An Educational and Exercise Mobile Phone-Based Intervention to Elicit Electrophysiological Changes and to Improve Psychological Functioning in Adults With Nonspecific Chronic Low Back Pain (BackFit App): Nonrandomized Clinical Trial

Carolina Sitges, Juan L Terrasa, Nuria García-Dopico, Joan Segur-Ferrer, Olga Velasco-Roldán, Jaume Crespí-Palmer, Ana María González-Roldán, Pedro Montoya, Carolina Sitges, Juan L Terrasa, Nuria García-Dopico, Joan Segur-Ferrer, Olga Velasco-Roldán, Jaume Crespí-Palmer, Ana María González-Roldán, Pedro Montoya

Abstract

Background: Concomitant psychological and cognitive impairments modulate nociceptive processing and contribute to chronic low back pain (CLBP) maintenance, poorly correlated with radiological findings. Clinical practice guidelines recommend self-management and multidisciplinary educational and exercise-based interventions. However, these recommendations are based on self-reported measurements, which lack evidence of related electrophysiological changes. Furthermore, current mobile health (mHealth) tools for self-management are of low quality and scarce evidence. Thus, it is necessary to increase knowledge on mHealth and electrophysiological changes elicited by current evidence-based interventions.

Objective: The aim of this study is to investigate changes elicited by a self-managed educational and exercise-based 4-week mHealth intervention (BackFit app) in electroencephalographic and electrocardiographic activity, pressure pain thresholds (PPTs), pain, disability, and psychological and cognitive functioning in CLBP versus the same intervention in a face-to-face modality.

Methods: A 2-arm parallel nonrandomized clinical trial was conducted at the University of the Balearic Islands (Palma, Spain). A total of 50 patients with nonspecific CLBP were assigned to a self-managed group (23/50, 46%; mean age 45.00, SD 9.13 years; 10/23, 43% men) or a face-to-face group (27/50, 54%; mean age 48.63, SD 7.54 years; 7/27, 26% men). The primary outcomes were electroencephalographic activity (at rest and during a modified version of the Eriksen flanker task) and heart rate variability (at rest), PPTs, and pressure pain intensity ratings. The secondary outcomes were pain, disability, psychological functioning (mood, anxiety, kinesiophobia, pain catastrophizing, and fear-avoidance beliefs), and cognitive performance (percentage of hits and reaction times).

Results: After the intervention, frequency analysis of electroencephalographic resting-state data showed increased beta-2 (16-23 Hz; 0.0020 vs 0.0024; P=.02) and beta-3 (23-30 Hz; 0.0013 vs 0.0018; P=.03) activity. In addition, source analyses revealed higher power density of beta (16-30 Hz) at the anterior cingulate cortex and alpha (8-12 Hz) at the postcentral gyrus and lower power density of delta (2-4 Hz) at the cuneus and precuneus. Both groups also improved depression (7.74 vs 5.15; P=.01), kinesiophobia (22.91 vs 20.87; P=.002), activity avoidance (14.49 vs 12.86; P<.001), helplessness (6.38 vs 4.74; P=.02), fear-avoidance beliefs (35 vs 29.11; P=.03), and avoidance of physical activity (12.07 vs 9.28; P=.01) scores, but there was an increase in the disability score (6.08 vs 7.5; P=.01). No significant differences between the groups or sessions were found in heart rate variability resting-state data, electroencephalographic data from the Eriksen flanker task, PPTs, subjective ratings, or cognitive performance.

Conclusions: Both intervention modalities increased mainly beta activity at rest and improved psychological functioning. Given the limitations of our study, conclusions must be drawn carefully and further research will be needed. Nevertheless, to the best of our knowledge, this is the first study reporting electroencephalographic changes in patients with CLBP after an mHealth intervention.

Trial registration: ClinicalTrials.gov NCT04576611; https://ichgcp.net/clinical-trials-registry/NCT04576611.

Keywords: brain; chronic pain; cognition; depression; education; exercise; low back pain; mHealth; mobile apps; mobile phone; pain threshold.

Conflict of interest statement

Conflicts of Interest: None declared.

©Carolina Sitges, Juan L Terrasa, Nuria García-Dopico, Joan Segur-Ferrer, Olga Velasco-Roldán, Jaume Crespí-Palmer, Ana María González-Roldán, Pedro Montoya. Originally published in JMIR mHealth and uHealth (https://mhealth.jmir.org), 15.03.2022.

