Semi-quantification and grading of amyloid PET: A project of the European Alzheimer's Disease Consortium (EADC)

A Chincarini, E Peira, S Morbelli, M Pardini, M Bauckneht, J Arbizu, M Castelo-Branco, K A Büsing, A de Mendonça, M Didic, M Dottorini, S Engelborghs, C Ferrarese, G B Frisoni, V Garibotto, E Guedj, L Hausner, J Hugon, J Verhaeghe, P Mecocci, M Musarra, M Queneau, M Riverol, I Santana, U P Guerra, F Nobili, A Chincarini, E Peira, S Morbelli, M Pardini, M Bauckneht, J Arbizu, M Castelo-Branco, K A Büsing, A de Mendonça, M Didic, M Dottorini, S Engelborghs, C Ferrarese, G B Frisoni, V Garibotto, E Guedj, L Hausner, J Hugon, J Verhaeghe, P Mecocci, M Musarra, M Queneau, M Riverol, I Santana, U P Guerra, F Nobili

Abstract

Background: amyloid-PET reading has been classically implemented as a binary assessment, although the clinical experience has shown that the number of borderline cases is non negligible not only in epidemiological studies of asymptomatic subjects but also in naturalistic groups of symptomatic patients attending memory clinics. In this work we develop a model to compare and integrate visual reading with two independent semi-quantification methods in order to obtain a tracer-independent multi-parametric evaluation.

Methods: We retrospectively enrolled three cohorts of cognitively impaired patients submitted to 18F-florbetaben (53 subjects), 18F-flutemetamol (62 subjects), 18F-florbetapir (60 subjects) PET/CT respectively, in 6 European centres belonging to the EADC. The 175 scans were visually classified as positive/negative following approved criteria and further classified with a 5-step grading as negative, mild negative, borderline, mild positive, positive by 5 independent readers, blind to clinical data. Scan quality was also visually assessed and recorded. Semi-quantification was based on two quantifiers: the standardized uptake value (SUVr) and the ELBA method. We used a sigmoid model to relate the grading with the quantifiers. We measured the readers accord and inconsistencies in the visual assessment as well as the relationship between discrepancies on the grading and semi-quantifications.

Conclusion: It is possible to construct a map between different tracers and different quantification methods without resorting to ad-hoc acquired cases. We used a 5-level visual scale which, together with a mathematical model, delivered cut-offs and transition regions on tracers that are (largely) independent from the population. All fluorinated tracers appeared to have the same contrast and discrimination ability with respect to the negative-to-positive grading. We validated the integration of both visual reading and different quantifiers in a more robust framework thus bridging the gap between a binary and a user-independent continuous scale.

Keywords: Amyloid PET; Semi-quantification; Visual assessment.

Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.

Figures

Fig. 1
Fig. 1
Quantification-visual assessment relationship for the 3 fluorinated tracers. On the x-axis: z-score of the two quantifiers; on the y-axis the average visual grading. Dots represents scans, continuous line is the sigmoid model. Intersection of model with mild and borderline evaluations is projected onto the scores to define a transition region (gray area) and the cutoff (gray line).
Fig. 2
Fig. 2
Relationship between quantification score and evaluation latitude. Each circle represents a group of scans sharing the same average grading. The group position on the x-axis is the average score of its members on the first PCA axis (PCA computed on the z-score quantifiers). The group position in the y-axis is the average grading. Vertical lines show the group evaluation latitude, that is, the lowest to highest grading received on any of the group's member.
Fig. 3
Fig. 3
ELBA-SUVr scatter-plot with binary visual assessment. Dots represent scans, colors are according to the combination of negative and positive evaluations given by the 5 readers.
Fig. 4
Fig. 4
Relationship between the binary evaluation and the latitude. Each box shows the number of scans grouped by binary class and maximum grading difference received in the 5-step visual assessment.
Fig. 5
Fig. 5
Left: distribution of the quality flags in the PCA plane; dots represents all scans, color is proportional to the number of quality issues raised by the 5 readers; marginal distribution shows the kernel density estimation. Right: heatmap of quality and latitude, showing the fraction of scans normalized on the quality and the actual number of scans sharing the same quality interpretation and evaluation latitude (within brackets).
Fig. 6
Fig. 6
Matrix plot of all between-tracers models and container-cohort fits. Dots represent the average quantification on the cohort containers, lines crossing the dots are the standard deviations. The thick line is the model mapping, the dashed thin line is the linear regression based on the average quantification values (container mapping). Cut-offs are based on the model mapping.

