Improved haemodynamic stability and cerebral tissue oxygenation after induction of anaesthesia with sufentanil compared to remifentanil: a randomised controlled trial

Marieke Poterman, Alain F Kalmar, Pieter L Buisman, Michel M R F Struys, Thomas W L Scheeren, Marieke Poterman, Alain F Kalmar, Pieter L Buisman, Michel M R F Struys, Thomas W L Scheeren

Abstract

Background: Balanced anaesthesia with propofol and remifentanil, compared to sufentanil, often decreases mean arterial pressure (MAP), heart rate (HR) and cardiac index (CI), raising concerns on tissue-oxygenation. This distinct haemodynamic suppression might be attenuated by atropine. This double blinded RCT, investigates if induction with propofol-sufentanil results in higher CI and tissue-oxygenation than with propofol-remifentanil and if atropine has more pronounced beneficial effects on CI and tissue-oxygenation in a remifentanil-based anaesthesia.

Methods: In seventy patients scheduled for coronary bypass grafting (CABG), anaesthesia was induced and maintained with propofol target controlled infusion (TCI) with a target effect-site concentration (Cet) of 2.0 μg ml- 1 and either sufentanil (TCI Cet 0.48 ng ml- 1) or remifentanil (TCI Cet 8 ng ml- 1). If HR dropped below 60 bpm, methylatropine (1 mg) was administered intravenously. Relative changes (∆) in MAP, HR, stroke volume (SV), CI and cerebral (SctO2) and peripheral (SptO2) tissue-oxygenation during induction of anaesthesia and after atropine administration were analysed.

Results: The sufentanil group compared to the remifentanil group showed significantly less decrease in MAP (∆ = - 23 ± 13 vs. -36 ± 13 mmHg), HR (∆ = - 5 ± 7 vs. -10 ± 10 bpm), SV (∆ = - 23 ± 18 vs. -35 ± 19 ml) and CI (∆ = - 0.8 (- 1.5 to - 0.5) vs. -1.5 (- 2.0 to - 1.1) l min- 1 m- 2), while SctO2 (∆ = 9 ± 5 vs. 6 ± 4%) showed more increase with no difference in ∆SptO2 (∆ = 8 ± 7 vs. 8 ± 8%). Atropine caused higher ∆HR (13 (9 to 19) vs. 10 ± 6 bpm) and ∆CI (0.4 ± 0.4 vs. 0.2 ± 0.3 l min- 1 m- 2) in sufentanil vs. remifentanil-based anaesthesia, with no difference in ∆MAP, ∆SV and ∆SctO2 and ∆SptO2.

Conclusion: Induction of anaesthesia with propofol and sufentanil results in improved haemodynamic stability and higher SctO2 compared to propofol and remifentanil in patients having CABG. Administration of atropine might be useful to counteract or prevent the haemodynamic suppression associated with these opioids.

Trial registration: Clinicaltrials.gov on June 7, 2013 (trial ID: NCT01871935 ).

Keywords: Atropine; Haemodynamics; Induction of anaesthesia; Remifentanil; Sufentanil; Tissue oxygenation.

Conflict of interest statement

MMRFS: His research group/department received (over the last 3 years) research grants and consultancy fees from The Medicines Company (Parsippany, NJ, USA), Masimo (Irvine, CA, USA), Fresenius (Bad Homburg, Germany), Dräger (Lübeck, Germany), Paion (Aachen, Germany), Medtronic (Dublin, Ireland). He receives royalties on intellectual property from Demed Medical (Temse, Belgium) and the Ghent University (Gent, Belgium). He is an editorial board member and Director for the British Journal of Anaesthesia and associated editor for Anesthesiology.

TWLS: his research group received research grants and honoraria from Edwards Lifesciences (Irvine, CA, USA) and Masimo Inc. (Irvine, CA, USA) for consulting and lecturing and from Pulsion Medical Systems SE (Feldkirchen, Germany) for lecturing.

The other authors declare no conflicts of interest.

Figures

Fig. 1
Fig. 1
CONSORT flow diagram
Fig. 2
Fig. 2
Mean values (thick lines) and individual patient data (thin lines) of the investigated haemodynamic variables: mean arterial pressure (MAP), heart rate (HR), stroke volume (SV), cardiac index (CI), cerebral tissue oxygen saturation (SctO2) and peripheral tissue oxygen saturation (SptO2). Red lines represent the sufentanil group and green lines the remifentanil group. Graphs are shown from 1 min before until 6 min after the induction of anaesthesia
Fig. 3
Fig. 3
Mean relative changes of the investigated haemodynamic variables during the induction of anaesthesia (from 1 min before until 6 min after). Mean arterial pressure (ΔMAP), heart rate (ΔHR), stroke volume (ΔSV), cardiac index (ΔCI), cerebral tissue oxygen saturation (ΔSctO2) and peripheral tissue oxygen saturation (ΔSptO2)
Fig. 4
Fig. 4
Mean values (thick lines) and individual patient data (thin lines) of the investigated haemodynamic variables: mean arterial pressure (MAP), heart rate (HR), stroke volume (SV), cardiac index (CI), cerebral tissue oxygen saturation (SctO2) and peripheral tissue oxygen saturation (SptO2). Red lines represent the sufentanil group and green lines the remifentanil group. Graphs are shown from 1 min before until 4 min after the administration of atropine
Fig. 5
Fig. 5
Mean relative changes of the investigated haemodynamic variables during the administration of atropine (from 1 min before until 4 min after). Mean arterial pressure (ΔMAP), heart rate (ΔHR), stroke volume (ΔSV), cardiac index (ΔCI), cerebral tissue oxygen saturation (ΔSctO2) and peripheral tissue oxygen saturation (ΔSptO2)

References

    1. Beers R, Camporesi E. Remifentanil update: clinical science and utility. CNS Drugs. 2004;18:1085–1104. doi: 10.2165/00023210-200418150-00004.
    1. Hogue CW, Bowdle TA, O'Leary C, Duncalf D, Miguel R, Pitts M, Streisand J, Kirvassilis G, Jamerson B, McNeal S, Batenhorst R. A multicenter evaluation of total intravenous anesthesia with remifentanil and propofol for elective inpatient surgery. Anesth Analg. 1996;83:279–285. doi: 10.1213/00000539-199608000-00014.
    1. Vos JJ, Poterman M, Hannivoort LN, Renardel De Lavalette VW, Struys MM, Scheeren TW, Kalmar AF. Hemodynamics and tissue oxygenation during balanced anesthesia with a high antinociceptive contribution: an observational study. Perioper Med. 2014;3:9. doi: 10.1186/2047-0525-3-9.
    1. Elliott P, O'Hare R, Bill KM, Phillips AS, Gibson FM, Mirakhur RK. Severe cardiovascular depression with remifentanil. Anesth Analg. 2000;91:58–61. doi: 10.1213/00000539-200007000-00011.
    1. Poterman M, Vos JJ, Vereecke HE, Struys MM, Vanoverschelde H, Scheeren TW, Kalmar AF. Differential effects of phenylephrine and norepinephrine on peripheral tissue oxygenation during general anaesthesia: a randomised controlled trial. Eur J Anaesthesiol. 2015;32:571–580. doi: 10.1097/EJA.0000000000000247.
    1. Wilhelm W, Biedler A, Huppert A, Kreuer S, Bücheler O, Ziegenfuss T, Larsen R. Comparison of the effects of remifentanil or fentanyl on anaesthetic induction characteristics of propofol, thiopental or etomidate. Eur J Anaesthesiol. 2002;19:350–356. doi: 10.1097/00003643-200205000-00006.
    1. Fujii K, Iranami H, Nakamura Y, Hatano Y. High-dose remifentanil suppresses sinoatrial conduction and sinus node automaticity in pediatric patients under propofol-based anesthesia. Anesth Analg. 2011;112:1169–1173. doi: 10.1213/ANE.0b013e318210f4ef.
    1. Del Blanco Narciso BB, Jimeno Fernandez C, Almendral Garrote J, Anadon Baselga MJ, Zaballos GM. Effects of remifentanil on the cardiac conduction system. Our experience in the study of remifentanil electrophysiological properties. Curr Pharm Des. 2014;20:5489–5496. doi: 10.2174/1381612820666140325102623.
    1. Jhanji S, Lee C, Watson D, Hinds C, Pearse RM. Microvascular flow and tissue oxygenation after major abdominal surgery: association with post-operative complications. Intensive Care Med. 2009;35:671–677. doi: 10.1007/s00134-008-1325-z.
    1. Belda FJ, Aguilera L, García de la Asunción J, Alberti J, Vicente R, Ferrándiz L, Rodríguez R, Company R, Sessler DI, Aguilar G, Botello SG, Ortí R. Supplemental perioperative oxygen and the risk of surgical wound infection: a randomized controlled trial. JAMA. 2005;294:2035–2042. doi: 10.1001/jama.294.16.2035.
    1. Pearse RM, Harrison DA, James P, Watson D, Hinds C, Rhodes A, Grounds RM, Bennett ED. Identification and characterisation of the high-risk surgical population in the United Kingdom. Crit Care. 2006;10:R81. doi: 10.1186/cc4928.
    1. Poterman M, Scheeren TWL, van der Velde MI, Buisman PL, Allaert S, Struys MMRF, Kalmar AF. Prophylactic atropine administration attenuates the negative haemodynamic effects of induction of anaesthesia with propofol and high-dose remifentanil: a randomised controlled trial. Eur J Anaesthesiol. 2017;34:695–701. doi: 10.1097/EJA.0000000000000639.
    1. Schulz KF, Altman DG, Moher D, CONSORT Group CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. BMC Med. 2010;8:18. doi: 10.1186/1741-7015-8-18.
    1. La Colla L, Albertin A, La Colla G, Porta A, Aldegheri G, Di Candia D, Gigli F. Predictive performance of the 'Minto' remifentanil pharmacokinetic parameter set in morbidly obese patients ensuing from a new method for calculating lean body mass. Clin Pharmacokinet. 2010;49:131–139. doi: 10.2165/11317690-000000000-00000.
    1. Hannivoort LN, Vereecke HEM, Proost JH, Heyse BEK, Eleveld DJ, Bouillon TW, Struys MMRF, Luginbühl M. Probability to tolerate laryngoscopy and noxious stimulation response index as general indicators of the anaesthetic potency of sevoflurane, propofol, and remifentanil. Br J Anaesth. 2016;116:624–631. doi: 10.1093/bja/aew060.
    1. Gepts E, Shafer SL, Camu F, Stanski DR, Woestenborghs R, Van Peer A, Heykants JJ. Linearity of pharmacokinetics and model estimation of sufentanil. Anesthesiology. 1995;83:1194–1204. doi: 10.1097/00000542-199512000-00010.
    1. Minto CF, Schnider TW, Shafer SL. Pharmacokinetics and pharmacodynamics of remifentanil. II Model application. Anesthesiology. 1997;86:24–33. doi: 10.1097/00000542-199701000-00005.
    1. Schnider TW, Minto CF, Shafer SL, Gambus PL, Andresen C, Goodale DB, Young EJ. The influence of age on propofol pharmacodynamics. Anesthesiology. 1999;90:1502–1516. doi: 10.1097/00000542-199906000-00003.
