Effects of Combined Upper and Lower Limb Plyometric Training Interventions on Physical Fitness in Athletes: A Systematic Review with Meta-Analysis

Nuannuan Deng, Kim Geok Soh, Zeinab Zaremohzzabieh, Borhannudin Abdullah, Kamariah Md Salleh, Dandan Huang, Nuannuan Deng, Kim Geok Soh, Zeinab Zaremohzzabieh, Borhannudin Abdullah, Kamariah Md Salleh, Dandan Huang

Abstract

Objective: We aimed to meta-analyze the effects of combined upper and lower limb plyometric training (ULLPT) on physical fitness attributes in athletes. Methods: A systematic literature search was conducted in Web of Science, SPORTDiscus, PubMed, and SCOPUS, for up to 13 August 2022. Controlled studies with baseline and follow-up measures were included if they examined the effects of ULLPT on at least one measure of physical fitness indices in athletes. A random effects meta-analysis was performed using the Comprehensive Meta-Analysis software. Results: Fifteen moderate-to-high-quality studies with 523 participants aged 12−22.4 years were included in the analyses. Small to large (ES = 0.42−1.66; p = 0.004 to <0.001) effects were noted for upper and lower body muscle power, linear sprint speed, upper and lower body muscle strength, agility, and flexibility, while no significant effects on static and dynamic balance were noted (ES = 0.44−0.10; all p > 0.05). Athletes’ sex, age, and training program variables had no modulator role on the effects of ULLPT in available data sets. Conclusions: ULLPT induces distinct neuro-muscular adaptations in the upper and lower body musculature and is an efficient method for enhancing athletes’ physical fitness.

Keywords: athletes; plyometric training; power; sprint; strength.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow diagram of the search process.
Figure 2
Figure 2
Forest plot of changes in MBT performance (A) [32,52,54,57,58,62], CMJ performance (B) [31,32,52,56,57,58,59,62,63], CMJa performance (C) [32,51,52,58,60], and squat jump performance (D) [32,52,56,63], in athletes participating in combined upper and lower limb plyometric training (ULLPT) compared to controls. Values shown are effect sizes (Hedges’ g) with 95% confidence intervals (CI). The size of the plotted squares reflects the statistical weight of the study.
Figure 3
Figure 3
Forest plot of changes in 5 m sprint performance (A) [32,56,63], 20 m sprint performance (B) [32,62,63], and 30 m sprint performance (C) [32,58,60,63,64], in athletes participating in combined upper and lower limb plyometric training (ULLPT) compared to controls. Values shown are effect sizes (Hedges’s g) with 95% confidence intervals (CI). The size of the plotted squares reflects the statistical weight of the study.
Figure 4
Figure 4
Forest plot of changes in upper body strength performance (A) [31,32,53,55,61,64] and lower body strength performance (B) [31,53,55,61] in athletes participating in combined upper and lower limb plyometric training (ULLPT) compared to controls. Values shown are effect sizes (Hedges’s g) with 95% confidence intervals (CI). The size of the plotted squares reflects the statistical weight of the study.
Figure 5
Figure 5
Forest plot of changes in agility performance [32,54,58,60,63] in athletes participating in combined upper and lower limb plyometric training (ULLPT) compared to controls. Values shown are effect sizes (Hedges’s g) with 95% confidence intervals (CI). The size of the plotted squares reflects the statistical weight of the study.
Figure 6
Figure 6
Forest plot of changes in flexibility performance [54,60,61,62,64] in athletes participating in combined upper and lower limb plyometric training (ULLPT) compared to controls. Values shown are effect sizes (Hedges’s g) with 95% confidence intervals (CI). The size of the plotted squares reflects the statistical weight of the study.
Figure 7
Figure 7
Forest plot of changes in static balance performance (A) [32,53,60,63] and dynamic balance performance (B) [32,60,64] in athletes participating in combined upper and lower limb plyometric training (ULLPT) compared to controls. Values shown are effect sizes (Hedges’s g) with 95% confidence intervals (CI). The size of the plotted squares reflects the statistical weight of the study.

References

    1. Jiang B., Sun H., Bai W., Li H., Wang Y., Xiong H., Wang N. Data Analysis of Soccer Athletes’ Physical Fitness Test Based on Multi-View Clustering. J. Phys. Conf. Ser. 2018;1060:012024. doi: 10.1088/1742-6596/1060/1/012024.
    1. Baar K. Using Molecular Biology to Maximize Concurrent Training. Sport Med. 2014;44:117–125. doi: 10.1007/s40279-014-0252-0.
    1. Bompa T.O., Carrera M.C. Periodization Training for Sports. Human Kinetics; Champaign, IL, USA: 2005.
    1. Prieske O., Muehlbauer T., Granacher U. The Role of Trunk Muscle Strength for Physical Fitness and Athletic Performance in Trained Individuals: A Systematic Review and Meta-Analysis. Sport. Med. 2016;46:401–419. doi: 10.1007/s40279-015-0426-4.