References

    1. Albert M.S. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011 May;7(3):270–279.
    1. Avants B.B., Tustison N.J., Song G., Cook P.A., Klein A., Gee J.C.A. Reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage. 2011;54(3):2033–2044. Feb 1. (Epub 2010 Sep 17)
    1. Chincarini Andrea. Standardized uptake value ratio-independent evaluation of brain amyloidosis. J. Alzheimers Dis. 2016 Oct 18;54(4):1437–1457.
    1. Chiotis K., Saint-Aubert L., Boccardi M., Gietl A., Picco A., Varrone A., Garibotto V., Herholz K., Nobili F., Nordberg A. Geneva Task Force for the Roadmap of Alzheimer's Biomarkers. Clinical validity of increased cortical uptake of amyloid ligands on PET as a biomarker for Alzheimer's disease in the context of a structured 5-phase development framework. Neurobiol. Aging. 2017;52:214–227. Apr.
    1. Cho S.H., Shin J.H., Jang H., Park S., Kim H.J., Kim S.E., Kim S.J., Kim Y., Lee J.S., Na D.L., Lockhart S.N., Rabinovici G.D., Seong J.K., Seo S.W., Alzheimer's Disease Neuroimaging Initiative Amyloid involvement in subcortical regions predicts cognitive decline. Eur. J. Nucl. Med. Mol. Imaging. 2018;45(13):2368–2376. Dec.
    1. Collij L., Konijnenberg E., Reimand J., Ten Kate M., Den Braber A., Lopes Alves I., Zwan M., Yaqub M., Van Assema D., Wink A.M., Lammertsma A., Scheltens P., Visser P.J., Barkhof F., Van Berckel B. Assessing amyloid pathology in cognitively normal subjects using [18F] flutemetamol PET: comparing visual reads and quantitative methods. J. Nucl. Med. 2019 Apr;60(4):541–547. (Oct 12. pii: jnumed.118.211532)
    1. Curtis C., Gamez J.E., Singh U., Sadowsky C.H., Villena T., Sabbagh M.N. Phase 3 trial of flutemetamol labeled with radioactive fluorine 18 imaging and neuritic plaque density. JAMA Neurol. 2015;72:287.
    1. Drzezga Effect of APOE genotype on amyloid plaque load and gray matter volume in Alzheimer disease. Neurology. 2009 Apr 28;72(17):1487–1494.
    1. Dubois Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria. Lancet Neurol. 2014 Jun;13(6):614–629.
    1. Farrell M.E. Association of longitudinal cognitive decline with amyloid burden in middle-aged and older adults evidence for a dose-response relationship. Jama Neurol. 2017 Jul 1;74(7):830–838.
    1. Fleisher A.S., Chen K., Liu X., Roontiva A., Thiyyagura P., Ayutyanont N., Joshi A.D., Clark C.M., Mintun M.A., Pontecorvo M.J., Doraiswamy P.M., Johnson K.A., Skovronsky D.M., Reiman E.M. Using positron emission tomography and florbetapir F18 to image cortical amyloid in patients with mild cognitive impairment or dementia due to Alzheimer disease. Arch. Neurol. 2011 Nov;68(11):1404–1411.
    1. Frisoni G.B., Boccardi M., Barkhof F., Blennow K., Cappa S. Strategic roadmap for an early diagnosis of Alzheimer's disease based on biomarkers. Lancet Neurol. 2017 Aug;16(8):661–676.
    1. Gorelick P.B., Scuteri A., Black S.E., Decarli C., Greenberg S.M., Iadecola C., Launer L.J., Laurent S., Lopez O.L., Nyenhuis D., Petersen R.C., Schneider J.A., Tzourio C., Arnett D.K., Bennett D.A., Chui H.C., Higashida R.T., Lindquist R., Nilsson P.M., Roman G.C., Sellke F.W., Seshadri S., American Heart Association Stroke Council, Council on Epidemiology and Prevention, Council on Cardiovascular Nursing, Council on Cardiovascular Radiology and Intervention, Council on Cardiovascular Surgery and Anesthesia Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke. 2011;42(9):2672–2713. Sep.
    1. Grimmer T., Goldhardt O., Guo L.H., Yousefi B.H., Förster S., Drzezga A., Sorg C., Alexopoulos P., Förstl H., Kurz A., Perneczky R. LRP-1 polymorphism is associated with global and regional amyloid load in Alzheimer's disease in humans in-vivo. Neuroimage Clin. 2014;4:411–416. Feb 5.
    1. Grothe M.J., Barthel H., Sepulcre J., Dyrba M., Sabri O., Teipel S.J. Alzheimer's disease neuroimaging initiative. In vivo staging of regional amyloid deposition. Neurology. 2017 Nov 14;89(20):2031–2038.
    1. Hansson CSF biomarkers of Alzheimer's disease concord with amyloid-β PET and predict clinical progression: a study of fully automated immunoassays in BioFINDER and ADNI cohorts. Alzheimers Dement. 2018 Nov;14(11):1470–1481.
    1. Jack C.R., Jr. NIA-AA research framework: toward a biological definition of Alzheimer's disease. Alzheimers Dement. 2018 Apr;14(4):535–562.
    1. Kinahan Paul E., Fletcher James W. 2010. Positron Emission Tomography-Computed Tomography Standardized Uptake Values in Clinical Practice and Assessing Response to Therapy.
