adverse tissue reactions to bioabsorbable fixation devices. Clin Orthopaed Relat Res. 2000;371:216. doi: 10.1097/00003086-200002000-00026.
    1. Wang J, Xu J, Hopkins C, et al. Biodegradable magnesium-based implants in orthopedics—a general review and perspectives. Adv Sci (Weinh) 2020 doi: 10.1002/advs.201902443.
    1. Pichler K, Fischerauer S, Ferlic P, et al. Immunological response to biodegradable magnesium implants. JOM. 2014;66:1–7. doi: 10.1007/s11837-014-0874-6.
    1. Mammoli F, Castiglioni S, Parenti S, et al. Magnesium is a key regulator of the balance between osteoclast and osteoblast differentiation in the presence of vitamin D3. Int J Mol Sci. 2019 doi: 10.3390/ijms20020385.
    1. Radha R, Sreekanth D. Insight of magnesium alloys and composites for orthopedic implant applications—a review. J Magn Alloys. 2017;5:286–312. doi: 10.1016/j.jma.2017.08.003.
    1. Seitz J-M, Eifler R, Bach F-W, Maier HJ. Magnesium degradation products: effects on tissue and human metabolism. J Biomed Mater Res A. 2014;102:3744–3753. doi: 10.1002/jbm.a.35023.
    1. Elsalanty ME, Genecov DG. Bone Grafts in Craniofacial Surgery. Craniomaxillofac Trauma Reconstr. 2009;2:125–134. doi: 10.1055/s-0029-1215875.
    1. Grün NG, Holweg PL, Donohue N, et al. Resorbable implants in pediatric fracture treatment. Innov Surg Sci. 2018;3:119–125. doi: 10.1515/iss-2018-0006.

Source: PubMed

3
Se inscrever