    1. Fernandez-Fernandez J., Sanz-Rivas D., Mendez-Villanueva A. A Review of the Activity Profile and Physiological Demands of Tennis Match Play. Strength Cond. J. 2009;31:15–26. doi: 10.1519/SSC.0b013e3181ada1cb.
    1. Bompa T.O., Haff G.G. Periodization. Theory and Methodology of Training. Human Kinetics; Champaign, IL, USA: 2018.
    1. Carter C.W., Micheli L.J. Training the Child Athlete: Physical Fitness, Health and Injury. Br. J. Sports Med. 2011;45:880–885. doi: 10.1136/bjsports-2011-090201.
    1. Hirsch A., Bieleke M., Schüler J., Wolff W. Implicit Theories about Athletic Ability Modulate the Effects of If-Then Planning on Performance in a Standardized Endurance Task. Int. J. Environ. Res. Public Health. 2020;17:2576. doi: 10.3390/ijerph17072576.
    1. Ebben W.P., Kindler A.G., Chirdon K.A., Jenkins N.C., Polichnowski A.J., Ng A.V. The Effect of High-Load vs. High-Repetition Training on Endurance Performance. J. Strength Cond. Res. 2004;18:513–517. doi: 10.1519/R-12722.1.
    1. Sander A., Keiner M., Wirth K., Schmidtbleicher D. Influence of a 2-Year Strength Training Programme on Power Performance in Elite Youth Soccer Players. Eur. J. Sport Sci. 2013;13:445–451. doi: 10.1080/17461391.2012.742572.
    1. Rønnestad B.R., Hansen J., Hollan I., Ellefsen S. Strength training improves performance and pedaling characteristics in elite cyclists. Scand. J. Med. Sci. Sports. 2015;25:e89–e98. doi: 10.1111/sms.12257.
    1. Markovic G., Mikulic P. Neuro-Musculoskeletal and Performance Adaptations to Lower-Extremity Plyometric Training. Sport Med. 2010;40:859–895. doi: 10.2165/11318370-000000000-00000.
    1. Clark M., Lucett S., Kirkendall D.T. Plyometric Training Concepts for Performance Enhancement raining Concepts. [(accessed on 18 October 2022)];Natl. Acad. Sport Med. 2016 24:207–226. Available online: .
    1. Hewett T.E., Stroupe A.L., Nance T.A., Noyes F.R. Plyometric Training in Female Athletes: Decreased Impact Forces and Increased Hamstring Torques. Am. J. Sports Med. 1996;24:765–773. doi: 10.1177/036354659602400611.
    1. Potach D. Plyometric and Speed Training. NSCA’s Essentials of Personal Training. 1st ed. Human Kinetics; Champaign, IL, USA: 2004. [(accessed on 18 October 2022)]. pp. 425–458. Chapter 17. Available online: .
    1. Bal B.S., Singh S., Dhesi S.S., Singh M. Effects of 6-Week Plyometric Training on Biochemical and Physical Fitness Parameters of Indian Jumpers. J. Phys. Educ. Sport Manag. 2012;3:35–40. doi: 10.5897/JPESM11.072.
    1. Davies G., Riemann B.L., Manske R. Current Concepts of Plyometric Exercise. Int. J. Sports Phys. Ther. 2015;10:760–786.
    1. Oxfeldt M., Overgaard K., Hvid L.G., Dalgas U. Effects of Plyometric Training on Jumping, Sprint Performance, and Lower Body Muscle Strength in Healthy Adults: A Systematic Review and Meta-analyses. Scand. J. Med. Sci. Sports. 2019;29:1453–1465. doi: 10.1111/sms.13487.
    1. Makanuk H., Sacewicz T. Effects of plyometric training on maximal power output and jumping ability. Hum Mov. 2010;11:17–22. doi: 10.2478/v10038-010-0007-1.
    1. Ramirez-Campillo R., Garcia-Hermoso A., Moran J., Chaabene H., Negra Y., Scanlan A.T. The Effects of Plyometric Jump Training on Physical Fitness Attributes in Basketball Players: A Meta-Analysis. J. Sport Health Sci. 2021;11:656–670. doi: 10.1016/j.jshs.2020.12.005.
    1. Ramírez-dela Cruz M., Bravo-Sánchez A., Esteban-García P., Jiménez F., Abián-Vicén J. Effects of Plyometric Training on Lower Body Muscle Architecture, Tendon Structure, Stiffness and Physical Performance: A Systematic Review and Meta-Analysis. Sport. Med.-Open. 2022;8:1–29. doi: 10.1186/s40798-022-00431-0.
    1. Sole S., Ramírez-Campillo R., Andrade D.C., Sanchez-Sanchez J. Plyometric Jump Training Effects on the Physical Fitness of Individual-Sport Athletes: A Systematic Review with Meta-Analysis. PeerJ. 2021;9:e11004. doi: 10.7717/peerj.11004.