    1. Bouillon TW, Bruhn J, Radulescu L, Andresen C, Shafer TJ, Cohane C, Shafer SL. Pharmacodynamic interaction between propofol and remifentanil regarding hypnosis, tolerance of laryngoscopy, bispectral index, and electroencephalographic approximate entropy. Anesthesiology. 2004;100:1353–1372. doi: 10.1097/00000542-200406000-00006.
    1. Bouillon TW. Hypnotic and opioid anesthetic drug interaction on the CNS, focus on response surface modelling. In: Schüttler J, Schwilden H, editors. Modern Anesthetics. Handbook of Experimental Pharmacology. Berlin: Springer; 2008. pp. 471–487.
    1. Schlöglhofer T, Gilly H, Schima H. Semi-invasive measurement of cardiac output based on pulse contour: a review and analysis. Can J Anaesth. 2014;61:452–479. doi: 10.1007/s12630-014-0135-8.
    1. Fischer GW. Recent advances in application of cerebral oximetry in adult cardiovascular surgery. Semin Cardiothorac Vasc Anesth. 2008;12:60–69. doi: 10.1177/1089253208316443.
    1. Santora RJ, Moore FA. Monitoring trauma and intensive care unit resuscitation with tissue hemoglobin oxygen saturation. Crit Care. 2009;13:S10. doi: 10.1186/cc8008.
    1. Scheeren TWL, Schober P, Schwarte LA. Monitoring tissue oxygenation by near infrared spectroscopy (NIRS): background and current applications. J Clin Monit Comput. 2012;26:279–287. doi: 10.1007/s10877-012-9348-y.
    1. Scheeren TWL, Kuizenga MH, Maurer H, Struys M, Heringlake M. Electroencephalography and brain oxygenation monitoring in the perioperative period. Anesth Analg. 2019;128(2):265–277. doi: 10.1213/ANE.0000000000002812.
    1. Putnam B, Bricker S, Fedorka P, Zelada J, Shebrain S, Omari B, Bongard F. The correlation of near-infrared spectroscopy with changes in oxygen delivery in a controlled model of altered perfusion. Am Surg. 2007;73:1017–1022. doi: 10.1177/000313480707301021.
    1. Fletcher GF, Balady GJ, Amsterdam EA, Chaitman B, Eckel R, Fleg J, Froelicher VF, Leon AS, Piña IL, Rodney R, Simons-Morton DA, Williams MA, Bazzarre T. Exercise standards for testing and training: a statement for healthcare professionals from the American Heart Association. Circulation. 2001;104:1694–1740. doi: 10.1161/hc3901.095960.
    1. Gobel FL, Norstrom LA, Nelson RR, Jorgensen CR, Wang Y. The rate-pressure product as an index of myocardial oxygen consumption during exercise in patients with angina pectoris. Circulation. 1978;57:549–556. doi: 10.1161/01.CIR.57.3.549.
    1. Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analysis using G*power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41:1149–1160. doi: 10.3758/BRM.41.4.1149.
    1. Servin FS, Billard V. Remifentanil and Other Opioids. In Schüttler J, Schwilden, editors. Modern Anesthetics. Handbook of Experimental Pharmacology. Berlin: Springer-Verlag; 2008. p. 283–312.
    1. Al-Rifai Z, Pharm M, Mulvey D. Principles of total intravenous anaesthesia: basic pharmacokinetics and model descriptions. BJA Educ. 2016;16:92–97. doi: 10.1093/bjaceaccp/mkv021.
    1. Fattorini F, Romano R, Ciccaglioni A, Pascarella MA, Rocco A, Mariani V, Pietropaoli P. Effects of remifentanil on human heart electrical system. A transesophageal pacing electrophysiological study. Minerva Anestesiol. 2003;69:673–679.
    1. Critchley LA, Lee A, Ho AM. A critical review of the ability of continuous cardiac output monitors to measure trends in cardiac output. Anesth Analg. 2010;111:1180–1192. doi: 10.1213/ANE.0b013e3181f08a5b.
    1. Saugel B, Wagner JY, Scheeren TW. Cardiac output monitoring: less invasiveness, less accuracy? J Clin Monit Comput. 2016;30:753–755. doi: 10.1007/s10877-016-9900-2.
    1. Sørensen H, Secher NH, Siebenmann C, Nielsen HB, Kohl-Bareis M, Lundby C, Rasmussen P. Cutaneous vasoconstriction affects near-infrared spectroscopy determined cerebral oxygen saturation during administration of norepinephrine. Anesthesiology. 2012;117:263–270. doi: 10.1097/ALN.0b013e3182605afe.
    1. Sørensen H, Rasmussen P, Sato K, Persson S, Olesen ND, Nielsen HB, Olsen NV, Ogoh S, Secher NH. External carotid artery flow maintains near infrared spectroscopy-determined frontal lobe oxygenation during ephedrine administration. Br J Anaesth. 2014;113:452–458. doi: 10.1093/bja/aet481.
    1. Lecoq JP, Brichant JF, Lamy ML, Joris JL. Norepinephrine and ephedrine do not counteract the increase in cutaneous microcirculation induced by spinal anaesthesia. Br J Anaesth. 2010;105:214–219. doi: 10.1093/bja/aeq145.
    1. Cho SY, Kim SJ, Jeong CW, Jeong CY, Chung SS, Lee J, Yoo KY. Under general anesthesia arginine vasopressin prevents hypotension but impairs cerebral oxygenation during arthroscopic shoulder surgery in the beach chair position. Anesth Analg. 2013;117:1436–1443. doi: 10.1213/ANE.0b013e3182a8fa97.

Source: PubMed

3
Se inscrever