Figures

Figure 1
Figure 1
CONSORT (Consolidated Standards of Reporting Trials) flow diagram of the progress of enrollment, intervention allocation, and data analysis.
Figure 2
Figure 2
Screenshots from the BackFit app showing examples of the intervention protocol (ie, session, pain rating scale, educational video, and exercise).
Figure 3
Figure 3
Standardized low-resolution electromagnetic tomography analysis (sLORETA) results for 3 orthogonal brain slices (horizontal, sagittal, and coronal) of delta, alpha, beta-2, and beta-3 frequency bands in all participants. Yellow-red voxels represent increased (P<.05) current density after the session compared with before the session. Blue voxels represent decreased (P<.05) current density after the session compared with before the session.

References

    1. van Tulder M, Becker A, Bekkering T, Breen A, del Real MT, Hutchinson A, Koes B, Laerum E, Malmivaara A, COST B13 Working Group on Guidelines for the Management of Acute Low Back Pain in Primary Care Chapter 3. European guidelines for the management of acute nonspecific low back pain in primary care. Eur Spine J. 2006;15 Suppl 2(Suppl 2):S169–91. doi: 10.1007/s00586-006-1071-2.
    1. Kent P, Kjaer P. The efficacy of targeted interventions for modifiable psychosocial risk factors of persistent nonspecific low back pain - a systematic review. Man Ther. 2012;17(5):385–401. doi: 10.1016/j.math.2012.02.008.S1356-689X(12)00038-0
    1. Giesecke T, Gracely RH, Grant MA, Nachemson A, Petzke F, Williams DA, Clauw DJ. Evidence of augmented central pain processing in idiopathic chronic low back pain. Arthritis Rheum. 2004;50(2):613–23. doi: 10.1002/art.20063. doi: 10.1002/art.20063.
    1. Bardin LD, King P, Maher CG. Diagnostic triage for low back pain: a practical approach for primary care. Med J Aust. 2017;206(6):268–73. doi: 10.5694/mja16.00828.10.5694/mja16.00828
    1. Bodes Pardo G, Lluch Girbés E, Roussel NA, Gallego Izquierdo T, Jiménez Penick V, Pecos Martín D. Pain neurophysiology education and therapeutic exercise for patients with chronic low back pain: a single-blind randomized controlled trial. Arch Phys Med Rehabil. 2018;99(2):338–47. doi: 10.1016/j.apmr.2017.10.016.S0003-9993(17)31343-6
    1. Malfliet A, Kregel J, Coppieters I, De Pauw R, Meeus M, Roussel N, Cagnie B, Danneels L, Nijs J. Effect of pain neuroscience education combined with cognition-targeted motor control training on chronic spinal pain: a randomized clinical trial. JAMA Neurol. 2018;75(7):808–17. doi: 10.1001/jamaneurol.2018.0492. 2678439
    1. Galán-Martín MA, Montero-Cuadrado F, Lluch-Girbes E, Coca-López MC, Mayo-Iscar A, Cuesta-Vargas A. Pain neuroscience education and physical exercise for patients with chronic spinal pain in primary healthcare: a randomised trial protocol. BMC Musculoskelet Disord. 2019;20(1):505. doi: 10.1186/s12891-019-2889-1. 10.1186/s12891-019-2889-1
    1. Engers A, Jellema P, Wensing M, van der Windt DA, Grol R, van Tulder MW. Individual patient education for low back pain. Cochrane Database Syst Rev. 2008;2008(1):CD004057. doi: 10.1002/14651858.CD004057.pub3.
    1. Managing chronic pain: a booklet for patients, their families and carers. Scottish Intercollegiate Guidelines Network (SIGN) 2013. [2022-03-09].
    1. Managing low back pain and sciatica - NICE Pathways. National Institute for Health and Care Excellence (NICE) 2018. [2022-03-09]. .
    1. Machado GC, Pinheiro MB, Lee H, Ahmed OH, Hendrick P, Williams C, Kamper SJ. Smartphone apps for the self-management of low back pain: a systematic review. Best Pract Res Clin Rheumatol. 2016;30(6):1098–109. doi: 10.1016/j.berh.2017.04.002.S1521-6942(17)30002-5