    1. Meylan C., Malatesta D. Effects of In-Season Plyometric Training within Soccer Practice on Explosive Actions of Young Players. J. Strength Cond. Res. 2009;23:2605–2613. doi: 10.1519/JSC.0b013e3181b1f330.
    1. Stojanović E., McMaster V.R.D.T., Milanović Z. Effect of Plyometric Training on Vertical Jump Performance in Female Athletes: A Systematic Review and Meta-Analysis. Sport. Med. 2017;47:975–986. doi: 10.1007/s40279-016-0634-6.
    1. Arazi H., Asadi A. The Effect of Aquatic and Land Plyometric Training on Strength, Sprint, and Balance in Young Basketball Players. J. Hum. Sport Exerc. 2011;6:101–111. doi: 10.4100/jhse.2011.61.12.
    1. Turner A.M., Owings M., Schwane J.A. Improvement in Running Economy after 6 Weeks of Plyometric Training. J. Strength Cond. Res. 2003;17:60–67.
    1. Gelen E., Dede M., Bingul B.M., Bulgan C., Aydin M. Acute Effects of Static Stretching, Dynamic Exercises, and High Volume Upper Extremity Plyometric Activity on Tennis Serve Performance. J. Sports Sci. Med. 2012;11:600–605. doi: 10.1055/s-0032-1327645.
    1. Carter A.B., Kaminski T.W., Douex A.T., Jr., Knight C.A., Richards J.G. Effects of high volume upper extremity plyometric training on throwing velocity and functional strength ratios of the shoulder rotators in collegiate baseball players. J. Strength Cond. Res. 2007;21:208–215. doi: 10.1519/00124278-200702000-00038.
    1. Hinshaw T.J., Stephenson M.L., Sha Z., Dai B. Effect of External Loading on Force and Power Production during Plyometric Push-Ups. J. Strength Cond. Res. 2018;32:1099–1108. doi: 10.1519/JSC.0000000000001953.
    1. Koch J., Riemann B.L., Davies G.J. Ground Reaction Force Patterns in Plyometric Push-Ups. J. Strength Cond. Res. 2012;26:2220–2227. doi: 10.1519/JSC.0b013e318239f867.
    1. Canlı U., Bayru M. The Effect of Lower and Upper Extremity Plyometric Exercise Program on Maximal Strength and Body Fat Ratio of Young Basketball Players. [(accessed on 25 October 2022)];Beden Eğitimi Ve Spor Bilim. Derg. 2020 14:374–390. Available online: .
    1. Hammami M., Ramirez-Campillo R., Gaamouri N., Aloui G., Shephard R.J., Chelly M.S. Effects of a Combined Upper- and Lower-Limb Plyometric Training Program on High-Intensity Actions in Female U14 Handball Players. Pediatr. Exerc. Sci. 2019;31:465–472. doi: 10.1123/pes.2018-0278.
    1. Sánchez M., Sanchez-Sanchez J., Nakamura F.Y., Clemente F.M., Romero-Moraleda B., Ramirez-Campillo R. Effects of Plyometric Jump Training in Female Soccer Player’s Physical Fitness: A Systematic Review with Meta-Analysis. Int. J. Environ. Res. Public Health. 2020;17:8911. doi: 10.3390/ijerph17238911.
    1. Ramachandran A.K., Singh U., Ramirez-Campillo R., Clemente F.M., Afonso J., Granacher U. Effects of Plyometric Jump Training on Balance Performance in Healthy Participants: A Systematic Review with Meta-Analysis. Front. Physiol. 2021;12:1760. doi: 10.3389/fphys.2021.730945.
    1. Ramirez-Campillo R., García-de-Alcaraz A., Chaabene H., Moran J., Negra Y., Granacher U. Effects of Plyometric Jump Training on Physical Fitness in Amateur and Professional Volleyball: A Meta-Analysis. Front. Physiol. 2021;12:636140. doi: 10.3389/fphys.2021.636140.
    1. Ramirez-Campillo R., Sanchez-Sanchez J., Romero-Moraleda B., Yanci J., García-Hermoso A., Manuel Clemente F. Effects of Plyometric Jump Training in Female Soccer Player’s Vertical Jump Height: A Systematic Review with Meta-Analysis. J. Sports Sci. 2020;38:1475–1487. doi: 10.1080/02640414.2020.1745503.
    1. Singla D., Hussain M.E., Moiz J.A. Effect of Upper Body Plyometric Training on Physical Performance in Healthy Individuals: A Systematic Review. Phys. Ther. Sport. 2018;29:51–60. doi: 10.1016/j.ptsp.2017.11.005.
    1. Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., Shamseer L., Tetzlaff J.M., Moher D. Updating Guidance for Reporting Systematic Reviews: Development of the PRISMA 2020 Statement. J. Clin. Epidemiol. 2021;134:103–112. doi: 10.1016/j.jclinepi.2021.02.003.
    1. Ramirez-Campillo R., Álvarez C., García-Hermoso A., Ramírez-Vélez R., Gentil P., Asadi A., Chaabene H., Moran J., Meylan C., García-de-Alcaraz A., et al. Methodological Characteristics and Future Directions for Plyometric Jump Training Research: A Scoping Review. Sport. Med. 2018;48:1059–1081. doi: 10.1007/s40279-018-0870-z.
