Leukemia and risk of recurrent Escherichia coli bacteremia: genotyping implicates E. coli translocation from the colon to the bloodstream

A Samet, A Sledzińska, B Krawczyk, A Hellmann, S Nowicki, J Kur, B Nowicki, A Samet, A Sledzińska, B Krawczyk, A Hellmann, S Nowicki, J Kur, B Nowicki

Abstract

In patients with leukemia, the portal(s) and reasons for the persistence of an Escherichia coli recurrent bacteremia remain unclear. Adult Hematology Clinic (AHC) databases at the State Clinical Hospital in Gdańsk were reviewed to evaluate the frequency of E. coli bacteremia between 2002 and 2005. Blood and bowel E. coli strains were obtained and the genetic relatedness of the strains was analyzed. The rate of E. coli bacteremia per 1,000 admissions at the AHC was higher (85.0) than in the other clinics of the hospital (2.9), p < 0.001. A higher mortality was observed in patients with a history of E. coli versus non-E. coli bacteremia [30/95 (31 %) vs. 53/430 (12 %), p < 0.001]; 72.8 % of patients with leukemia had an unknown source of bacteremia. In 2005, 6 out of 25 (24 %) patients with leukemia had ≥2 episodes of E. coli-positive blood cultures. These gastrointestinal E. coli isolates were replaced within 3-8 weeks with a new E. coli H genotype. A recurrent episode of bacteremia was usually caused by an infection with a transient E. coli H genotype identical to that found in the subject's bowel. Consistent with the definition of bowel/blood translocation, the bowel appeared to be a portal for E. coli in these subjects and, hence, a clear source for their recurring bacteremia.

Figures

Fig. 1
Fig. 1
Polymerase chain reaction melting profiles (PCR MP) fingerprints for representative Escherichia coli isolates from patients of the Adult Hematology Clinic (AHC) ward showing H genotypes from H1 to H20. PCR MP fingerprinting H types are given above each lane. The DNA amplicons were electrophoresed on 6 % polyacrylamide gels
Fig. 2
Fig. 2
Representative results of monitoring the spread of bacteria within patients by using the PCR MP technique. The isolates shown represent three patients: genotype H11 from patient P5, genotype H20 from patient P9, and genotype H22 from patient P18. Lanes marked by numbers indicate the number of the isolate shown in Table 5. Lanes marked by B and S contain strains isolated from blood and stool, respectively. The DNA amplicons were electrophoresed on 6 % polyacrylamide gels

References

    1. Baran J, Jr, Riederer KM, Ramanathan J, Khatib R. Recurrent vancomycin-resistant Enterococcus bacteremia: prevalence, predisposing factors, and strain relatedness. Clin Infect Dis. 2001;32:1381–1383. doi: 10.1086/319996.
    1. Mylotte JM, McDermott C. Recurrent gram-negative bacteremia. Am J Med. 1988;85:159–163. doi: 10.1016/S0002-9343(88)80335-8.
    1. Maslow JN, Mulligan ME, Arbeit RD. Recurrent Escherichia coli bacteremia. J Clin Microbiol. 1994;32:710–714.
    1. Weinstein MP, Reller LB. Clinical importance of “breakthrough” bacteremia. Am J Med. 1984;76:175–180. doi: 10.1016/0002-9343(84)90770-8.
    1. Miller PJ, Farr BM. Morbidity and mortality associated with multiple episodes of nosocomial bloodstream infection: a cohort study. Infect Control Hosp Epidemiol. 1989;10:216–219. doi: 10.1086/646005.
    1. Centers for Disease Control and Prevention (CDC) Advance report of final mortality statistics, 1990. Monthly Vital Stat Rep. 1993;41(No. 7, Supplement):1–12.
    1. Centers for Disease Control (CDC) Increase in National Hospital Discharge Survey rates for septicemia—United States, 1979–1987. MMWR Morb Mortal Wkly Rep. 1990;39:31–34.
    1. Bone RC. Gram-negative sepsis: a dilemma of modern medicine. Clin Microbiol Rev. 1993;6:57–68.
    1. Capdevila JA, Almirante B, Pahissa A, Planes AM, Ribera E, Martínez-Vázquez JM. Incidence and risk factors of recurrent episodes of bacteremia in adults. Arch Intern Med. 1994;154:411–415. doi: 10.1001/archinte.1994.00420040071011.
    1. Biedenbach DJ, Moet GJ, Jones RN. Occurrence and antimicrobial resistance pattern comparisons among bloodstream infection isolates from the SENTRY Antimicrobial Surveillance Program (1997–2002) Diagn Microbiol Infect Dis. 2004;50:59–69. doi: 10.1016/j.diagmicrobio.2004.05.003.
    1. Diekema DJ, Beekmann SE, Chapin KC, Morel KA, Munson E, Doern GV. Epidemiology and outcome of nosocomial and community-onset bloodstream infection. J Clin Microbiol. 2003;41:3655–3660. doi: 10.1128/JCM.41.8.3655-3660.2003.
    1. Javaloyas M, Garcia-Somoza D, Gudiol F. Epidemiology and prognosis of bacteremia: a 10-y study in a community hospital. Scand J Infect Dis. 2002;34:436–441. doi: 10.1080/00365540110080629.
    1. Laupland KB, Gregson DB, Flemons WW, Hawkins D, Ross T, Church DL. Burden of community-onset bloodstream infection: a population-based assessment. Epidemiol Infect. 2007;135:1037–1042. doi: 10.1017/S0950268806007631.
    1. Lyytikäinen O, Lumio J, Sarkkinen H, Kolho E, Kostiala A, Ruutu P, Hospital Infection Surveillance Team Nosocomial bloodstream infections in Finnish hospitals during 1999–2000. Clin Infect Dis. 2002;35:e14–e19. doi: 10.1086/340981.
    1. Uslan DZ, Crane SJ, Steckelberg JM, Cockerill FR, 3rd, St Sauver JL, Wilson WR, Baddour LM. Age- and sex-associated trends in bloodstream infection: a population-based study in Olmsted County, Minnesota. Arch Intern Med. 2007;167:834–839. doi: 10.1001/archinte.167.8.834.
    1. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis. 2004;39:309–317. doi: 10.1086/421946.
    1. Russo TA, Johnson JR. Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes Infect. 2003;5:449–456. doi: 10.1016/S1286-4579(03)00049-2.
    1. Schwaber MJ, Navon-Venezia S, Kaye KS, Ben-Ami R, Schwartz D, Carmeli Y. Clinical and economic impact of bacteremia with extended-spectrum-beta-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2006;50:1257–1262. doi: 10.1128/AAC.50.4.1257-1262.2006.
    1. Wendt C, Messer SA, Hollis RJ, Pfaller MA, Wenzel RP, Herwaldt LA. Molecular epidemiology of gram-negative bacteremia. Clin Infect Dis. 1999;28:605–610. doi: 10.1086/515151.
    1. Mahjoub-Messai F, Bidet P, Caro V, Diancourt L, Biran V, Aujard Y, Bingen E, Bonacorsi S. Escherichia coli isolates causing bacteremia via gut translocation and urinary tract infection in young infants exhibit different virulence genotypes. J Infect Dis. 2011;203:1844–1849. doi: 10.1093/infdis/jir189.
    1. Krawczyk B, Samet A, Leibner J, Śledzińska A, Kur J. Evaluation of a PCR melting profile technique for bacterial strain differentiation. J Clin Microbiol. 2006;44:2327–2332. doi: 10.1128/JCM.00052-06.
    1. Bouza E, Pérez-Molina J, Muñoz P. On behalf of the Cooperative Group of the European Study Group on Nosocomial Infections (ESGNI). Report of ESGNI-001 and ESGNI-002 studies. Bloodstream infections in Europe. Clin Microbial Infect. 1999;5:2S1–2S12. doi: 10.1111/j.1469-0691.1999.tb00536.x.
    1. Johnson CE, Maslow JN, Fattlar DC, Adams KS, Arbeit RD. The role of bacterial adhesins in the outcome of childhood urinary tract infections. Am J Dis Child. 1993;147:1090–1093.
    1. Berg RD. Bacterial translocation from the gastrointestinal tract. Trends Microbiol. 1995;3:149–154. doi: 10.1016/S0966-842X(00)88906-4.
    1. Nowicki B. In vitro models for the study of uropathogens. In: Warren JW, editor. Urinary tract infections: molecular pathogenesis and clinical management. Washington DC: ASM Press; 1996. pp. 341–369.
    1. Marschall J, Zhang L, Foxman B, Warren DK, Henderson JP, CDC Prevention Epicenters Program Both host and pathogen factors predispose to Escherichia coli urinary-source bacteremia in hospitalized patients. Clin Infect Dis. 2012;54(12):1692–1698. doi: 10.1093/cid/cis252.
    1. Samel S, Keese M, Kleczka M, Lanig S, Gretz N, Hafner M, Sturm J, Post S. Microscopy of bacterial translocation during small bowel obstruction and ischemia in vivo—a new animal model. BMC Surg. 2002;2:6. doi: 10.1186/1471-2482-2-6.
    1. Nowicki B, Nowicki S. DAF as a therapeutic target for steroid hormones: implications for host–pathogen interactions. Adv Exp Med Biol. 2013;734:83–96. doi: 10.1007/978-1-4614-4118-2_5.
    1. Sansonetti PJ, Arondel J, Cantey JR, Prévost MC, Huerre M. Infection of rabbit Peyer’s patches by Shigella flexneri: effect of adhesive or invasive bacterial phenotypes on follicle-associated epithelium. Infect Immun. 1996;64:2752–2764.
    1. van der Meer JW, Vandenbroucke-Grauls CM. Resistance to selective decontamination: the jury is still out. Lancet Infect Dis. 2013;13:282–283. doi: 10.1016/S1473-3099(13)70014-8.

Source: PubMed

3
Se inscrever