Delayed Graft Function in Kidney Transplants: Time Evolution, Role of Acute Rejection, Risk Factors, and Impact on Patient and Graft Outcome

Martin Chaumont, Judith Racapé, Nilufer Broeders, Fadoua El Mountahi, Annick Massart, Thomas Baudoux, Jean-Michel Hougardy, Dimitri Mikhalsky, Anwar Hamade, Alain Le Moine, Daniel Abramowicz, Pierre Vereerstraeten, Martin Chaumont, Judith Racapé, Nilufer Broeders, Fadoua El Mountahi, Annick Massart, Thomas Baudoux, Jean-Michel Hougardy, Dimitri Mikhalsky, Anwar Hamade, Alain Le Moine, Daniel Abramowicz, Pierre Vereerstraeten

Abstract

Background. Although numerous risk factors for delayed graft function (DGF) have been identified, the role of ischemia-reperfusion injury and acute rejection episodes (ARE) occurring during the DGF period is ill-defined and DGF impact on patient and graft outcome remains controversial. Methods. From 1983 to 2014, 1784 kidney-only transplantations from deceased donors were studied. Classical risk factors for DGF along with two novel ones, recipient's perioperative saline loading and residual diuresis, were analyzed by logistic regression and receiver operating characteristic (ROC) curves. Results. Along with other risk factors, absence of perioperative saline loading increases acute rejection incidence (OR = 1.9 [1.2-2.9]). Moreover, we observed two novel risk factors for DGF: patient's residual diuresis ≤500 mL/d (OR = 2.3 [1.6-3.5]) and absence of perioperative saline loading (OR = 3.3 [2.0-5.4]). Area under the curve of the ROC curve (0.77 [0.74-0.81]) shows an excellent discriminant power of our model, irrespective of rejection. DGF does not influence patient survival (P = 0.54). However, graft survival is decreased only when rejection was associated with DGF (P < 0.001). Conclusions. Perioperative saline loading efficiently prevents ischemia-reperfusion injury, which is the predominant factor inducing DGF. DGF per se has no influence on patient and graft outcome. Its incidence is currently close to 5% in our centre.

Figures

Figure 1
Figure 1
ROC curve derived from the logistic regression analysis of delayed graft function (DGF) with (a) (1155 grafts) and without (b) (1069 grafts) acute rejection episodes (ARE).
Figure 2
Figure 2
Deceased censored graft survival according to presence (+) or absence (−) of delayed graft function (DGF) and acute rejection episodes (ARE) in 1784 grafts performed from 1983 to 2014.