    1. Vetrovsky T., Steffl M., Stastny P., Tufano J.J. The Efficacy and Safety of Lower -Limb Plyometric Training in Older Adults: A Systematic Review. Sport. Med. 2019;49:113–131. doi: 10.1007/s40279-018-1018-x.
    1. Eraslan L., Castelein B., Spanhove V., Orhan C., Duzgun I., Cools A. Effect of Plyometric Training on Sport Performance in Adolescent Overhead Athletes: A Systematic Review. Sports Health. 2021;13:37–44. doi: 10.1177/1941738120938007.
    1. Moseley A.M., Rahman P., Wells G.A., Zadro J.R., Sherrington C., Toupin-April K., Brosseau L. Agreement between the Cochrane Risk of Bias Tool and Physiotherapy Evidence Database (PEDro) Scale: A Meta-Epidemiological Study of Randomized Controlled Trials of Physical Therapy Interventions. PLoS ONE. 2019;14:e222770. doi: 10.1371/journal.pone.0222770.
    1. Harris R.J., Deeks J.J., Altman D.G., Bradburn M.J. Metan: Fixed- and Random-Effects Meta-Analysis. Stata J. 2008;8:3–28. doi: 10.1177/1536867X0800800102.
    1. Kontopantelis E., Springate D.A., Reeves D. A Re-Analysis of the Cochrane Library Data: The Dangers of Unobserved Heterogeneity in Meta-Analyses. PLoS ONE. 2013;8:e69930. doi: 10.1371/journal.pone.0069930.
    1. Hopkins W.G., Marshall S.W., Batterham A.M., Hanin J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009;41:3–12. doi: 10.1249/MSS.0b013e31818cb278.
    1. Higgins J.P., Deeks J.J., Altman D.G. Special topics in statistics. In: The Cochrane CollaborationHiggins J.P., Green S., editors. Cochrane Handbook for Systematic Reviews of Interventions. John Wiley & Sons; Hoboken, NJ, USA: 2008.
    1. Higgins J.P., Thompson S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002;21:1539–1558. doi: 10.1002/sim.1186.
    1. Egger M., Smith G.D., Schneider M., Minder C. Bias in Meta-Analysis Detected by a Simple, Graphical Test. Br. Med. J. 1997;315:629–634. doi: 10.1136/bmj.315.7109.629.
    1. Moran J., Sandercock G., Ramirez-Campillo R., Clark C.C.T., Fernandes J.F.T., Drury B. A meta-analysis of resistance training in female youth: Its effect on muscular strength, and shortcomings in the literature. Sports Med. 2018;48:1661–1671. doi: 10.1007/s40279-018-0914-4.
    1. Moran J., Clark C.C.T., Ramirez-Campillo R., Davies M.J., Drury B. A Meta-Analysis of Plyometric Training in Female Youth: Its Efficacy and Shortcomings in the Literature. J. Strength Cond. Res. 2019;33:1996–2008. doi: 10.1519/JSC.0000000000002768.
    1. Nowakowska M., Zatoń M., Wierzbicka-Damska I. Effects of Plyometric Training on Lower and Upper Extremity Power in Karate Practitioners. J. Combat Sport. Martial Arts. 2017;2:89–93. doi: 10.5604/01.3001.0010.8674.
    1. Santos E.J.A.M., Janeira M.A.A.S. The Effects of Plyometric Training Followed by Detraining and Reduced Training Periods on Explosive Strength in Adolescent Male Basketball Players. J. Strength Cond. Res. 2011;25:441–452. doi: 10.1519/JSC.0b013e3181b62be3.
    1. Sharma1 D., Narinder K.M. Effectiveness of Plyometric Training in the Improvement of Sports Specific Skills of Basketball Players. [(accessed on 12 September 2022)];Indian J. Physiother. Occup. Ther. 2012 6:77–82. Available online: .
    1. Sadeghi H., Nik H.N., Darchini M.A., Mohammadi R. The Effect of Six- Week Plyometric and Core Stability Exercises on Performance of Male Athlete, 11-14 Years Old. [(accessed on 12 September 2022)];Adv. Environ. Biol. 2013 7:1195–1201. Available online: .
    1. Behringer M., Neuerburg S., Matthews M., Mester J. Effects of Two Different Resistance-Training Programs on Mean Tennis-Serve Velocity in Adolescents. Pediatr. Exerc. Sci. 2013;25:370–384. doi: 10.1123/pes.25.3.370.
    1. Chelly M.S., Hermassi S., Aouadi R., Shephard R. Effects of 8-Week in-Season Plyometric Training on Upper and Lower Limb Performance of Elite Adolescent Handball Players. J. Strength Cond. Res. 2014;28:1401–1410. doi: 10.1519/JSC.0000000000000279.
    1. Pereira A., Costa A.M., Santos P., Figueiredo T., João P.V. Training Strategy of Explosive Strength in Young Female Volleyball Players. Med. 2015;51:126–131. doi: 10.1016/j.medici.2015.03.004.
    1. Ramírez-Campillo R., Vergara-Pedreros M., Henríquez-Olguín C., Martínez-Salazar C., Alvarez C., Nakamura F.Y., De La Fuente C.I., Caniuqueo A., Alonso-Martinez A.M., Izquierdo M. Effects of Plyometric Training on Maximal-Intensity Exercise and Endurance in Male and Female Soccer Players. J. Sports Sci. 2016;34:687–693. doi: 10.1080/02640414.2015.1068439.
    1. Hall E., Bishop D.C., Gee T.I. Effect of Plyometric Training on Handspring Vault Performance and Functional Power in Youth Female Gymnasts. PLoS ONE. 2016;11:e148790. doi: 10.1371/journal.pone.0148790.
    1. Karadenizli Z.I. The Effects of Plyometric Training on Balance, Anaerobic Power and Physical Fitness Parameters in Handball. Anthropology. 2016;24:751–761. doi: 10.1080/09720073.2016.11892072.
    1. Uzun A., Karakoc O. The Effects of Ten Weekly Plyometric Training of Judokas on Anaerobic Power. J. Educ. Train. Stud. 2017;5:52. doi: 10.11114/jets.v5i13.2902.
    1. Idrizovic K., Sekulic D., Uljevic O., Spasic M., Gjinovci B., João P.V., Sattler T. The Effects of 3-Month Skill-Based and Plyometric Conditioning on Fitness Parameters in Junior Female Volleyball Players. Pediatr. Exerc. Sci. 2018;30:353–363. doi: 10.1123/pes.2017-0178.
    1. Hammami M., Gaamouri N., Suzuki K., Shephard R.J., Chelly M.S. Effects of Upper and Lower Limb Plyometric Training Program on Components of Physical Performance in Young Female Handball Players. Front. Physiol. 2020;11:1028. doi: 10.3389/fphys.2020.01028.
    1. Kurniawan C., Setijono H., Hidayah T., Hadi H., Sugiharto S. The Effect Plyometric Training with Active-Passive Recovery for 8 Weeks on Performance Physical Abilities Male Judo Athletes. Pedagog. Phys. Cult. Sport. 2021;25:361–366. doi: 10.15561/26649837.2021.0604.
    1. De Leite M.A.F.J., Sasaki J.E., Lourenço C.L.M., Zanetti H.R., da Mota G.R., Mendes E.L. Using the medicine ball throw test to predict upper limb muscle power: Validity evidence. Rev. Bras. Cineantropometria Desempenho Hum. 2020;22:e63286. doi: 10.1590/1980-0037.2020v22e63286.
    1. de Villarreal E.S.S., Kellis E., Kraemer W.J., Izquierdo M. Determining variables of plyometric training for improving vertical jump height performance: A meta-analysis. J. Strength Cond. Res. 2009;23:495–506. doi: 10.1519/JSC.0b013e318196b7c6.
    1. Pienaar C., Coetzee B. Changes in selected physical, motor performance and anthropometric components of university-level rugby players after one microcycle of a combined rugby conditioning and plyometric training program. J. Strength Cond. Res. 2013;27:398–415. doi: 10.1519/JSC.0b013e31825770ea.
    1. Gambetta V. Roundtable: Practical considerations for utilizing plyometrics. Part 2. [(accessed on 7 September 2022)];Strength Cond. J. 1986 8:14–24. Available online: .
    1. Ignjatovic A.M., Markovic Z.M., Radovanovic D.S. Effects of 12-week medicine ball training on muscle strength and power in young female handball players. J. Strength Cond. Res. 2012;26:2166–2173. doi: 10.1519/JSC.0b013e31823c477e.
    1. Palao J.M., Femia P., Ureña A. Effect of eight weeks of upper-body plyometric training during the competitive season on professional female volleyball players. J. Sports Med. Phys. Fitness. 2017;58:1423–1431. doi: 10.23736/s0022-4707.17.07527-2.
    1. Singla D., Hussain M.E. Adaptations of the upper body to plyometric training in cricket players of different age groups. J. Sport Rehabil. 2019;29:697–706. doi: 10.1123/jsr.2018-0469.
    1. Kons R.L., Ache-Dias J., Detanico D., Barth J., Dal Pupo J. Is Vertical Jump Height an Indicator of Athletes’ Power Output in Different Sport Modalities? J. Strength Cond. Res. 2018;32:708–715. doi: 10.1519/JSC.0000000000001817.
    1. Buckthorpe M., Morris J., Folland J.P. Validity of vertical jump measurement devices. J. Sports Sci. 2012;30:63–69. doi: 10.1080/02640414.2011.624539.
    1. Ramirez-Campillo R., Andrade D.C., Nikolaidis P.T., Moran J., Clemente F.M., Chaabene H., Comfort P. Effects of plyometric jump training on vertical jump height of volleyball players: A systematic review with meta-analysis of randomized-controlled trial. J. Sport. Sci. Med. 2020;19:489–499.
    1. Sahin H.M. Relationships between acceleration, agility, and jumping ability in female volleyball players. Eur. J. Exp. Biol. 2014;4:303–308.
    1. Maffiuletti N.A., Dugnani S., Folz M.A.T.T.E.O., Di Pierno E.R.M.A.N.O., Mauro F. Effect of combined electrostimulation and plyometric training on vertical jump height. Med. Sci. Sports Exerc. 2002;34:1638–1644. doi: 10.1097/00005768-200210000-00016.
    1. Thomas K., French D., Philip P.R. The effect of two plyometric training techniques on muscular power and agility in youth soccer players. J. Strength Cond. Res. 2009;23:332–335. doi: 10.1519/JSC.0b013e318183a01a.
    1. Slimani M., Chamari K., Miarka B., Del Vecchio F.B., Chéour F. Effects of plyometric training on physical fitness in team sport athletes: A systematic review. J. Hum Kinet. 2016;53:231–247. doi: 10.1515/hukin-2016-0026.
    1. Grgic J., Schoenfeld B.J., Mikulic P. Effects of Plyometric vs. Resistance Training on Skeletal Muscle Hypertrophy: A Review. J. Sport Heal. Sci. 2021;10:530–536. doi: 10.1016/j.jshs.2020.06.010.
    1. Ramírez-Campillo R., Meylan C., Álvarez C., Henríquez-Olguín C., Martínez C., Cañas-Jamett R., Andrade D.C., Izquierdo M. Effects of in-season low-volume high-intensity plyometric training on explosive actions and endurance of young soccer players. J. Strength Cond. Res. 2014;28:1335–1342. doi: 10.1519/JSC.0000000000000284.
    1. Flanagan E.P., Comyns T.M. The use of contact time and the reactive strength index to optimize fast stretch-shortening cycle training. Strength Cond. J. 2008;30:32–38. doi: 10.1519/SSC.0b013e318187e25b.
    1. Mroczek D., Maćkała K., Kawczynski A., Superlak E., Chmura P., Sewery Niak T., Chmura J. Effects of volleyball plyometric intervention program on vertical jumping ability in male volleyball players. J. Sport. Med. Phys. Fit. 2018;58:1611–1617. doi: 10.23736/S0022-4707.17.07772-6.
    1. Herrero J.A., Izquierdo M., Maffiuletti N.A. Electrostimulation and plyometric training effects on jumping and sprint time. Int. J. Sports Med. 2006;27:533–539. doi: 10.1055/s-2005-865845.
    1. Luebbers P.E., Potteiger J.A., Hulver M.W. Effects of plyometric training and recovery on vertical jump performance and anaerobic power. J. Strength Cond. Res. 2003;17:704–709.
    1. Whitehead M.T., Scheett T.P., McGuigan M.R., Martin A.V. A com-parison of the effects of short-term plyometric and resistance training on lower body muscular performance. J. Strength Cond. Res. 2018;32:2743–2749. doi: 10.1519/JSC.0000000000002083.
    1. Behrens M., Mau-Moeller A., Bruhn S. Effect of plyometric training on neural and mechanical properties of the knee extensor muscles. Int. J. Sports Med. 2014;35:101–119. doi: 10.1055/s-0033-1343401.
    1. De Villarreal E.S.S., Requena B., Newton R.U. Does Plyometric Training Improve Strength Performance? A Meta-Analysis. J. Sci. Med. Sport. 2010;13:513–522. doi: 10.1016/j.jsams.2009.08.005.
    1. Häkkinen A., Häkkinen K., Hannonen P. Effects of strength training on neuromuscular function and disease activity in patients with recent-onset inflammatory arthritis. Scand. J. Rheumato. 1994;23:237–242. doi: 10.3109/03009749409103722.
    1. Ioannides C., Apostolidis A., Hadjicharalambous M., Zaras N. Effect of a 6-week plyometric training on power, muscle strength, and rate of force development in young competitive karate athletes. J. Phys. Educ. Sport. 2020;20:1740–1746. doi: 10.7752/jpes.2020.04236.
    1. Fathi A., Hammami R., Moran J., Borji R., Sahli S., Rebai H. Effect of a 16-Week Combined Strength and Plyometric Training Program Followed by a Detraining Period on Athletic Performance in Pubertal Volleyball Players. J. Strength Cond. Res. 2019;33:2117–2127. doi: 10.1519/JSC.0000000000002461.
    1. Morin J., Bourdin M., Edouard P., Peyrot N., Morin J., Bourdin M., Edouard P., Peyrot N., Samozino P. Mechanical Determinants of 100-m Sprint Running Performance. Eur. J. Appl. Physiol. 2012;112:3921–3930. doi: 10.1007/s00421-012-2379-8.
    1. Bishop D.J., Girard O. Determinants of Team-Sport Performance: Implications for Altitude Training by Team-Sport Athletes. Br. J. Sports Med. 2013;47:i17–i21. doi: 10.1136/bjsports-2013-092950.
    1. Van de Hoef P.A., Brauers J.J., van Smeden M., Backx F.J.G., Brink M.S. The Effects of Lower-Extremity Plyometric Training on Soccer-Specific Outcomes in Adult Male Soccer Players: A Systematic Review and Meta-Analysis. Int. J. Sports Physiol. Perform. 2020;15:3–17. doi: 10.1123/ijspp.2019-0565.
    1. Kotzamanidis C. Effect of Plyometric Training on Running Performance and Vertical Jumping in Prepubertal Boys. J. Strength Cond. Res. 2006;20:441–445. doi: 10.1519/R-16194.1.
    1. Thapa R.K., Lum D., Moran J., Ramirez-Campillo R. Effects of Complex Training on Sprint, Jump, and Change of Direction Ability of Soccer Players: A Systematic Review and Meta-Analysis. Front. Psychol. 2021;11:627869. doi: 10.3389/fpsyg.2020.627869.
    1. Pardos-Mainer E., Lozano D., Torrontegui-Duarte M., Cartón-Llorente A., Roso-Moliner A. Effects of Strength vs. Plyometric Training Programs on Vertical Jumping, Linear Sprint and Change of Direction Speed Performance in Female Soccer Players: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health. 2021;18:401. doi: 10.3390/ijerph18020401.
    1. Asadi A., Arazi H., Young W.B., de Villarreal E.S. The Effects of Plyometric Training on Change-of-Direction Ability: A Meta-Analysis. Int. J. Sports Physiol. Perform. 2016;11:563–573. doi: 10.1123/ijspp.2015-0694.
    1. Young W., McLean B., Ardagna J. Relationship between Strength Qualities and Sprinting Performance. J. Sports Med. Phys. Fitness. 1995;35:13–19.
    1. Sheppard J.M., Young W.B. Agility literature review: Classification, training and testing. J. Sport Sci. 2006;24:919–932. doi: 10.1080/02640410500457109.
    1. Young W.B., Dawson B., Henry G.J. Agility and Change-of-Direction Speed Are Independent Skills: Implications for Training for Agility in Invasion Sports. Int. J. Sport. Sci. Coach. 2015;10:159–169. doi: 10.1260/1747-9541.10.1.159.
    1. Beck S., Taube W., Gruber M., Amtage F., Gollhofer A., Schubert M. Task-Specific Changes in Motor Evoked Potentials of Lower Limb Muscles after Different Training Interventions. Brain Res. 2007;1179:51–60. doi: 10.1016/j.brainres.2007.08.048.
    1. Young W.B., James R., Montgomery I. Is muscle power related to running speed with changes of direction? J. Sport. Med. Phys. Fit. 2002;42:282–288.
    1. Young W., Farrow D. A review of agility: Practical applications for strength and conditioning. Strength Cond. J. 2006;28:24–29. doi: 10.1519/00126548-200610000-00004.
    1. Asadi A. Effects of In-Season Short-Term Plyometric Training on Jumping and Agility Performance of Basketball Players. Sport Sci. Health. 2013;9:133–137. doi: 10.1007/s11332-013-0159-4.
    1. Fernandez-Fernandez J., De Villarreal E.S., Sanz-Rivas D., Moya M. The effects of 8-week plyometric training on physical performance in young tennis players. Pediatr. Exerc. Sci. 2016;28:77–86. doi: 10.1123/pes.2015-0019.
    1. Silva A.F., Clemente F.M., Lima R., Nikolaidis P.T., Rosemann T., Knechtle B. The Effect of Plyometric Training in Volleyball Players: A Systematic Review. Int. J. Environ. Res. Public Health. 2019;16:2960. doi: 10.3390/ijerph16162960.
    1. Neves da Silva V.F., Aguiar S.D.S., Sousa C.V., Sotero R.D.C., Filho J.M.S., Oliveira I., Mota M.R., Simões H.G., Sales M.M. Effects of short-term plyometric training on physical fitness parameters in female futsal athletes. J. Phys. Ther. Sci. 2017;29:783–788. doi: 10.1589/jpts.29.783.
    1. Sáez De Villarreal E., Molina J.G., De Castro-Maqueda G., Gutiérrez-Manzanedo J.V. Effects of Plyometric, Strength and Change of Direction Training on High-School Basketball Player’s Physical Fitness. J. Hum. Kinet. 2021;78:175–186. doi: 10.2478/hukin-2021-0036.
    1. Afyon Y.A. The Effect of Core and Plyometric Exercises on Soccer Players. Anthropologist. 2014;18:927–932. doi: 10.1080/09720073.2014.11891625.
    1. O’ Sullivan K, McAuliffe S, Deburca N: The effects of eccentric training on lower limb flexibility: A systematic review. Br. J. Sports Med. 2012;46:838–845. doi: 10.1136/bjsports-2011-090835.
    1. Malisoux L., Francaux M., Nielens H., Theisen D. Stretch-shortening cycle exercises: An effective training paradigm to enhance power output of human single muscle fibers. J. Appl Physiol. 2006;100:771–779. doi: 10.1152/japplphysiol.01027.2005.
    1. Skaggs J.R., Joiner E.R.A., Pace J.L., Atc M.S., Skaggs D.L. Is Flexibility Associated with Improved Sprint and Jump Performance? [(accessed on 7 September 2022)];Ann. Sports Med. Res. 2015 2:1–5. Available online: .
    1. Yamaguchi T., Ishii K. Effects of static stretching for 30 seconds and dynamic stretching on leg extension power. J. Strength Cond. Res. 2005;19:677–683. doi: 10.1519/15044.1.
    1. Sugiura Y., Sakuma K., Sakuraba K., Sato Y. Prevention of Hamstring Injuries in Collegiate Sprinters. Orthop. J. Sport. Med. 2017;5:1524. doi: 10.1177/2325967116681524.
    1. Witvrouw E., Danneels L., Asselman P., D’Have T., Cambier D. Muscle flexibility as a risk factor for devel-oping muscle injuries in male professional soccer players.A prospective study. Am. J. Sports Med. 2003;31:41–46. doi: 10.1177/03635465030310011801.
    1. Faigenbaum A.D., Farrell A.C., Radler T., Zbojovsky D., Chu D.A., Ratamess N.A., Hoffman J.R. “Plyo Play”: A Novel Program of Short Bouts of Moderate and High Intensity Exercise Improves Physical Fitness in Elementary School Children. [(accessed on 7 December 2022)];Phys Educ. 2009 66:37–44. Available online: .
    1. Meszler B., Váczi M. Effects of Short-Term in-Season Plyometric Training in Adolescent Female Basketball Players. Physiol. Int. 2019;106:168–179. doi: 10.1556/2060.106.2019.14.
    1. Arazi H., Coetzee B., Asadi A. Comparative effect of land-and aquatic-based plyometric training on jumping ability and agility of young basketball players. [(accessed on 7 December 2022)];South African, J. Res. Sport. Phys. Educ. Recreat. 2012 34:1–14. Available online: .
    1. Boccolini G., Brazzit A., Bonfanti L., Alberti G. Using Balance Training to Improve the Performance of Youth Basketball Players. Sport Sci. Health. 2013;9:37–42. doi: 10.1007/s11332-013-0143-z.
    1. Brachman A., Kamieniarz A., Michalska J., Pawłowski M., Słomka K.J., Juras G. Balance training programs in athletes-A systematic review. J. Hum. Kinet. 2017;58:45–64. doi: 10.1515/hukin-2017-0088.
    1. Lloyd D.G. Rationale for Training Programs to Reduce Anterior Cruciate Ligament Injuries in Australian Football. J. Orthop. Sports Phys. Ther. 2001;31:645–654. doi: 10.2519/jospt.2001.31.11.645.
    1. Hewett T.E., Paterno M.V., Myer G.D. Strategies for Enhancing Proprioception and Neuromuscular Control of the Knee. Clin. Orthop. Relat. Res. 2002;402:76–94. doi: 10.1097/00003086-200209000-00008.
    1. Bouteraa I., Negra Y., Shephard R.J., Chelly M.S. Effects of Combined Balance and Plyometric Training on Athletic Performance in Female Basketball Players. J. Strength Cond. Res. 2020;34:1967–1973. doi: 10.1519/JSC.0000000000002546.
    1. Lu Z., Zhou L., Gong W., Chuang S., Wang S., Guo Z., Bao D., Zhang L., Zhou J. The Effect of 6-Week Combined Balance and Plyometric Training on Dynamic Balance and Quickness Performance of Elite Badminton Players. Int. J. Environ. Res. Public Health. 2022;19:1605. doi: 10.3390/ijerph19031605.
    1. Ramirez-Campillo R., Alvarez C., García-Pinillos F., Sanchez-Sanchez J., Yanci J., Castillo D., Loturco I., Chaabene H., Moran J., Izquierdo M. Optimal reactive strength index: Is it an accurate variable to optimize plyometric training effects on measures of physical fitness in young soccer players? J. Strength Cond. Res. 2018;32:885–893. doi: 10.1519/JSC.0000000000002467.
    1. Ramirez-Campillo R., Moran J., Drury B., Williams M., Keogh J.W., Chaabene H., Granacher U. Effects of equal volume but different plyometric jump training intensities on components of physical fitness in physically active young males. J. Strength Cond. Res. 2021;35:1916–1923. doi: 10.1519/JSC.0000000000003057.
    1. Altman D.G., Royston P. The Cost of Dichotomising Continuous Variables. Br. Med. J. 2006;332:1080. doi: 10.1136/bmj.332.7549.1080.
    1. Buga S., Gencer Y.G. The Effect of Plyometric Training Performed on Different Surfaces on Some Performance Parameters. Prog. Nutr. 2022;24:e2022072. doi: 10.23751/pn.v24iS1.13014.

Source: PubMed

3
Se inscrever