    1. Dobkin BH, Dorsch A. The promise of mHealth: daily activity monitoring and outcome assessments by wearable sensors. Neurorehabil Neural Repair. 2011;25(9):788–98. doi: 10.1177/1545968311425908. 25/9/788
    1. Du S, Liu W, Cai S, Hu Y, Dong J. The efficacy of e-health in the self-management of chronic low back pain: a meta analysis. Int J Nurs Stud. 2020;106:103507. doi: 10.1016/j.ijnurstu.2019.103507.S0020-7489(19)30314-1
    1. Pfeifer AC, Uddin R, Schröder-Pfeifer P, Holl F, Swoboda W, Schiltenwolf M. Mobile application-based interventions for chronic pain patients: a systematic review and meta-analysis of effectiveness. J Clin Med. 2020;9(11):3557. doi: 10.3390/jcm9113557. jcm9113557
    1. Hayden JA, van Tulder MW, Tomlinson G. Systematic review: strategies for using exercise therapy to improve outcomes in chronic low back pain. Ann Intern Med. 2005;142(9):776–85. doi: 10.7326/0003-4819-142-9-200505030-00014.142/9/776
    1. Gomes-Neto M, Lopes JM, Conceição CS, Araujo A, Brasileiro A, Sousa C, Carvalho VO, Arcanjo FL. Stabilization exercise compared to general exercises or manual therapy for the management of low back pain: a systematic review and meta-analysis. Phys Ther Sport. 2017;23:136–42. doi: 10.1016/j.ptsp.2016.08.004.S1466-853X(16)30071-2
    1. Chou R, Deyo R, Friedly J, Skelly A, Hashimoto R, Weimer M, Fu R, Dana T, Kraegel P, Griffin J, Grusing S, Brodt ED. Nonpharmacologic therapies for low back pain: a systematic review for an American college of physicians clinical practice guideline. Ann Intern Med. 2017;166(7):493–505. doi: 10.7326/M16-2459. 2603230
    1. Lee SW, Kim SY. Effects of hip exercises for chronic low-back pain patients with lumbar instability. J Phys Ther Sci. 2015;27(2):345–8. doi: 10.1589/jpts.27.345. jpts-2014-418
    1. Hwangbo G, Lee CW, Kim SG, Kim HS. The effects of trunk stability exercise and a combined exercise program on pain, flexibility, and static balance in chronic low back pain patients. J Phys Ther Sci. 2015;27(4):1153–5. doi: 10.1589/jpts.27.1153. jpts-2014-704
    1. Booth J, Moseley GL, Schiltenwolf M, Cashin A, Davies M, Hübscher M. Exercise for chronic musculoskeletal pain: a biopsychosocial approach. Musculoskeletal Care. 2017;15(4):413–21. doi: 10.1002/msc.1191.
    1. Nijs J, Clark J, Malfliet A, Ickmans K, Voogt L, Don S, den Bandt H, Goubert D, Kregel J, Coppieters I, Dankaerts W. In the spine or in the brain? Recent advances in pain neuroscience applied in the intervention for low back pain. Clin Exp Rheumatol. 2017;35 Suppl 107(5):S108–15. 12193
    1. Zhang L, Zhou L, Ren Q, Mokhtari T, Wan L, Zhou X, Hu L. Evaluating cortical alterations in patients with chronic back pain using neuroimaging techniques: recent advances and perspectives. Front Psychol. 2019;10:2527. doi: 10.3389/fpsyg.2019.02527. doi: 10.3389/fpsyg.2019.02527.
    1. Ploner M, Sorg C, Gross J. Brain rhythms of pain. Trends Cogn Sci. 2017;21(2):100–10. doi: 10.1016/j.tics.2016.12.001. S1364-6613(16)30200-5
    1. Ngernyam N, Jensen MP, Arayawichanon P, Auvichayapat N, Tiamkao S, Janjarasjitt S, Punjaruk W, Amatachaya A, Aree-uea B, Auvichayapat P. The effects of transcranial direct current stimulation in patients with neuropathic pain from spinal cord injury. Clin Neurophysiol. 2015;126(2):382–90. doi: 10.1016/j.clinph.2014.05.034.S1388-2457(14)00315-0
    1. Thayer JF, Ahs F, Fredrikson M, Sollers 3rd JJ, Wager TD. A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neurosci Biobehav Rev. 2012;36(2):747–56. doi: 10.1016/j.neubiorev.2011.11.009.S0149-7634(11)00207-7