References

    1. Yarlagadda S. G., Coca S. G., Garg A. X., et al. Marked variation in the definition and diagnosis of delayed graft function: a systematic review. Nephrology Dialysis Transplantation. 2008;23(9):2995–3003. doi: 10.1093/ndt/gfn158.
    1. Siedlecki A., Irish W., Brennan D. C. Delayed graft function in the kidney transplant. American Journal of Transplantation. 2011;11(11):2279–2296. doi: 10.1111/j.1600-6143.2011.03754.x.
    1. Irish W. D., Ilsley J. N., Schnitzler M. A., Feng S., Brennan D. C. A risk prediction model for delayed graft function in the current era of deceased donor renal transplantation. American Journal of Transplantation. 2010;10(10):2279–2286. doi: 10.1111/j.1600-6143.2010.03179.x.
    1. Akkina S. K., Connaire J. J., Israni A. K., Snyder J. J., Matas A. J., Kasiske B. L. Similar outcomes with different rates of delayed graft function may reflect center practice, not center performance. American Journal of Transplantation. 2009;9(6):1460–1466. doi: 10.1111/j.1600-6143.2009.02651.x.
    1. Halloran P. F. Immunosuppressive drugs for kidney transplantation. The New England Journal of Medicine. 2004;351(26):2715–2729. doi: 10.1056/nejmra033540.
    1. Klein A. S., Messersmith E. E., Ratner L. E., Kochik R., Baliga P. K., Ojo A. O. Organ donation and utilization in the United States, 1999–2008: special feature. American Journal of Transplantation. 2010;10(4):973–986. doi: 10.1111/j.1600-6143.2009.03008.x.
    1. Sharif A., Borrows R. Delayed graft function after kidney transplantation: the clinical perspective. American Journal of Kidney Diseases. 2013;62(1):150–158. doi: 10.1053/j.ajkd.2012.11.050.
    1. Irish W. D., McCollum D. A., Tesi R. J., et al. Nomogram for predicting the likelihood of delayed graft function in adult cadaveric renal transplant recipients. Journal of the American Society of Nephrology. 2003;14(11):2967–2974. doi: 10.1097/01.asn.0000093254.31868.85.
    1. Ponticelli C. Ischaemia-reperfusion injury: a major protagonist in kidney transplantation. Nephrology Dialysis Transplantation. 2014;29(6):1134–1140. doi: 10.1093/ndt/gft488.
    1. Feldman H. I., Gayner R., Berlin J. A., et al. Delayed function reduces renal allograft survival independent of acute rejection. Nephrology Dialysis Transplantation. 1996;11(7):1306–1313. doi: 10.1093/ndt/11.7.1306.
    1. Shoskes D. A., Cecka J. M. Deleterious effects of delayed graft function in cadaveric renal transplant recipients independent of acute rejection. Transplantation. 1998;66(12):1697–1701. doi: 10.1097/00007890-199812270-00022.
    1. Moreso F., Serón D., Gil-Vernet S., et al. Donor age and delayed graft function as predictors of renal allograft survival in rejection-free patients. Nephrology Dialysis Transplantation. 1999;14(4):930–935. doi: 10.1093/ndt/14.4.930.
    1. Troppmann C., Gillingham K. J., Benedetti E., et al. Delayed graft function, acute rejection, and outcome after cadaver renal transplantation: a multivariate analysis. Transplantation. 1995;59(7):962–968. doi: 10.1097/00007890-199504150-00007.
    1. Mikhalski D., Wissing K. M., Ghisdal L., et al. Cold ischemia is a major determinant of acute rejection and renal graft survival in the modern era of immunosuppression. Transplantation. 2008;85(7S):S3–S9. doi: 10.1097/tp.0b013e318169c29e.
    1. Yarlagadda S. G., Coca S. G., Formica R. N., Poggio E. D., Parikh C. R. Association between delayed graft function and allograft and patient survival: a systematic review and meta-analysis. Nephrology Dialysis Transplantation. 2009;24(3):1039–1047. doi: 10.1093/ndt/gfn667.
    1. Sharif A., Shabir S., Chand S., Cockwell P., Ball S., Borrows R. Meta-analysis of calcineurin-inhibitor-sparing regimens in kidney transplantation. Journal of the American Society of Nephrology. 2011;22(11):2107–2118. doi: 10.1681/ASN.2010111160.
    1. Snoeijs M. G. J., Wiermans B., Christiaans M. H., et al. Recipient hemodynamics during non-heart-beating donor kidney transplantation are major predictors of primary nonfunction. American Journal of Transplantation. 2007;7(5):1158–1166. doi: 10.1111/j.1600-6143.2007.01744.x.
    1. Chapal M., Le Borgne F., Legendre C., et al. A useful scoring system for the prediction and management of delayed graft function following kidney transplantation from cadaveric donors. Kidney International. 2014;86:1130–1139. doi: 10.1038/ki.2014.188.
    1. Jeldres C., Cardinal H., Duclos A., et al. Prediction of delayed graft function after renal transplantation. Journal of the Canadian Urological Association. 2009;3(5):377–382.
    1. Vereerstraeten P. Préparation du receveur de greffe rénale. In: Hervé P., editor. Transplantation d'organes et greffe de tissus. Paris, France: Editions Inserm; 1994. pp. 690–701.
    1. Vereerstraeten P., Abramowicz D., De Pauw L., Kinnaert P. Absence of deleterious effect on long-term kidney survival of rejection episodes with complete functional recovery. Transplantation. 1997;63:1739–1743.
    1. Rahmel A., editor. Annual Report 2013. Leiden, The Netherlands: Eurotransplant International Foundation; 2013.
    1. Abacus Concepts. Survival Tools for Stat-View. Berkeley, Calif, USA: Abacus Concepts; 1994.
    1. Knight S. R., Russell N. K., Barcena L., Morris P. J. Mycophenolate mofetil decreases acute rejection and may improve graft survival in renal transplant recipients when compared with azathioprine: a systematic review. Transplantation. 2009;87(6):785–794. doi: 10.1097/tp.0b013e3181952623.
    1. KDIGO clinical practice guideline for the care of kidney transplant recipients. Chapter 1: induction therapy. American Journal of Transplantation. 2009;9(supplement 3):S6–S9.
    1. Wujciak T., Opelz G. A proposal for improved cadaver kidney allocation. Transplantation. 1993;56(6):1513–1517. doi: 10.1097/00007890-199312000-00044.
    1. U.S. Renal Data System. USRDS 2013 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States. Bethesda, Md, USA: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2013.
    1. Carlier M., Squifflet J. P., Pirson Y., Decocq L., Gribomont B., Alexandre G. P. Confirmation of the crucial role of the recipient's maximal hydration on early diuresis of the human cadaver renal allograft. Transplantation. 1983;36(4):455–456. doi: 10.1097/00007890-198310000-00021.
    1. Schnuelle P., van der Woude F. J. Perioperative fluid management in renal transplantation: a narrative review of the literature. Transplant International. 2006;19(12):947–959. doi: 10.1111/j.1432-2277.2006.00356.x.
    1. Wang A. Y.-M., Lai K.-N. The importance of residual renal function in dialysis patients. Kidney International. 2006;69(10):1726–1732. doi: 10.1038/sj.ki.5000382.
    1. Ishikawa A., Flechner S. M., Goldfarb D. A., et al. Quantitative assessment of the first acute rejection as a predictor of renal transplant outcome. Transplantation. 1999;68(9):1318–1324. doi: 10.1097/00007890-199911150-00017.
    1. Humar A., Hassoun A., Kandaswamy R., Payne W. D., Sutherland D. E. R., Matas A. J. Immunologic factors: the major risk for decreased long-term renal allograft survival. Transplantation. 1999;68(12):1842–1846. doi: 10.1097/00007890-199912270-00004.
    1. Qureshi F., Rabb H., Kasiske B. L. Silent acute rejection during prolonged delayed graft function reduces kidney allograft survival. Transplantation. 2002;74(10):1400–1404. doi: 10.1097/00007890-200211270-00010.
    1. Butala N. M., Reese P. P., Doshi M. D., Parikh C. R. Is delayed graft function causally associated with long-term outcomes after kidney transplantation? Instrumental variable analysis. Transplantation. 2013;95(8):1008–1014. doi: 10.1097/TP.0b013e3182855544.
    1. Tripepi G., Heinze G., Jager K. J., Stel V. S., Dekker F. W., Zoccali C. Risk prediction models. Nephrology Dialysis Transplantation. 2013;28(8):1975–1980. doi: 10.1093/ndt/gft095.

Source: PubMed

3
Se inscrever