The Pathogenesis of Sepsis and Potential Therapeutic Targets

Min Huang, Shaoli Cai, Jingqian Su, Min Huang, Shaoli Cai, Jingqian Su

Abstract

Sepsis is defined as "a life-threatening organ dysfunction caused by a host's dysfunctional response to infection". Although the treatment of sepsis has developed rapidly in the past few years, sepsis incidence and mortality in clinical treatment is still climbing. Moreover, because of the diverse manifestations of sepsis, clinicians continue to face severe challenges in the diagnosis, treatment, and management of patients with sepsis. Here, we review the recent development in our understanding regarding the cellular pathogenesis and the target of clinical diagnosis of sepsis, with the goal of enhancing the current understanding of sepsis. The present state of research on targeted therapeutic drugs is also elaborated upon to provide information for the treatment of sepsis.

Keywords: biomarkers; pathogenesis; sepsis; therapeutic drugs.

Conflict of interest statement

The authors have declared no conflict of interest.

Figures

Figure 1
Figure 1
The complex pathogenesis of sepsis.
Figure 2
Figure 2
The regulation mechanisms of mitochondrial damage during sepsis.
Figure 3
Figure 3
The function of the cholinergic anti-inflammatory pathway (CAP) in sepsis.
Figure 4
Figure 4
Blocking Programmed Death Receptor-1 and Programmed Death Ligand-1 (PD-1/PD-L1) signaling reverses the immunosuppression in sepsis.

References

    1. Rocheteau P., Chatre L., Briand D., Mebarki M., Jouvion G., Bardon J., Crochemore C., Serrani P., Lecci P.P., Latil M., et al. Sepsis induces long-term metabolic and mitochondrial muscle stem cell dysfunction amenable by mesenchymal stem cell therapy. Nat. Commun. 2015;6:10145. doi: 10.1038/ncomms10145.
    1. Paoli C.J., Reynolds M.A., Sinha M., Gitlin M., Crouser E. Epidemiology and Costs of Sepsis in the United States-An Analysis Based on Timing of Diagnosis and Severity Level. Crit. Care Med. 2018;46:1889–1897. doi: 10.1097/CCM.0000000000003342.
    1. Iwashyna T.J., Cooke C.R., Wunsch H., Kahn J.M. Population burden of long-term survivorship after severe sepsis in older Americans. J. Am. Geriatr. Soc. 2012;60:1070–1077. doi: 10.1111/j.1532-5415.2012.03989.x.
    1. Gaieski D.F., Edwards J.M., Kallan M.J., Carr B.G. Benchmarking the incidence and mortality of severe sepsis in the United States. Crit Care Med. 2013;41:1167–1174. doi: 10.1097/CCM.0b013e31827c09f8.
    1. Barie P.S. World Sepsis Day: September 13, 2012. Surg. Infect. (Larchmt) 2012;13:185–186. doi: 10.1089/sur.2012.9905.
    1. Majno G. The ancient riddle of sigma eta psi iota sigma (sepsis) J. Infect. Dis. 1991;163:937–945. doi: 10.1093/infdis/163.5.937.
    1. Kumar V. Targeting macrophage immunometabolism: Dawn in the darkness of sepsis. Int. Immunopharmacol. 2018;58:173–185. doi: 10.1016/j.intimp.2018.03.005.
    1. Stone M.J. Regulation of Chemokine-Receptor Interactions and Functions. Int. J. Mol. Sci. 2017;18:2415. doi: 10.3390/ijms18112415.
    1. Hawiger J., Veach R.A., Zienkiewicz J. New paradigms in sepsis: From prevention to protection of failing microcirculation. J. Thromb Haemost. 2015;13:1743–1756. doi: 10.1111/jth.13061.
    1. Singer M., Deutschman C.S., Seymour C.W., Shankar-Hari M., Annane D., Bauer M., Bellomo R., Bernard G.R., Chiche J.D., Coopersmith C.M., et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;315:801–810. doi: 10.1001/jama.2016.0287.
    1. David S., Brunkhorst F.M. Sepsis-3: What has been confirmed in therapy? Internist. (Berl) 2017;58:1264–1271. doi: 10.1007/s00108-017-0338-5.
    1. Shankar-Hari M., Phillips G.S., Levy M.L., Seymour C.W., Liu V.X., Deutschman C.S., Angus D.C., Rubenfeld G.D., Singer M., Sepsis Definitions Task F. Developing a New Definition and Assessing New Clinical Criteria for Septic Shock: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;315:775–787. doi: 10.1001/jama.2016.0289.
    1. Seymour C.W., Liu V.X., Iwashyna T.J., Brunkhorst F.M., Rea T.D., Scherag A., Rubenfeld G., Kahn J.M., Shankar-Hari M., Singer M., et al. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;315:762–774. doi: 10.1001/jama.2016.0288.
    1. Rhodes A., Evans L.E., Alhazzani W., Levy M.M., Antonelli M., Ferrer R., Kumar A., Sevransky J.E., Sprung C.L., Nunnally M.E., et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017;43:304–377. doi: 10.1007/s00134-017-4683-6.
    1. Peach B.C. Implications of the new sepsis definition on research and practice. J. Crit. Care. 2017;38:259–262. doi: 10.1016/j.jcrc.2016.11.032.
    1. Park H.K., Kim W.Y., Kim M.C., Jung W., Ko B.S. Quick sequential organ failure assessment compared to systemic inflammatory response syndrome for predicting sepsis in emergency department. J. Crit. Care. 2017;42:12–17. doi: 10.1016/j.jcrc.2017.06.020.
    1. Simpson S.Q. New Sepsis Criteria: A Change We Should Not Make. Chest. 2016;149:1117–1118. doi: 10.1016/j.chest.2016.02.653.
    1. Churpek M.M., Snyder A., Han X., Sokol S., Pettit N., Howell M.D., Edelson D.P. Quick sepsis-related organ failure assessment, systemic inflammatory response syndrome, and early warning scores for detecting clinical deterioration in infected patients outside the intensive care unit. Am. J. Respir. Crit. Care Med. 2017;195:906–911. doi: 10.1164/rccm.201604-0854OC.
    1. Hotchkiss R.S., Monneret G., Payen D. Sepsis-induced immunosuppression: From cellular dysfunctions to immunotherapy. Nat. Rev. Immunol. 2013;13:862–874. doi: 10.1038/nri3552.
    1. Takeuchi O., Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140:805–820. doi: 10.1016/j.cell.2010.01.022.
    1. D’Elia R.V., Harrison K., Oyston P.C., Lukaszewski R.A., Clark G.C. Targeting the “cytokine storm” for therapeutic benefit. Clin. Vaccine Immunol. 2013;20:319–327. doi: 10.1128/CVI.00636-12.
    1. Raymond S.L., Holden D.C., Mira J.C., Stortz J.A., Loftus T.J., Mohr A.M., Moldawer L.L., Moore F.A., Larson S.D., Efron P.A. Microbial recognition and danger signals in sepsis and trauma. Biochim. Biophys. Acta. Mol. Basis Dis. 2017;1863:2564–2573. doi: 10.1016/j.bbadis.2017.01.013.
    1. Lamkanfi M. Emerging inflammasome effector mechanisms. Nat. Rev. Immunol. 2011;11:213–220. doi: 10.1038/nri2936.
    1. Kawai T., Akira S. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat. Immunol. 2010;11:373–384. doi: 10.1038/ni.1863.
    1. Anwar M.A., Basith S., Choi S. Negative regulatory approaches to the attenuation of Toll-like receptor signaling. Exp. Mol. Med. 2013;45:e11. doi: 10.1038/emm.2013.28.
    1. Arens C., Bajwa S.A., Koch C., Siegler B.H., Schneck E., Hecker A., Weiterer S., Lichtenstern C., Weigand M.A., Uhle F. Sepsis-induced long-term immune paralysis--results of a descriptive, explorative study. Crit. Care. 2016;20:93. doi: 10.1186/s13054-016-1233-5.
    1. Schroder K., Tschopp J. The inflammasomes. Cell. 2010;140:821–832. doi: 10.1016/j.cell.2010.01.040.
    1. Broz P., Newton K., Lamkanfi M., Mariathasan S., Dixit V.M., Monack D.M. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J. Exp. Med. 2010;207:1745–1755. doi: 10.1084/jem.20100257.
    1. Qiu Z., He Y., Ming H., Lei S., Leng Y., Xia Z.Y. Lipopolysaccharide (LPS) Aggravates High Glucose- and Hypoxia/Reoxygenation-Induced Injury through Activating ROS-Dependent NLRP3 Inflammasome-Mediated Pyroptosis in H9C2 Cardiomyocytes. J. Diabetes Res. 2019;2019:8151836. doi: 10.1155/2019/8151836.
    1. Xing K., Murthy S., Liles W.C., Singh J.M. Clinical utility of biomarkers of endothelial activation in sepsis--a systematic review. Crit. Care. 2012;16:R7. doi: 10.1186/cc11145.
    1. Moser J., Heeringa P., Jongman R.M., Zwiers P.J., Niemarkt A.E., Yan R., de Graaf I.A., Li R., Ravasz Regan E., Kumpers P., et al. Intracellular RIG-I Signaling Regulates TLR4-Independent Endothelial Inflammatory Responses to Endotoxin. J. Immunol. 2016;196:4681–4691. doi: 10.4049/jimmunol.1501819.
    1. Gupta N., Richter R., Robert S., Kong M. Viral Sepsis in Children. Front. Pediatr. 2018;6:252. doi: 10.3389/fped.2018.00252.
    1. Lin G.L., McGinley J.P., Drysdale S.B., Pollard A.J. Epidemiology and Immune Pathogenesis of Viral Sepsis. Front. Immunol. 2018;9:2147. doi: 10.3389/fimmu.2018.02147.
    1. Pinto A.K., Ramos H.J., Wu X., Aggarwal S., Shrestha B., Gorman M., Kim K.Y., Suthar M.S., Atkinson J.P., Gale M., Jr., et al. Deficient IFN signaling by myeloid cells leads to MAVS-dependent virus-induced sepsis. Plos Pathog. 2014;10:e1004086. doi: 10.1371/journal.ppat.1004086.
    1. Cinel I., Dellinger R.P. Advances in pathogenesis and management of sepsis. Curr. Opin. Infect. Dis. 2007;20:345–352. doi: 10.1097/QCO.0b013e32818be70a.
    1. Hagar J.A., Powell D.A., Aachoui Y., Ernst R.K., Miao E.A. Cytoplasmic LPS activates caspase-11: Implications in TLR4-independent endotoxic shock. Science. 2013;341:1250–1253. doi: 10.1126/science.1240988.
    1. Deng M., Tang Y., Li W., Wang X., Zhang R., Zhang X., Zhao X., Liu J., Tang C., Liu Z., et al. The Endotoxin Delivery Protein HMGB1 Mediates Caspase-11-Dependent Lethality in Sepsis. Immunity. 2018;49:740–753.e7. doi: 10.1016/j.immuni.2018.08.016.
    1. Venet F., Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nat. Rev. Nephrol. 2018;14:121–137. doi: 10.1038/nrneph.2017.165.
    1. van der Poll T., van de Veerdonk F.L., Scicluna B.P., Netea M.G. The immunopathology of sepsis and potential therapeutic targets. Nat. Rev. Immunol. 2017;17:407–420. doi: 10.1038/nri.2017.36.
    1. Shen X.F., Cao K., Jiang J.P., Guan W.X., Du J.F. Neutrophil dysregulation during sepsis: An overview and update. J. Cell Mol. Med. 2017;21:1687–1697. doi: 10.1111/jcmm.13112.
    1. Hou J., Chen Q., Zhang K., Cheng B., Xie G., Wu X., Luo C., Chen L., Liu H., Zhao B., et al. Sphingosine 1-phosphate Receptor 2 Signaling Suppresses Macrophage Phagocytosis and Impairs Host Defense against Sepsis. J. Am. Soc. Anesthesiol. 2015;123:409–422. doi: 10.1097/ALN.0000000000000725.
    1. Efron P.A., Martins A., Minnich D., Tinsley K., Ungaro R., Bahjat F.R., Hotchkiss R., Clare-Salzler M., Moldawer L.L. Characterization of the systemic loss of dendritic cells in murine lymph nodes during polymicrobial sepsis. J. Immunol. 2004;173:3035–3043. doi: 10.4049/jimmunol.173.5.3035.
    1. Cheng S.C., Scicluna B.P., Arts R.J., Gresnigt M.S., Lachmandas E., Giamarellos-Bourboulis E.J., Kox M., Manjeri G.R., Wagenaars J.A., Cremer O.L., et al. Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat. Immunol. 2016;17:406–413. doi: 10.1038/ni.3398.
    1. Guo Y., Patil N.K., Luan L., Bohannon J.K., Sherwood E.R. The biology of natural killer cells during sepsis. Immunology. 2018;153:190–202. doi: 10.1111/imm.12854.
    1. Pepin D., Godeny M., Russell D., Mehta P., Lie W.R. Profiling of soluble immune checkpoint proteins as potential non-invasive biomarkers in colorectal cancer and sepsis. J. Immunol. 2018;200:174.43.
    1. Honma K., Udono H., Kohno T., Yamamoto K., Ogawa A., Takemori T., Kumatori A., Suzuki S., Matsuyama T., Yui K. Interferon regulatory factor 4 negatively regulates the production of proinflammatory cytokines by macrophages in response to LPS. Proc. Natl. Acad. Sci. USA. 2005;102:16001–16006. doi: 10.1073/pnas.0504226102.
    1. Negishi H., Ohba Y., Yanai H., Takaoka A., Honma K., Yui K., Matsuyama T., Taniguchi T., Honda K. Negative regulation of Toll-like-receptor signaling by IRF-4. Proc. Natl. Acad. Sci. USA. 2005;102:15989–15994. doi: 10.1073/pnas.0508327102.
    1. Rocha M., Herance R., Rovira S., Hernandez-Mijares A., Victor V.M. Mitochondrial dysfunction and antioxidant therapy in sepsis. Infect. Disord Drug Targets. 2012;12:161–178. doi: 10.2174/187152612800100189.
    1. Quoilin C., Mouithys-Mickalad A., Lecart S., Fontaine-Aupart M.P., Hoebeke M. Evidence of oxidative stress and mitochondrial respiratory chain dysfunction in an in vitro model of sepsis-induced kidney injury. Biochim. Biophys. Acta. 2014;1837:1790–1800. doi: 10.1016/j.bbabio.2014.07.005.
    1. Singer M. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence. 2014;5:66–72. doi: 10.4161/viru.26907.
    1. Hotchkiss R.S., Swanson P.E., Freeman B.D., Tinsley K.W., Cobb J.P., Matuschak G.M., Buchman T.G., Karl I.E. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit. Care Med. 1999;27:1230–1251. doi: 10.1097/00003246-199907000-00002.
    1. Carchman E.H., Whelan S., Loughran P., Mollen K., Stratamirovic S., Shiva S., Rosengart M.R., Zuckerbraun B.S. Experimental sepsis-induced mitochondrial biogenesis is dependent on autophagy, TLR4, and TLR9 signaling in liver. Faseb. J. 2013;27:4703–4711. doi: 10.1096/fj.13-229476.
    1. Wu Y., Yao Y.M., Lu Z.Q. Mitochondrial quality control mechanisms as potential therapeutic targets in sepsis-induced multiple organ failure. J. Mol. Med. (Berl) 2019;97:451–462. doi: 10.1007/s00109-019-01756-2.
    1. Zhang H., Feng Y.W., Yao Y.M. Potential therapy strategy: Targeting mitochondrial dysfunction in sepsis. Mil. Med. Res. 2018;5:41. doi: 10.1186/s40779-018-0187-0.
    1. Protti A., Fortunato F., Artoni A., Lecchi A., Motta G., Mistraletti G., Novembrino C., Comi G.P., Gattinoni L. Platelet mitochondrial dysfunction in critically ill patients: Comparison between sepsis and cardiogenic shock. Crit. Care. 2015;19:39. doi: 10.1186/s13054-015-0762-7.
    1. Tranca S.D., Petrisor C.L., Hagau N. Biomarkers in polytrauma induced systemic inflammatory response syndrome and sepsis - a narrative review. Rom. J. Anaesth. Intensive Care. 2014;21:118–122.
    1. Liu Y., Hou J.H., Li Q., Chen K.J., Wang S.N., Wang J.M. Biomarkers for diagnosis of sepsis in patients with systemic inflammatory response syndrome: A systematic review and meta-analysis. Springerplus. 2016;5:2091. doi: 10.1186/s40064-016-3591-5.
    1. Hedegaard S.S., Wisborg K., Hvas A.M. Diagnostic utility of biomarkers for neonatal sepsis--a systematic review. Infect. Dis. 2015;47:117–124. doi: 10.3109/00365548.2014.971053.
    1. Ma Y., Zhou Y., Wu F., Ji W., Zhang J., Wang X. The Bidirectional Interactions Between Inflammation and Coagulation in Fracture Hematoma. Tissue Eng. Part. B. Rev. 2018 doi: 10.1089/ten.teb.2018.0157.
    1. Levi M., van der Poll T. Inflammation and coagulation. Crit. Care Med. 2010;38:S26–S34. doi: 10.1097/CCM.0b013e3181c98d21.
    1. Levi M., Poll T. Coagulation in patients with severe sepsis. Semin. Thromb Hemost. 2015;41:9–15. doi: 10.1055/s-0034-1398376.
    1. Biemond B.J., Levi M., Ten Cate H., Van der Poll T., Buller H.R., Hack C.E., Ten Cate J.W. Plasminogen activator and plasminogen activator inhibitor I release during experimental endotoxaemia in chimpanzees: Effect of interventions in the cytokine and coagulation cascades. Clin. Sci. (Lond) 1995;88:587–594. doi: 10.1042/cs0880587.
    1. Peres Wingeyer S.D., Cunto E.R., Nogueras C.M., San Juan J.A., Gomez N., de Larranaga G.F. Biomarkers in sepsis at time zero: Intensive care unit scores, plasma measurements and polymorphisms in Argentina. J. Infect. Dev. Ctries. 2012;6:555–562. doi: 10.3855/jidc.2108.
    1. Andersson U., Tracey K.J. Reflex principles of immunological homeostasis. Annu. Rev. Immunol. 2012;30:313–335. doi: 10.1146/annurev-immunol-020711-075015.
    1. Muscatell K.A., Dedovic K., Slavich G.M., Jarcho M.R., Breen E.C., Bower J.E., Irwin M.R., Eisenberger N.I. Greater amygdala activity and dorsomedial prefrontal-amygdala coupling are associated with enhanced inflammatory responses to stress. Brain Behav. Immun. 2015;43:46–53. doi: 10.1016/j.bbi.2014.06.201.
    1. Sonneville R., Verdonk F., Rauturier C., Klein I.F., Wolff M., Annane D., Chretien F., Sharshar T. Understanding brain dysfunction in sepsis. Ann. Intensive Care. 2013;3:15. doi: 10.1186/2110-5820-3-15.
    1. Kanczkowski W., Sue M., Zacharowski K., Reincke M., Bornstein S.R. The role of adrenal gland microenvironment in the HPA axis function and dysfunction during sepsis. Mol. Cell Endocrinol. 2015;408:241–248. doi: 10.1016/j.mce.2014.12.019.
    1. Won E., Kim Y.K. Stress, the Autonomic Nervous System, and the Immune-kynurenine Pathway in the Etiology of Depression. Curr. Neuropharmacol. 2016;14:665–673. doi: 10.2174/1570159X14666151208113006.
    1. Vizi E.S. Receptor-mediated local fine-tuning by noradrenergic innervation of neuroendocrine and immune systems. Ann. N Y. Acad. Sci. 1998;851:388–396. doi: 10.1111/j.1749-6632.1998.tb09012.x.
    1. Tynan R.J., Weidenhofer J., Hinwood M., Cairns M.J., Day T.A., Walker F.R. A comparative examination of the anti-inflammatory effects of SSRI and SNRI antidepressants on LPS stimulated microglia. Brain Behav. Immun. 2012;26:469–479. doi: 10.1016/j.bbi.2011.12.011.
    1. Herve J., Haurogne K., Bacou E., Pogu S., Allard M., Mignot G., Bach J.M., Lieubeau B. beta2-adrenergic stimulation of dendritic cells favors IL-10 secretion by CD4( + ) T cells. Immunol. Res. 2017;65:1156–1163. doi: 10.1007/s12026-017-8966-3.
    1. Fujii T., Mashimo M., Moriwaki Y., Misawa H., Ono S., Horiguchi K., Kawashima K. Expression and Function of the Cholinergic System in Immune Cells. Front. Immunol. 2017;8:1085. doi: 10.3389/fimmu.2017.01085.
    1. Li D.J., Fu H., Tong J., Li Y.H., Qu L.F., Wang P., Shen F.M. Cholinergic anti-inflammatory pathway inhibits neointimal hyperplasia by suppressing inflammation and oxidative stress. Redox Biol. 2018;15:22–33. doi: 10.1016/j.redox.2017.11.013.
    1. Borovikova L.V., Ivanova S., Zhang M., Yang H., Botchkina G.I., Watkins L.R., Wang H., Abumrad N., Eaton J.W., Tracey K.J. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458–462. doi: 10.1038/35013070.
    1. Kohoutova M., Horak J., Jarkovska D., Martinkova V., Tegl V., Nalos L., Vistejnova L., Benes J., Sviglerova J., Kuncova J., et al. Vagus Nerve Stimulation Attenuates Multiple Organ Dysfunction in Resuscitated Porcine Progressive Sepsis. Crit. Care Med. 2019;47:e461–e469. doi: 10.1097/CCM.0000000000003714.
    1. Khan M.M., Yang W.L., Wang P. Endoplasmic Reticulum Stress in Sepsis. Shock. 2015;44:294–304. doi: 10.1097/SHK.0000000000000425.
    1. Li Y., Guo Y., Tang J., Jiang J., Chen Z. New insights into the roles of CHOP-induced apoptosis in ER stress. Acta. Biochim. Biophys. Sin. (Shanghai) 2015;47:146–147. doi: 10.1093/abbs/gmu128.
    1. Zhang J., Zhang X., Cui Y., Cui L., Zhao P. Macrophage migration inhibitory factor knockout attenuates endotoxin-induced cardiac dysfunction in mice. Kardiol Pol. 2018;76:871–880. doi: 10.5603/KP.a2018.0032.
    1. Garcia de la Cadena S., Massieu L. Caspases and their role in inflammation and ischemic neuronal death. Focus on caspase-12. Apoptosis. 2016;21:763–777. doi: 10.1007/s10495-016-1247-0.
    1. Jiao G., Hao L., Wang M., Zhong B., Yu M., Zhao S., Wang P., Feng R., Tan S., Chen L. Upregulation of endoplasmic reticulum stress is associated with diaphragm contractile dysfunction in a rat model of sepsis. Mol. Med. Rep. 2017;15:366–374. doi: 10.3892/mmr.2016.6014.
    1. Qiu P., Liu Y., Zhang J. Review: The Role and Mechanisms of Macrophage Autophagy in Sepsis. Inflammation. 2019;42:6–19. doi: 10.1007/s10753-018-0890-8.
    1. Nakahira K., Haspel J.A., Rathinam V.A., Lee S.J., Dolinay T., Lam H.C., Englert J.A., Rabinovitch M., Cernadas M., Kim H.P., et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 2011;12:222–230. doi: 10.1038/ni.1980.
    1. Maurer K., Reyes-Robles T., Alonzo F., 3rd, Durbin J., Torres V.J., Cadwell K. Autophagy mediates tolerance to Staphylococcus aureus alpha-toxin. Cell Host. Microbe. 2015;17:429–440. doi: 10.1016/j.chom.2015.03.001.
    1. Ryter S.W., Mizumura K., Choi A.M. The impact of autophagy on cell death modalities. Int. J. Cell Biol. 2014;2014:502676. doi: 10.1155/2014/502676.
    1. Schafer S.T., Franken L., Adamzik M., Schumak B., Scherag A., Engler A., Schonborn N., Walden J., Koch S., Baba H.A., et al. Mitochondrial DNA: An Endogenous Trigger for Immune Paralysis. J. Am. Soc. Anesthesiol. 2016;124:923–933. doi: 10.1097/ALN.0000000000001008.
    1. Pundiche M., Sarbu V., Unc O., Grasa C., Martinescu A., Bădărău V., Durbală I., Sapte E., Pasăre R., Voineagu L. Role of procalcitonin in monitoring the antibiotic therapy in septic surgical patients. Chirurgia (Buchar. Rom. 1990) 2012;107:71–78.
    1. Pontrelli G., De Crescenzo F., Buzzetti R., Jenkner A., Balduzzi S., Calo Carducci F., Amodio D., De Luca M., Chiurchiu S., Davies E.H., et al. Accuracy of serum procalcitonin for the diagnosis of sepsis in neonates and children with systemic inflammatory syndrome: A meta-analysis. Bmc Infect. Dis. 2017;17:302. doi: 10.1186/s12879-017-2396-7.
    1. Vijayan A.L., Ravindran S., Saikant R., Lakshmi S., Kartik R., Manoj G. Procalcitonin: A promising diagnostic marker for sepsis and antibiotic therapy. J. Intensive Care. 2017;5:51. doi: 10.1186/s40560-017-0246-8.
    1. Arora S., Singh P., Singh P.M., Trikha A. Procalcitonin Levels in Survivors and Nonsurvivors of Sepsis: Systematic Review and Meta-Analysis. Shock. 2015;43:212–221. doi: 10.1097/SHK.0000000000000305.
    1. Nunnally M.E., Patel A. Sepsis - What’s new in 2019? Curr. Opin. Anaesthesiol. 2019;32:163–168. doi: 10.1097/ACO.0000000000000707.
    1. Memar M.Y., Alizadeh N., Varshochi M., Kafil H.S. Immunologic biomarkers for diagnostic of early-onset neonatal sepsis. J. Matern. Fetal Neonatal Med. 2019;32:143–153. doi: 10.1080/14767058.2017.1366984.
    1. Sager R., Kutz A., Mueller B., Schuetz P. Procalcitonin-guided diagnosis and antibiotic stewardship revisited. Bmc. Med. 2017;15:15. doi: 10.1186/s12916-017-0795-7.
    1. Jiwaji Z., Brady S., McIntyre L.A., Gray A., Walsh T.S. Emergency department management of early sepsis: A national survey of emergency medicine and intensive care consultants. Emerg. Med. J. 2014;31:1000–1005. doi: 10.1136/emermed-2013-202883.
    1. Jeong S., Park Y., Cho Y., Kim H.S. Diagnostic utilities of procalcitonin and C-reactive protein for the prediction of bacteremia determined by blood culture. Clin. Chim. Acta. 2012;413:1731–1736. doi: 10.1016/j.cca.2012.06.030.
    1. Tan M., Lu Y., Jiang H., Zhang L. The diagnostic accuracy of procalcitonin and C-reactive protein for sepsis: A systematic review and meta-analysis. J. Cell. Biochem. 2019;120:5852–5859. doi: 10.1002/jcb.27870.
    1. Lelubre C., Anselin S., Zouaoui Boudjeltia K., Biston P., Piagnerelli M. Interpretation of C-reactive protein concentrations in critically ill patients. Biomed Res. Int. 2013;2013:124021. doi: 10.1155/2013/124021.
    1. Kaukonen K.M., Bailey M., Pilcher D., Cooper D.J., Bellomo R. Systemic inflammatory response syndrome criteria in defining severe sepsis. N. Engl. J. Med. 2015;372:1629–1638. doi: 10.1056/NEJMoa1415236.
    1. Kumar S., Tripathy S., Jyoti A., Singh S.G. Recent advances in biosensors for diagnosis and detection of sepsis: A comprehensive review. Biosens Bioelectron. 2019;124–125:205–215. doi: 10.1016/j.bios.2018.10.034.
    1. Kumar S., Gupta E., Kaushik S., Kumar Srivastava V., Mehta S.K., Jyoti A. Evaluation of oxidative stress and antioxidant status: Correlation with the severity of sepsis. Scand. J. Immunol. 2018;87:e12653. doi: 10.1111/sji.12653.
    1. Iking-Konert C., Bartz-Bazzanella P., Falagan D., Hofman M.W., Schwarting A., Dorner T. Interleukin-6 inhibition as a potential therapeutic target in rheumatic diseases. Z Rheumatol. 2014;73:269–276. doi: 10.1007/s00393-013-1268-9.
    1. Tschaikowsky K., Hedwig-Geissing M., Braun G.G., Radespiel-Troeger M. Predictive value of procalcitonin, interleukin-6, and C-reactive protein for survival in postoperative patients with severe sepsis. J. Crit. Care. 2011;26:54–64. doi: 10.1016/j.jcrc.2010.04.011.
    1. Shahkar L., Keshtkar A., Mirfazeli A., Ahani A., Roshandel G. The role of IL-6 for predicting neonatal sepsis: A systematic review and meta-analysis. Iran J Pediatr. 2011;21:411–417.
    1. Hou T., Huang D., Zeng R., Ye Z., Zhang Y. Accuracy of serum interleukin (IL)-6 in sepsis diagnosis: A systematic review and meta-analysis. Int. J. Clin. Exp. Med. 2015;8:15238–15245.
    1. Kurt A., Aygun A.D., Godekmerdan A., Kurt A., Dogan Y., Yilmaz E. Serum IL-1β, IL-6, IL-8, and TNF-α levels in early diagnosis and management of neonatal sepsis. Mediat. Inflamm. 2007;2007 doi: 10.1155/2007/31397.
    1. Zhu T., Liao X., Feng T., Wu Q., Zhang J., Cao X., Li H. Plasma monocyte chemoattractant protein 1 as a predictive marker for sepsis prognosis: A prospective cohort study. Tohoku J. Exp. Med. 2017;241:139–147. doi: 10.1620/tjem.241.139.
    1. Cavalcanti N.V., Torres L.C., da Matta M.C., Lindoso C.D., LN A.C., Duarte M.C., Correia J.B. Chemokine Patterns in Children with Acute Bacterial Infections. Scand. J. Immunol. 2016;84:338–343. doi: 10.1111/sji.12492.
    1. Hong T.H., Chang C.H., Ko W.J., Lin C.F., Liu H.H., Chow L.P., Huang C.T., Yu S.L., Chen Y.S. Biomarkers of early sepsis may be correlated with outcome. J. Transl. Med. 2014;12:146. doi: 10.1186/1479-5876-12-146.
    1. Holub M., Dzupova O., Ruzkova M., Stranikova A., Bartakova E., Maca J., Benes J., Herwald H., Beran O. Selected Biomarkers Correlate with the Origin and Severity of Sepsis. Mediat. Inflamm. 2018;2018:7028267. doi: 10.1155/2018/7028267.
    1. Turnis M.E., Andrews L.P., Vignali D.A. Inhibitory receptors as targets for cancer immunotherapy. Eur. J. Immunol. 2015;45:1892–1905. doi: 10.1002/eji.201344413.
    1. Chang K., Svabek C., Vazquez-Guillamet C., Sato B., Rasche D., Wilson S., Robbins P., Ulbrandt N., Suzich J., Green J., et al. Targeting the programmed cell death 1: Programmed cell death ligand 1 pathway reverses T cell exhaustion in patients with sepsis. Crit. Care. 2014;18:R3. doi: 10.1186/cc13176.
    1. Guillerey C., Huntington N.D., Smyth M.J. Targeting natural killer cells in cancer immunotherapy. Nat. Immunol. 2016;17:1025–1036. doi: 10.1038/ni.3518.
    1. Keir M.E., Francisco L.M., Sharpe A.H. PD-1 and its ligands in T-cell immunity. Curr. Opin. Immunol. 2007;19:309–314. doi: 10.1016/j.coi.2007.04.012.
    1. Boomer J.S., To K., Chang K.C., Takasu O., Osborne D.F., Walton A.H., Bricker T.L., Jarman S.D., 2nd, Kreisel D., Krupnick A.S., et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 2011;306:2594–2605. doi: 10.1001/jama.2011.1829.
    1. Shao R., Fang Y., Yu H., Zhao L., Jiang Z., Li C.-S. Monocyte programmed death ligand-1 expression after 3–4 days of sepsis is associated with risk stratification and mortality in septic patients: A prospective cohort study. Crit. Care. 2016;20:124. doi: 10.1186/s13054-016-1301-x.
    1. Larsen F.F., Petersen J.A. Novel biomarkers for sepsis: A narrative review. Eur. J. Intern Med. 2017;45:46–50. doi: 10.1016/j.ejim.2017.09.030.
    1. Zhang J., She D., Feng D., Jia Y., Xie L. Dynamic changes of serum soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) reflect sepsis severity and can predict prognosis: A prospective study. BMC Infect. Dis. 2011;11:53. doi: 10.1186/1471-2334-11-53.
    1. Wu Y., Wang F., Fan X., Bao R., Bo L., Li J., Deng X. Accuracy of plasma sTREM-1 for sepsis diagnosis in systemic inflammatory patients: A systematic review and meta-analysis. Crit. Care. 2012;16:R229. doi: 10.1186/cc11884.
    1. Saldir M., Tunc T., Cekmez F., Cetinkaya M., Kalayci T., Fidanci K., Babacan O., Erdem G., Kocak N., Sari E., et al. Endocan and Soluble Triggering Receptor Expressed on Myeloid Cells-1 as Novel Markers for Neonatal Sepsis. Pediatr Neonatol. 2015;56:415–421. doi: 10.1016/j.pedneo.2015.03.006.
    1. Karasu E., Nilsson B., Kohl J., Lambris J.D., Huber-Lang M. Targeting Complement Pathways in Polytrauma- and Sepsis-Induced Multiple-Organ Dysfunction. Front. Immunol. 2019;10:543. doi: 10.3389/fimmu.2019.00543.
    1. Helling H., Stephan B., Pindur G. Coagulation and complement system in critically ill patients. Clin. Hemorheol Microcirc. 2015;61:185–193. doi: 10.3233/CH-151993.
    1. Williams A.L., Gullipalli D., Ueda Y., Sato S., Zhou L., Miwa T., Tung K.S., Song W.C. C5 inhibition prevents renal failure in a mouse model of lethal C3 glomerulopathy. Kidney Int. 2017;91:1386–1397. doi: 10.1016/j.kint.2016.11.018.
    1. Zhang Y., Yan X., Zhao T., Xu Q., Peng Q., Hu R., Quan S., Zhou Y., Xing G. Targeting C3a/C5a receptors inhibits human mesangial cell proliferation and alleviates immunoglobulin A nephropathy in mice. Clin. Exp. Immunol. 2017;189:60–70. doi: 10.1111/cei.12961.
    1. Napier B.A., Brubaker S.W., Sweeney T.E., Monette P., Rothmeier G.H., Gertsvolf N.A., Puschnik A., Carette J.E., Khatri P., Monack D.M. Complement pathway amplifies caspase-11-dependent cell death and endotoxin-induced sepsis severity. J. Exp. Med. 2016;213:2365–2382. doi: 10.1084/jem.20160027.
    1. Lv B., Huang J., Yuan H., Yan W., Hu G., Wang J. Tumor necrosis factor-alpha as a diagnostic marker for neonatal sepsis: A meta-analysis. Sci. World J. 2014;2014:471463. doi: 10.1155/2014/471463.
    1. Wei Z.M., Wang Z., Wan X.J., Li X.J., Li Y.X., Bai Y., Yang X., Yang Y., Jiao S.C., Liu Z.F. FcRgamma deficiency improves survival in experimental sepsis by down-regulating TLR4 signaling pathway. Immunol. Res. 2018 doi: 10.1007/s12026-018-9039-y.
    1. Wang X., Li Z.-Y., Zeng L., Zhang A.-Q., Pan W., Gu W., Jiang J.-X. Neutrophil CD64 expression as a diagnostic marker for sepsis in adult patients: A meta-analysis. Crit. Care. 2015;19:245. doi: 10.1186/s13054-015-0972-z.
    1. Li W., Qiu X., Jiang H., Han Y., Wei D., Liu J. Downregulation of miR-181a protects mice from LPS-induced acute lung injury by targeting Bcl-2. Biomed Pharm. 2016;84:1375–1382. doi: 10.1016/j.biopha.2016.10.065.
    1. Wang H., Meng K., jun Chen W., Feng D., Jia Y., Xie L. Serum miR-574-5p: A prognostic predictor of sepsis patients. Shock. 2012;37:263–267. doi: 10.1097/SHK.0b013e318241baf8.
    1. Sheedy F.J., Palsson-McDermott E., Hennessy E.J., Martin C., O’Leary J.J., Ruan Q., Johnson D.S., Chen Y., O’Neill L.A. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat. Immunol. 2010;11:141–147. doi: 10.1038/ni.1828.
    1. Zhou M.H., Zhang L., Song M.J., Sun W.J. MicroRNA-218 prevents lung injury in sepsis by inhibiting RUNX2. Eur. Rev. Med. Pharm. Sci. 2018;22:8438–8446. doi: 10.26355/eurrev_201812_16543.
    1. McHugh L., Seldon T.A., Brandon R.A., Kirk J.T., Rapisarda A., Sutherland A.J., Presneill J.J., Venter D.J., Lipman J., Thomas M.R., et al. A Molecular Host Response Assay to Discriminate Between Sepsis and Infection-Negative Systemic Inflammation in Critically Ill Patients: Discovery and Validation in Independent Cohorts. Plos Med. 2015;12 doi: 10.1371/journal.pmed.1001916.
    1. Scicluna B.P., Klein Klouwenberg P.M., van Vught L.A., Wiewel M.A., Ong D.S., Zwinderman A.H., Franitza M., Toliat M.R., Nurnberg P., Hoogendijk A.J., et al. A molecular biomarker to diagnose community-acquired pneumonia on intensive care unit admission. Am. J. Respir. Crit. Care. Med. 2015;192:826–835. doi: 10.1164/rccm.201502-0355OC.
    1. Hotz M.J., Qing D., Shashaty M.G., Zhang P., Faust H., Sondheimer N., Rivella S., Worthen G.S., Mangalmurti N.S. Red Blood Cells Homeostatically Bind Mitochondrial DNA through TLR9 to Maintain Quiescence and to Prevent Lung Injury. Am. J. Respir. Crit. Care Med. 2018;197:470–480. doi: 10.1164/rccm.201706-1161OC.
    1. Nakahira K., Kyung S.-Y. K., Rogers A.J., Gazourian L., Youn S., Massaro A.F., Quintana C., Osorio J.C., Wang Z., Zhao Y., et al. Circulating mitochondrial DNA in patients in the ICU as a marker of mortality: Derivation and validation. Plos Med. 2013;10:e1001577. doi: 10.1371/journal.pmed.1001577. discussion e1001577.
    1. Arnalich F., Maldifassi M.C., Ciria E., Codoceo R., Renart J., Fernandez-Capitan C., Herruzo R., Garcia-Rio F., Lopez-Collazo E., Montiel C. Plasma levels of mitochondrial and nuclear DNA in patients with massive pulmonary embolism in the emergency department: A prospective cohort study. Crit. Care. 2013;17:R90. doi: 10.1186/cc12735.
    1. Long Y., Zhang Y., Gong Y., Sun R., Su L., Lin X., Shen A., Zhou J., Caiji Z., Wang X. Diagnosis of sepsis with cell-free DNA by next-generation sequencing technology in ICU patients. Arch. Med Res. 2016;47:365–371. doi: 10.1016/j.arcmed.2016.08.004.
    1. Gould T.J., Vu T.T., Stafford A.R., Dwivedi D.J., Kim P.Y., Fox-Robichaud A.E., Weitz J.I., Liaw P.C. Cell-Free DNA Modulates Clot Structure and Impairs Fibrinolysis in Sepsis. Arter. Thromb. Vasc. Biol. 2015;35:2544–2553. doi: 10.1161/ATVBAHA.115.306035.
    1. Kung C.T., Hsiao S.Y., Tsai T.C., Su C.M., Chang W.N., Huang C.R., Wang H.C., Lin W.C., Chang H.W., Lin Y.J., et al. Plasma nuclear and mitochondrial DNA levels as predictors of outcome in severe sepsis patients in the emergency room. J. Transl. Med. 2012;10:130. doi: 10.1186/1479-5876-10-130.
    1. Scherberich J.E., Nockher W.A. Blood monocyte phenotypes and soluble endotoxin receptor CD14 in systemic inflammatory diseases and patients with chronic renal failure. Nephrol. Dial. Transpl. 2000;15:574–578. doi: 10.1093/ndt/15.5.574.
    1. Klouche K., Cristol J.P., Devin J., Gilles V., Kuster N., Larcher R., Amigues L., Corne P., Jonquet O., Dupuy A.M. Diagnostic and prognostic value of soluble CD14 subtype (Presepsin) for sepsis and community-acquired pneumonia in ICU patients. Ann. Intensive Care. 2016;6:59. doi: 10.1186/s13613-016-0160-6.
    1. Mussap M., Noto A., Fravega M., Fanos V. Soluble CD14 subtype presepsin (sCD14-ST) and lipopolysaccharide binding protein (LBP) in neonatal sepsis: New clinical and analytical perspectives for two old biomarkers. J. Matern. Fetal Neonatal Med. 2011;24:12–14. doi: 10.3109/14767058.2011.601923.
    1. Masson S., Caironi P., Spanuth E., Thomae R., Panigada M., Sangiorgi G., Fumagalli R., Mauri T., Isgrò S., Fanizza C. Presepsin (soluble CD14 subtype) and procalcitonin levels for mortality prediction in sepsis: Data from the Albumin Italian Outcome Sepsis trial. Crit. Care. 2014;18:R6. doi: 10.1186/cc13183.
    1. Brodska H., Valenta J., Pelinkova K., Stach Z., Sachl R., Balik M., Zima T., Drabek T. Diagnostic and prognostic value of presepsin vs. established biomarkers in critically ill patients with sepsis or systemic inflammatory response syndrome. Clin. Chem. Lab. Med. (Cclm) 2018;56:658–668. doi: 10.1515/cclm-2017-0839.
    1. Galliera E., Massaccesi L., De Vecchi E., Banfi G., Romanelli M.M.C. Clinical application of presepsin as diagnostic biomarker of infection: Overview and updates. Clin. Chem. Lab. Med. (Cclm) 2019 doi: 10.1515/cclm-2019-0643.
    1. Endo S., Suzuki Y., Takahashi G., Shozushima T., Ishikura H., Murai A., Nishida T., Irie Y., Miura M., Iguchi H. Usefulness of presepsin in the diagnosis of sepsis in a multicenter prospective study. J. Infect. Chemother. 2012;18:891–897. doi: 10.1007/s10156-012-0435-2.
    1. Bamba Y., Moro H., Aoki N., Koizumi T., Ohshima Y., Watanabe S., Sakagami T., Koya T., Takada T., Kikuchi T. Increased presepsin levels are associated with the severity of fungal bloodstream infections. PLoS ONE. 2018;13:e0206089. doi: 10.1371/journal.pone.0206089.
    1. Patil N.K., Guo Y., Luan L., Sherwood E.R. Targeting Immune Cell Checkpoints during Sepsis. Int. J. Mol. Sci. 2017;18:2413. doi: 10.3390/ijms18112413.
    1. Okamura Y., Yokoi H. Development of a point-of-care assay system for measurement of presepsin (sCD14-ST) Clin. Chim. Acta. 2011;412:2157–2161. doi: 10.1016/j.cca.2011.07.024.
    1. Yeh C.-F., Wu C.-C., Liu S.-H., Chen K.-F. Comparison of the accuracy of neutrophil CD64, procalcitonin, and C-reactive protein for sepsis identification: A systematic review and meta-analysis. Ann. Intensive Care. 2019;9:5. doi: 10.1186/s13613-018-0479-2.
    1. Wu C.-C., Lan H.-M., Han S.-T., Chaou C.-H., Yeh C.-F., Liu S.-H., Li C.-H., Blaney G.N., Liu Z.-Y., Chen K.-F. Comparison of diagnostic accuracy in sepsis between presepsin, procalcitonin, and C-reactive protein: A systematic review and meta-analysis. Ann. Intensive Care. 2017;7:91. doi: 10.1186/s13613-017-0316-z.
    1. Takahashi G., Shibata S., Ishikura H., Miura M., Fukui Y., Inoue Y., Endo S. Presepsin in the prognosis of infectious diseases and diagnosis of infectious disseminated intravascular coagulation: A prospective, multicentre, observational study. Eur. J. Anaesthesiol. 2015;32:199–206. doi: 10.1097/EJA.0000000000000178.
    1. Bellos I., Fitrou G., Pergialiotis V., Thomakos N., Perrea D.N., Daskalakis G. The diagnostic accuracy of presepsin in neonatal sepsis: A meta-analysis. Eur. J. Pediatrics. 2018;177:625–632. doi: 10.1007/s00431-018-3114-1.
    1. Chenevier-Gobeaux C., Trabattoni E., Roelens M., Borderie D., Claessens Y.E. Presepsin (sCD14-ST) in emergency department: The need for adapted threshold values? Clin. Chim. Acta. 2014;427:34–36. doi: 10.1016/j.cca.2013.09.019.
    1. Mihajlovic D., Brkic S., Uvelin A., Draskovic B., Vrsajkov V. Use of presepsin and procalcitonin for prediction of SeptiFast results in critically ill patients. J. Crit. Care. 2017;40:197–201. doi: 10.1016/j.jcrc.2017.04.008.
    1. Shozushima T., Takahashi G., Matsumoto N., Kojika M., Okamura Y., Endo S. Usefulness of presepsin (sCD14-ST) measurements as a marker for the diagnosis and severity of sepsis that satisfied diagnostic criteria of systemic inflammatory response syndrome. J. Infect. Chemother. 2011;17:764–769. doi: 10.1007/s10156-011-0254-x.
    1. Kim H., Hur M., Moon H.W., Yun Y.M., Di Somma S., Network G. Multi-marker approach using procalcitonin, presepsin, galectin-3, and soluble suppression of tumorigenicity 2 for the prediction of mortality in sepsis. Ann. Intensive Care. 2017;7:27. doi: 10.1186/s13613-017-0252-y.
    1. Gyawali N., Sanjana R.K. Bacteriological profile and antibiogram of neonatal septicemia. Indian J. Pediatr. 2013;80:371–374. doi: 10.1007/s12098-012-0911-9.
    1. Milam K.E., Parikh S.M. The angiopoietin-Tie2 signaling axis in the vascular leakage of systemic inflammation. Tissue Barriers. 2015;3:e957508. doi: 10.4161/21688362.2014.957508.
    1. Parikh S.M. The Angiopoietin-Tie2 Signaling Axis in Systemic Inflammation. J. Am. Soc. Nephrol. 2017;28:1973–1982. doi: 10.1681/ASN.2017010069.
    1. Fang Y., Li C., Shao R., Yu H., Zhang Q. The role of biomarkers of endothelial activation in predicting morbidity and mortality in patients with severe sepsis and septic shock in intensive care: A prospective observational study. Thromb Res. 2018;171:149–154. doi: 10.1016/j.thromres.2018.09.059.
    1. Ricciuto D.R., dos Santos C.C., Hawkes M., Toltl L.J., Conroy A.L., Rajwans N., Lafferty E.I., Cook D.J., Fox-Robichaud A., Kahnamoui K., et al. Angiopoietin-1 and angiopoietin-2 as clinically informative prognostic biomarkers of morbidity and mortality in severe sepsis. Crit. Care Med. 2011;39:702–710. doi: 10.1097/CCM.0b013e318206d285.
    1. Fisher J., Douglas J.J., Linder A., Boyd J.H., Walley K.R., Russell J.A. Elevated Plasma Angiopoietin-2 Levels Are Associated With Fluid Overload, Organ Dysfunction, and Mortality in Human Septic Shock. Crit. Care Med. 2016;44:2018–2027. doi: 10.1097/CCM.0000000000001853.
    1. Luanraksa S., Jindatanmanusan P., