Identification of Novel Serodiagnostic Signatures of Typhoid Fever Using a Salmonella Proteome Array

Thomas C Darton, Stephen Baker, Arlo Randall, Sabina Dongol, Abhilasha Karkey, Merryn Voysey, Michael J Carter, Claire Jones, Krista Trappl, Jozelyn Pablo, Chris Hung, Andy Teng, Adam Shandling, Tim Le, Cassidy Walker, Douglas Molina, Jason Andrews, Amit Arjyal, Buddha Basnyat, Andrew J Pollard, Christoph J Blohmke, Thomas C Darton, Stephen Baker, Arlo Randall, Sabina Dongol, Abhilasha Karkey, Merryn Voysey, Michael J Carter, Claire Jones, Krista Trappl, Jozelyn Pablo, Chris Hung, Andy Teng, Adam Shandling, Tim Le, Cassidy Walker, Douglas Molina, Jason Andrews, Amit Arjyal, Buddha Basnyat, Andrew J Pollard, Christoph J Blohmke

Abstract

Current diagnostic tests for typhoid fever, the disease caused by Salmonella Typhi, are poor. We aimed to identify serodiagnostic signatures of typhoid fever by assessing microarray signals to 4,445 S. Typhi antigens in sera from 41 participants challenged with oral S. Typhi. We found broad, heterogeneous antibody responses with increasing IgM/IgA signals at diagnosis. In down-selected 250-antigen arrays we validated responses in a second challenge cohort (n = 30), and selected diagnostic signatures using machine learning and multivariable modeling. In four models containing responses to antigens including flagellin, OmpA, HlyE, sipC, and LPS, multi-antigen signatures discriminated typhoid (n = 100) from other febrile bacteremia (n = 52) in Nepal. These models contained combinatorial IgM, IgA, and IgG responses to 5 antigens (ROC AUC, 0.67 and 0.71) or 3 antigens (0.87), although IgA responses to LPS also performed well (0.88). Using a novel systematic approach we have identified and validated optimal serological diagnostic signatures of typhoid fever.

Keywords: Salmonella Typhi; antibody response; controlled human infection model; enteric fever; fever diagnostics; machine learning; rapid diagnostic tests; serodiagnostics.

Figures

FIGURE 1
FIGURE 1
Structure of the controlled human infection models of typhoid fever and endemic cohort. In both (A) the discovery set and (B) the validation set, study participants ingested 103–104 CFU Salmonella Typhi Quailes strain suspended in oral sodium bicarbonate solution on day 0 (D0). Sera samples were collected and probed at the time points indicated. Participants developing an oral temperature ≥38°C sustained for ≥12 h or evidence of bacteremia after challenge were diagnosed with typhoid (TD) and commenced on antimicrobial treatment. All remaining participants not diagnosed during the 14-day period (nTD) were commenced on the same treatment on day 14. (C) Samples (serum and blood culture) in the endemic setting cohorts were collected on one occasion at point of hospital presentation. Pathogens isolated from blood cultures collected from other, non-S. Typhi bacteraemia cases are listed in the box.
FIGURE 2
FIGURE 2
Reactivity of 4445 antigens in samples from a human challenge study performed in Oxford (Discovery set). (A) Mean number of creactive antigen per participant at time points D0 – D28 following challenge. Blue: nTD group. Red: TD group. Gray shaded area: acute disease (TD48 and TD96 h). (B) Number of reactive antigens in number of samples at TD+96 h, and D14 for both groups.
FIGURE 3
FIGURE 3
Time course of responses to four selected antigen/antibody isotype combinations by participants challenged and subsequently diagnosed with typhoid fever. (A) IgA responses. (B) IgG responses. (C) IgM responses. (D) Responses to purified S. Typhi flagellin (0.1 μg) and lipopolysaccharide (LPS, 0.1 μg) as additional antigens included on the array. Vertical black dashed line, TD time point; vertical green dashed line, TD+48hr time point; vertical blue dashed line, TD+96hr time point.
FIGURE 4
FIGURE 4
Reactivity and diagnostic performance of antigen/antibody isotype combinations selected from the discovery set and applied to the validation set. Antigen names are given in Supplementary Table S1. Boxplots of fold-change in reactivity between TD+96hr and day 14 time points in TD or day 14 in nTD participants and individual baseline FI values, to antigen/antibody isotype combinations selected from the discovery set. Paired t-tests were performed between the time point featured and baseline values. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
FIGURE 5
FIGURE 5
Selection of an antigen/antibody isotype signature using machine learning algorithms applied to the controlled human infection typhoid datasets. (A) Test set prediction performance measures AUC receiver operator characteristic (ROC) and balanced accuracies (BalAcc) for four different machine learning models using 500 bootstrap samples of the data. (B) Frequency of features selected in each of 500 iterations by the partial least squares (PLS) algorithm. (C) Proportions of features selected across all 500 bootstrap samples using the PLS algorithm. Features had to be selected in at least 10% of the bootstrap samples (column ‘overall’). Proportions are split by classifier size. The last column represents the overall proportion across all 500 bootstrap samples.
FIGURE 6
FIGURE 6
Multivariable analysis to find optimal antigen/antibody isotype signature. (A) Fold-change values of 12 target antigens plus flagellin and LPS in the combined Oxford data. Antigens included in one of the final models are indicated by the colored squares below the antigens. (B) Risk scores for the Oxford samples based on the antigens and coefficients in the four final models. (C) ROC curves for each of the final model based on the Oxford data comparing participants diagnosed with typhoid fever (day 14 or TD96 h; brown) with those who stayed well (day 14; blue). (D) Fold-change values of 12 target antigens plus flagellin and LPS in the Nepal data. Fold-changes were generated against the median of the healthy population (n = 50). Antigens included in one of the final models are indicated by the colored squares below the antigens. (E) Risk scores for the Nepalese febrile control (orange) and typhoid (brown) samples based on the antigens and coefficients in the final model. (F) External validation ROC curves for each of the final risk equation fitted to the Nepali data comparing febrile controls against typhoid cases.

References

    1. Andrews J. R., Ryan E. T. (2015). Diagnostics for invasive Salmonella infections: current challenges and future directions. Vaccine 33(Suppl. 3), C8–C15. 10.1016/j.vaccine.2015.02.030
    1. Arjyal A., Basnyat B., Nhan H. T., Koirala S., Giri A., Joshi N., et al. (2016). Gatifloxacin versus ceftriaxone for uncomplicated enteric fever in Nepal: an open-label, two-centre, randomised controlled trial. Lancet Infect. Dis. 16 535–545. 10.1016/s1473-3099(15)00530-7
    1. Baker S., Favorov M., Dougan G. (2010). Searching for the elusive typhoid diagnostic. BMC Infect. Dis. 10:45 10.1186/1471-2334-10-45
    1. Buckle G. C., Walker C. L., Black R. E. (2012). Typhoid fever and paratyphoid fever: systematic review to estimate global morbidity and mortality for 2010. J. Glob. Health 2:010401 10.7189/jogh.02.010401
    1. Bumann D. (2014). Identification of protective antigens for vaccination against systemic salmonellosis. Front. Immunol. 5:381 10.3389/fimmu.2014.00381
    1. Calderon I., Lobos S. R., Rojas H. A., Palomino C., Rodriguez L. H., Mora G. C. (1986). Antibodies to porin antigens of Salmonella typhi induced during typhoid infection in humans. Infect. Immun. 52 209–212.
    1. Charles R. C., Liang L., Khanam F., Sayeed M. A., Hung C., Leung D. T., et al. (2014). Immunoproteomic analysis of antibody in lymphocyte supernatant in patients with typhoid fever in Bangladesh. Clin. Vaccine Immunol. 21 280–285. 10.1128/CVI.00661-13
    1. Charles R. C., Sheikh A., Krastins B., Harris J. B., Bhuiyan M. S., LaRocque R. C., et al. (2010). Characterization of Anti-Salmonella enterica Serotype Typhi antibody responses in bacteremic Bangladeshi patients by an immunoaffinity proteomics-based technology. Clin. Vaccine Immunol. 17 1188–1195. 10.1128/cvi.00104-10
    1. Choo K. E., Davis T. M. E., Ismail A., Tuan Ibrahim T. A., Ghazali W. N. W. (1999). Rapid and reliable serological diagnosis of enteric fever: comparative sensitivity and specificity of Typhidot and Typhidot-M tests in febrile Malaysian children. Acta Trop. 72 175–183. 10.1016/S0001-706X(98)00095-3
    1. Crump J. A. (2014). Updating and refining estimates of typhoid fever burden for public health action. Lancet Glob. Health 2:e551–3. 10.1016/S2214-109X(14)70306-7
    1. Crump J. A., Luby S. P., Mintz E. D. (2004). The global burden of typhoid fever. Bull. World Health Organ. 82 346–353.
    1. Crump J. A., Ram P. K., Gupta S. K., Miller M. A., Mintz E. D. (2008). Part I. Analysis of data gaps pertaining to Salmonella enterica serotype Typhi infections in low and medium human development index countries, 1984-2005. Epidemiol Infect. 136 436–448. 10.1017/S0950268807009338
    1. Crump J. A., Sjolund-Karlsson M., Gordon M. A., Parry C. M. (2015). Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin. Microbiol. Rev. 28 901–937. 10.1128/CMR.00002-15
    1. Darton T. C., Blohmke C. J., Pollard A. J. (2014). Typhoid epidemiology, diagnostics and the human challenge model. Curr. Opin. Gastroenterol. 30 7–17. 10.1097/MOG.0000000000000021
    1. Darton T. C., Jones C., Blohmke C. J., Waddington C. S., Zhou L., Peters A., et al. (2016). Using a human challenge model of infection to measure vaccine efficacy: a randomised, controlled trial comparing the typhoid vaccines M01ZH09 with Placebo and Ty21a. PLOS Negl. Trop. Dis. 10:e0004926 10.1371/journal.pntd.0004926
    1. Darton T. C., Zhou L., Blohmke C. J., Jones C., Waddington C. S., Baker S., et al. (2017). Blood culture-PCR to optimise typhoid fever diagnosis after controlled human infection identifies frequent asymptomatic cases and evidence of primary bacteraemia. J. Infect. 74 358–366. 10.1016/j.jinf.2017.01.006
    1. Davies D. H., Jain A., Nakajima R., Liang L., Jasinskis A., Supnet M., et al. (2016). Serodiagnosis of acute typhoid fever in nigerian pediatric cases by detection of serum IgA and IgG against Hemolysin E and Lipopolysaccharide. Am. J. Trop. Med. Hyg. 95 431–439. 10.4269/ajtmh.15-0869
    1. Davies D. H., Liang X., Hernandez J. E., Randall A., Hirst S., Mu Y., et al. (2005). Profiling the humoral immune response to infection by using proteome microarrays: high-throughput vaccine and diagnostic antigen discovery. Proc. Natl. Acad. Sci. U.S.A. 102 547–552. 10.1073/pnas.0408782102
    1. Dougan G., Baker S. (2014).Salmonella enterica serovar Typhi and the pathogenesis of typhoid fever. Annu. Rev. Microbiol. 68 317–336. 10.1146/annurev-micro-091313-103739
    1. Fadeel M. A., House B. L., Wasfy M. M., Klena J. D., Habashy E. E., Said M. M., et al. (2011). Evaluation of a newly developed ELISA against Widal, TUBEX-TF and Typhidot for typhoid fever surveillance. J. Infect. Dev. Ctries 5 169–175. 10.3855/jidc.1339
    1. Folkesson A., Eriksson S., Andersson M., Park J. T., Normark S. (2005). Components of the peptidoglycan-recycling pathway modulate invasion and intracellular survival of Salmonella enterica serovar Typhimurium. Cell Microbiol. 7 147–155. 10.1111/j.1462-5822.2004.00443.x
    1. Homma M., DeRosier D. J., Macnab R. M. (1990). Flagellar hook and hook-associated proteins of Salmonella typhimurium and their relationship to other axial components of the flagellum. J. Mol. Biol. 213 819–832. 10.1016/s0022-2836(05)80266-9
    1. Islam K., Sayeed M. A., Hossen E., Khanam F., Charles R. C., Andrews J., et al. (2016). Comparison of the performance of the TPTest, Tubex, Typhidot and Widal immunodiagnostic assays and blood cultures in detecting patients with typhoid fever in Bangladesh, including using a bayesian latent class modeling approach. PLOS Negl. Trop. Dis. 10:e0004558 10.1371/journal.pntd.0004558
    1. John J., Van Aart C. J., Grassly N. C. (2016). The burden of typhoid and paratyphoid in India: systematic review and meta-analysis. PLOS Negl. Trop. Dis. 10:e0004616 10.1371/journal.pntd.0004616
    1. Kalantari-Dehaghi M., Chun S., Chentoufi A. A., Pablo J., Liang L., Dasgupta G., et al. (2012). Discovery of potential diagnostic and vaccine antigens in herpes simplex virus 1 and 2 by proteome-wide antibody profiling. J. Virol. 86 4328–4339. 10.1128/jvi.05194-11
    1. Karatzoglou A., Smola A. J., Hornik K., Zeileis A. (2004). kernlab – an S4 package for Kernel Methods in R. J. Stat. Softw. 11 1–20. 10.18637/jss.v011.i09
    1. Kaur J., Jain S. K. (2012). Role of antigens and virulence factors of Salmonella enterica serovar Typhi in its pathogenesis. Microbiol. Res. 167 199–210. 10.1016/j.micres.2011.08.001
    1. Keddy K. H., Sooka A., Letsoalo M. E., Hoyland G., Chaignat C. L., Morrissey A. B., et al. (2011). Sensitivity and specificity of typhoid fever rapid antibody tests for laboratory diagnosis at two sub-Saharan African sites. Bull. World Health Organ. 89 640–647. 10.2471/BLT.11.087627
    1. Lee S. J., Liang L., Juarez S., Nanton M. R., Gondwe E. N., Msefula C. L., et al. (2012). Identification of a common immune signature in murine and human systemic Salmonellosis. Proc. Natl. Acad. Sci. U.S.A. 109 4998–5003. 10.1073/pnas.1111413109
    1. Liang L., Doskaya M., Juarez S., Caner A., Jasinskas A., Tan X., et al. (2011a). Identification of potential serodiagnostic and subunit vaccine antigens by antibody profiling of toxoplasmosis cases in Turkey. Mol. Cell. Proteomics 10:M110006916. 10.1074/mcp.M110.006916
    1. Liang L., Tan X., Juarez S., Villaverde H., Pablo J., Nakajima-Sasaki R., et al. (2011b). Systems biology approach predicts antibody signature associated with Brucella melitensis infection in humans. J. Proteome Res. 10 4813–4824. 10.1021/pr200619r
    1. Liang L., Felgner P. L. (2015). A systems biology approach for diagnostic and vaccine antigen discovery in tropical infectious diseases. Curr. Opin. Infect. Dis. 28 438–445. 10.1097/QCO.0000000000000193
    1. Liang L., Juarez S., Nga T. V. T., Dunstan S., Nakajima-Sasaki R., Davies D. H., et al. (2013). Immune profiling with a Salmonella typhi antigen microarray identifies new diagnostic biomarkers of human typhoid. Sci. Rep. 3:1043 10.1038/srep01043
    1. Mevik B.-H., Wehrens R. (2007). The pls package: principal component and partial least squares regression in R. J. Stat. Softw. 18 1–24. 10.1016/j.talanta.2005.07.045
    1. Mogasale V., Maskery B., Ochiai R. L., Lee J. S., Mogasale V. V., Ramani E., et al. (2014). Burden of typhoid fever in low-income and middle-income countries: a systematic, literature-based update with risk-factor adjustment. Lancet Glob. Health 2 e570–e580. 10.1016/s2214-109x(14)70301-8
    1. Naheed A., Ram P. K., Brooks W. A., Mintz E. D., Hossain M. A., Parsons M. M., et al. (2008). Clinical value of Tubex and Typhidot rapid diagnostic tests for typhoid fever in an urban community clinic in Bangladesh. Diagn. Microbiol. Infect. Dis. 61 381–386. 10.1016/j.diagmicrobio.2008.03.018
    1. Nichols C. D., Casanova J. E. (2010). Salmonella-directed recruitment of new membrane to invasion foci via the host exocyst complex. Curr. Biol. 20 1316–1320. 10.1016/j.cub.2010.05.065
    1. Parry C. M., Wijedoru L., Arjyal A., Baker S. (2011). The utility of diagnostic tests for enteric fever in endemic locations. Expert Rev. Anti Infect. Ther. 9 711–725. 10.1586/eri.11.47
    1. Pulickal A. S., Gautam S., Clutterbuck E. A., Thorson S., Basynat B., Adhikari N., et al. (2009). Kinetics of the natural, humoral immune response to Salmonella enterica serovar Typhi in Kathmandu. Nepal. Clin. Vaccine Immunol. 16 1413–1419. 10.1128/cvi.00245-09
    1. Sadallah F., Brighouse G., Del Giudice G., Drager-Dayal R., Hocine M., Lambert P. H. (1990). Production of specific monoclonal antibodies to Salmonella typhi flagellin and possible application to immunodiagnosis of typhoid fever. J. Infect. Dis. 161 59–64. 10.1093/infdis/161.1.59
    1. Tennant S. M., Toema D., Qamar F., Iqbal N., Boyd M. A., Marshall J. M., et al. (2015). Detection of Typhoidal and Paratyphoidal Salmonella in blood by real-time polymerase chain reaction. Clin. Infect. Dis. 61(Suppl. 4), S241–S250. 10.1093/cid/civ726
    1. Thriemer K., Ley B., Menten J., Jacobs J., van den Ende J. (2013). A systematic review and meta-analysis of the performance of two point of care typhoid fever tests, tubex TF and typhidot, in endemic countries. PLOS ONE 8:e81263 10.1371/journal.pone.0081263
    1. Tibshirani R., Hastie T., Narasimhan B., Chu G. (2002). Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc. Natl. Acad. Sci. U.S.A. 99 6567–6572. 10.1073/pnas.082099299
    1. Venables W. N., Ripley B. D. (2002). Modern Applied Statistics with S. New York, NY: Springer; 10.1007/978-0-387-21706-2
    1. Waddington C. S., Darton T. C., Jones C., Haworth K., Peters A., John T., et al. (2014). An outpatient, ambulant-design, controlled human infection model using escalating doses of Salmonella typhi challenge delivered in sodium bicarbonate solution. Clin. Infect. Dis. 58 1230–1240. 10.1093/cid/ciu078
    1. Wain J., Diep T. S., Ho V. A., Walsh A. M., Nguyen T. T., Parry C. M., et al. (1998). Quantitation of bacteria in blood of typhoid fever patients and relationship between counts and clinical features, transmissibility, and antibiotic resistance. J. Clin. Microbiol. 36 1683–1687.
    1. Wain J., Hendriksen R. S., Mikoleit M. L., Keddy K. H., Ochiai R. L. (2015). Typhoid fever. Lancet 385 1136–1145. 10.1016/s0140-6736(13)62708-7
    1. World Health Organisation (2003). “Background document: the diagnosis, treatment and prevention of typhoid fever,” in Vaccines and Biologicals, ed. Department of Immunization. (Geneva: WHO; ).

Source: PubMed

3
Se inscrever