    1. Klunk The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET. Alzheimers Dement. 2015 Jan;11(1):1–15. e1-4.
    1. McKeith I.G., Dickson D.W., Lowe J., Emre M., O'Brien J.T., Feldman H., Cummings J., Duda J.E., Lippa C., Perry E.K., Aarsland D., Arai H., Ballard C.G., Boeve B., Burn D.J., Costa D., Del Ser T., Dubois B., Galasko D., Gauthier S., Goetz C.G., Gomez-Tortosa E., Halliday G., Hansen L.A., Hardy J., Iwatsubo T., Kalaria R.N., Kaufer D., Kenny R.A., Korczyn A., Kosaka K., Lee V.M., Lees A., Litvan I., Londos E., Lopez O.L., Minoshima S., Mizuno Y., Molina J.A., Mukaetova-Ladinska E.B., Pasquier F., Perry R.H., Schulz J.B., Trojanowski J.Q., Yamada M., Consortium on DLB Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology. 2005;65(12):1863–1872. Dec 27.
    1. McKhann G.M. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011 May;7(3):263–269.
    1. Minoshima S. SNMMI procedure standard/EANM practice guideline for amyloid PET imaging of the brain 1.0. J. Nucl. Med. 2016 Aug;57(8):1316–1322.
    1. Molinuevo J.L., Blennow K., Dubois B., Engelborghs S., Lewczuk P., Perret-Liaudet A., Teunissen C.E., Parnetti L. The clinical use of cerebrospinal fluid biomarker testing for Alzheimer's disease diagnosis: a consensus paper from the Alzheimer's Biomarkers Standardization Initiative. Alzheimers Dement. 2014;10(6):808–817. Nov.
    1. Nayate A.P., Dubroff J.G., Schmitt J.E., Nasrallah I., Kishore R., Mankoff D., Pryma D.A. Alzheimer's disease neuroimaging initiative. Use of standardized uptake value ratios decreases interreader variability of [18F] florbetapir PET brain scan interpretation. AJNR Am. J. Neuroradiol. 2015;36(7):1237–1244. Jul.
    1. Niemantsverdriet E. The cerebrospinal fluid Aβ1–42/Aβ1–40 ratio improves concordance with amyloid-PET for diagnosing Alzheimer's disease in a clinical setting. J. Alzheimers Dis. 2017;60(2):561–576.
    1. Paghera Comparison of visual criteria for amyloid Positron Emission Tomography reading: could their merging reduce the inter-raters variability. Q. J. Nucl. Med. Mol. Imaging. 2019 In Press.
    1. Palmqvist . Cerebrospinal fluid analysis detects cerebral amyloid-b accumulation earlier than positron emission tomography. Brain. 2016;139:1226–1236.
    1. Payoux P., Delrieu J., Gallini A., Adel D., Salabert A.S., Hitzel A., Cantet C., Tafani M., De Verbizier D., Darcourt J., Fernandez P., Monteil J., Carrié I., Voisin T., Gillette-Guyonnet S., Pontecorvo M., Vellas B., Andrieu S. Cognitive and functional patterns of nondemented subjects with equivocal visual amyloid PET findings. Eur. J. Nucl. Med. Mol. Imaging. 2015;42(9):1459–1468. Aug.
    1. Rascovsky K., Hodges J.R., Knopman D., Mendez M.F., Kramer J.H., Neuhaus J., van Swieten J.C., Seelaar H., Dopper E.G., Onyike C.U., Hillis A.E., Josephs K.A., Boeve B.F., Kertesz A., Seeley W.W., Rankin K.P., Johnson J.K., Gorno-Tempini M.L., Rosen H., Prioleau-Latham C.E., Lee A., Kipps C.M., Lillo P., Piguet O., Rohrer J.D., Rossor M.N., Warren J.D., Fox N.C., Galasko D., Salmon D.P., Black S.E., Mesulam M., Weintraub S., Dickerson B.C., Diehl-Schmid J., Pasquier F., Deramecourt V., Lebert F., Pijnenburg Y., Chow T.W., Manes F., Grafman J., Cappa S.F., Freedman M., Grossman M., Miller B.L. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011 Sep;134(Pt 9):2456–2477.
    1. Scheltens P., Leys D., Barkhof F., Huglo D., Weinstein H.C., Vermersch P., Kuiper M., Steinling M., Wolters E.C., Valk J. Atrophy of medial temporal lobes on MRI in "probable" Alzheimer's disease and normal ageing: diagnostic value and neuropsychological correlates. J. Neurol. Neurosurg. Psychiatry. 1992;55(10):967–972. Oct.
    1. Schmidt Mark E. The Influence of Biological and Technical Factors on Quantitative Analysis of Amyloid PET: Points to Consider and Recommendations for Controlling Variability in Longitudinal Data. Alzheimers Dement. 2015;11(9):1050–1068.
    1. Villemagne V.L., Rowe C.C. Long night's journey into the day: amyloid-β imaging in Alzheimer's disease. J. Alzheimers Dis. 2013;33(Suppl. 1):S349–S359.
    1. Wang J., Gu B.J., Masters C.L., Wang Y.J. A systemic view of Alzheimer disease – insights from amyloid-β metabolism beyond the brain. Nat. Rev. Neurol. 2017 Nov;13(11):703.
    1. York Unified equations for the slope, intercept, and standard errors of the best straight line. Am. J. Phys. 2004;72:367.

Source: PubMed

3
Se inscrever