    1. Tracy LM, Ioannou L, Baker KS, Gibson SJ, Georgiou-Karistianis N, Giummarra MJ. Meta-analytic evidence for decreased heart rate variability in chronic pain implicating parasympathetic nervous system dysregulation. Pain. 2016;157(1):7–29. doi: 10.1097/j.pain.0000000000000360.00006396-201601000-00004
    1. Triggiani AI, Valenzano A, Del Percio C, Marzano N, Soricelli A, Petito A, Bellomo A, Başar E, Mundi C, Cibelli G, Babiloni C. Resting state Rolandic mu rhythms are related to activity of sympathetic component of autonomic nervous system in healthy humans. Int J Psychophysiol. 2016;103:79–87. doi: 10.1016/j.ijpsycho.2015.02.009.S0167-8760(15)00039-2
    1. Roussel NA, Nijs J, Meeus M, Mylius V, Fayt C, Oostendorp R. Central sensitization and altered central pain processing in chronic low back pain: fact or myth? Clin J Pain. 2013;29(7):625–38. doi: 10.1097/AJP.0b013e31826f9a71.00002508-201307000-00010
    1. Higgins DM, Martin AM, Baker DG, Vasterling JJ, Risbrough V. The relationship between chronic pain and neurocognitive function: a systematic review. Clin J Pain. 2018;34(3):262–75. doi: 10.1097/AJP.0000000000000536.
    1. Seminowicz DA, Shpaner M, Keaser ML, Krauthamer GM, Mantegna J, Dumas JA, Newhouse PA, Filippi CG, Keefe FJ, Naylor MR. Cognitive-behavioral therapy increases prefrontal cortex gray matter in patients with chronic pain. J Pain. 2013;14(12):1573–84. doi: 10.1016/j.jpain.2013.07.020. S1526-5900(13)01179-6
    1. Schiltenwolf M, Akbar M, Neubauer E, Gantz S, Flor H, Hug A, Wang H. The cognitive impact of chronic low back pain: positive effect of multidisciplinary pain therapy. Scand J Pain. 2017;17:273–8. doi: 10.1016/j.sjpain.2017.07.019.S1877-8860(17)30170-2
    1. Nijs J, Kosek E, Van Oosterwijck J, Meeus M. Dysfunctional endogenous analgesia during exercise in patients with chronic pain: to exercise or not to exercise? Pain Physician. 2012;15(3 Suppl):S205–13.
    1. Eysenbach G, CONSORT-EHEALTH Group CONSORT-EHEALTH: improving and standardizing evaluation reports of web-based and mobile health interventions. J Med Internet Res. 2011;13(4):e126. doi: 10.2196/jmir.1923. v13i4e126
    1. Sitges C, Velasco-Roldán O, Crespí J, García-Dopico N, Segur-Ferrer J, González-Roldán AM, Montoya P. Acute effects of a brief physical exercise intervention on somatosensory perception, lumbar strength, and flexibility in patients with nonspecific chronic low-back pain. J Pain Res. 2021;14:487–500. doi: 10.2147/JPR.S274134. doi: 10.2147/JPR.S274134.274134
    1. Nourbakhsh MR, Arab AM. Relationship between mechanical factors and incidence of low back pain. J Orthop Sports Phys Ther. 2002;32(9):447–60. doi: 10.2519/jospt.2002.32.9.447.
    1. Amundsen PA, Evans DW, Rajendran D, Bright P, Bjørkli T, Eldridge S, Buchbinder R, Underwood M, Froud R. Inclusion and exclusion criteria used in non-specific low back pain trials: a review of randomised controlled trials published between 2006 and 2012. BMC Musculoskelet Disord. 2018;19(1):113. doi: 10.1186/s12891-018-2034-6. 10.1186/s12891-018-2034-6
    1. Marrugat J. Calculadora de grandària mostral GRANMO. Version 7.12. Institut Municipal d'Investigació Mèdica. 2012. [2022-03-09].
    1. Suzuki H, Aono S, Inoue S, Imajo Y, Nishida N, Funaba M, Harada H, Mori A, Matsumoto M, Higuchi F, Nakagawa S, Tahara S, Ikeda S, Izumi H, Taguchi T, Ushida T, Sakai T. Clinically significant changes in pain along the Pain Intensity Numerical Rating Scale in patients with chronic low back pain. PLoS One. 2020;15(3):e0229228. doi: 10.1371/journal.pone.0229228. PONE-D-19-31939
    1. Butler DS, Moseley GL. Explain pain. Adelaide, Australia: Noigroup Publications; 2003.
    1. American College of Sports Medicine . In: ACSM's guidelines for exercise testing and prescription. 10th edition. Bayles MP, Swank AM, editors. Philadelphia, PA: Wolters Kluver; 2018.
    1. Airaksinen O, Brox JI, Cedraschi C, Hildebrandt J, Klaber-Moffett J, Kovacs F, Mannion AF, Reis S, Staal JB, Ursin H, Zanoli G, COST B13 Working Group on Guidelines for Chronic Low Back Pain Chapter 4. European guidelines for the management of chronic nonspecific low back pain. Eur Spine J. 2006;15 Suppl 2(Suppl 2):S192–300. doi: 10.1007/s00586-006-1072-1.
    1. McGill S. Low back disorders: evidence-based prevention and rehabilitation. Champaign, IL: Human Kinetics; 2015.
    1. Hodges PW. Core stability exercise in chronic low back pain. Orthop Clin North Am. 2003;34(2):245–54. doi: 10.1016/s0030-5898(03)00003-8.S0030-5898(03)00003-8
    1. BackFit App. Andalusian Agency for Healthcare Quality. 2020. [2022-03-09]. .
    1. Gratton G, Coles MG, Donchin E. A new method for off-line removal of ocular artifact. Electroencephalogr Clin Neurophysiol. 1983;55(4):468–84. doi: 10.1016/0013-4694(83)90135-9.0013-4694(83)90135-9
    1. Pascual-Marqui RD, Lehmann D, Koukkou M, Kochi K, Anderer P, Saletu B, Tanaka H, Hirata K, John ER, Prichep L, Biscay-Lirio R, Kinoshita T. Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philos Trans A Math Phys Eng Sci. 2011;369(1952):3768–84. doi: 10.1098/rsta.2011.0081.369/1952/3768
    1. Allen JJ, Chambers AS, Towers DN. The many metrics of cardiac chronotropy: a pragmatic primer and a brief comparison of metrics. Biol Psychol. 2007;74(2):243–62. doi: 10.1016/j.biopsycho.2006.08.005.S0301-0511(06)00186-4
    1. Tarvainen MP, Niskanen JP, Lipponen JA, Ranta-Aho PO, Karjalainen PA. Kubios HRV--heart rate variability analysis software. Comput Methods Programs Biomed. 2014;113(1):210–20. doi: 10.1016/j.cmpb.2013.07.024.S0169-2607(13)00259-9
    1. Maris E, Oostenveld R. Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods. 2007;164(1):177–90. doi: 10.1016/j.jneumeth.2007.03.024.S0165-0270(07)00170-7
    1. Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011;2011:156869. doi: 10.1155/2011/156869. doi: 10.1155/2011/156869.
    1. Albayay J, Villarroel-Gruner P, Bascour-Sandoval C, Parma V, Gálvez-García G. Psychometric properties of the Spanish version of the Edinburgh Handedness Inventory in a sample of Chilean undergraduates. Brain Cogn. 2019;137:103618. doi: 10.1016/j.bandc.2019.103618.S0278-2626(19)30258-1
    1. Alcántara-Bumbiedro S, Flórez-García MT, Echávarri-Pérez C, García-Pérez F. Escala de incapacidad por dolor lumbar de Oswestry. Rehabilitación. 2006;40(3):150–8. doi: 10.1016/S0048-7120(06)74881-2.
    1. Andrade Fernández EM, Arce C, Seoane G. Adaptación al español del cuestionario ‘Perfil de los Estados de Ánimo’ en una muestra de deportistas. Psicothema. 2002;14(4):708–13.
    1. Buela-Casal G, Guillén-Riquelme A, Seisdedos Cubero N. Cuestionario de ansiedad estado-rasgo: adaptación española. Madrid, Spain: TEA Ediciones; 2011.
    1. Gómez-Pérez L, López-Martínez AE, Ruiz-Párraga GT. Psychometric properties of the Spanish version of the Tampa scale for Kinesiophobia (TSK) J Pain. 2011;12(4):425–35. doi: 10.1016/j.jpain.2010.08.004.S1526-5900(10)00695-4
    1. García Campayo J, Rodero B, Alda M, Sobradiel N, Montero J, Moreno S. Validación de la versión española de la escala de la catastrofización ante el dolor. Med Clin (Barc) 2008;131(13):487–92. doi: 10.1157/13127277.S0025-7753(08)73077-X
    1. Kovacs FM, Muriel A, Medina JM, Abraira V, Sánchez MD, Jaúregui JO, Spanish Back Pain Research Network Psychometric characteristics of the Spanish version of the FAB questionnaire. Spine (Phila Pa 1976) 2006;31(1):104–10. doi: 10.1097/01.brs.0000193912.36742.4f.00007632-200601010-00023
    1. Eriksen BA, Eriksen CW. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept Psychophys. 1974;16(1):143–9. doi: 10.3758/bf03203267.
    1. Kregel J, Meeus M, Malfliet A, Dolphens M, Danneels L, Nijs J, Cagnie B. Structural and functional brain abnormalities in chronic low back pain: a systematic review. Semin Arthritis Rheum. 2015;45(2):229–37. doi: 10.1016/j.semarthrit.2015.05.002.S0049-0172(15)00108-0
    1. Kim JA, Davis KD. Neural oscillations: understanding a neural code of pain. Neuroscientist. 2021;27(5):544–70. doi: 10.1177/1073858420958629.
    1. Pinheiro ES, de Queirós FC, Montoya P, Santos CL, do Nascimento MA, Ito CH, Silva M, Nunes Santos DB, Benevides S, Miranda JG, Sá KN, Baptista AF. Electroencephalographic patterns in chronic pain: a systematic review of the literature. PLoS One. 2016;11(2):e0149085. doi: 10.1371/journal.pone.0149085. PONE-D-14-44671
    1. Knyazev GG. EEG delta oscillations as a correlate of basic homeostatic and motivational processes. Neurosci Biobehav Rev. 2012;36(1):677–95. doi: 10.1016/j.neubiorev.2011.10.002.S0149-7634(11)00184-9
    1. Koenig J, Loerbroks A, Jarczok MN, Fischer JE, Thayer JF. Chronic pain and heart rate variability in a cross-sectional occupational sample: evidence for impaired vagal control. Clin J Pain. 2016;32(3):218–25. doi: 10.1097/AJP.0000000000000242.
    1. Gockel M, Lindholm H, Niemistö L, Hurri H. Perceived disability but not pain is connected with autonomic nervous function among patients with chronic low back pain. J Rehabil Med. 2008;40(5):355–8. doi: 10.2340/16501977-0172.
    1. Telles S, Sharma SK, Gupta RK, Bhardwaj AK, Balkrishna A. Heart rate variability in chronic low back pain patients randomized to yoga or standard care. BMC Complement Altern Med. 2016;16(1):279. doi: 10.1186/s12906-016-1271-1. 10.1186/s12906-016-1271-1
    1. Chiauzzi E, Pujol LA, Wood M, Bond K, Black R, Yiu E, Zacharoff K. painACTION-back pain: a self-management website for people with chronic back pain. Pain Med. 2010;11(7):1044–58. doi: 10.1111/j.1526-4637.2010.00879.x.PME879
    1. Wong JJ, Côté P, Sutton DA, Randhawa K, Yu H, Varatharajan S, Goldgrub R, Nordin M, Gross DP, Shearer HM, Carroll LJ, Stern PJ, Ameis A, Southerst D, Mior S, Stupar M, Varatharajan T, Taylor-Vaisey A. Clinical practice guidelines for the noninvasive management of low back pain: a systematic review by the Ontario Protocol for Traffic Injury Management (OPTIMa) Collaboration. Eur J Pain. 2017;21(2):201–16. doi: 10.1002/ejp.931.
    1. Malfliet A, Ickmans K, Huysmans E, Coppieters I, Willaert W, Van Bogaert W, Rheel E, Bilterys T, Van Wilgen P, Nijs J. Best evidence rehabilitation for chronic pain part 3: low back pain. J Clin Med. 2019;8(7):1063. doi: 10.3390/jcm8071063. jcm8071063
    1. Mehren A, Diaz Luque C, Brandes M, Lam AP, Thiel CM, Philipsen A, Özyurt J. Intensity-dependent effects of acute exercise on executive function. Neural Plast. 2019;2019:8608317. doi: 10.1155/2019/8608317. doi: 10.1155/2019/8608317.
    1. Mandolesi L, Polverino A, Montuori S, Foti F, Ferraioli G, Sorrentino P, Sorrentino G. Effects of physical exercise on cognitive functioning and wellbeing: biological and psychological benefits. Front Psychol. 2018;9:509. doi: 10.3389/fpsyg.2018.00509. doi: 10.3389/fpsyg.2018.00509.

Source: PubMed

3
Se inscrever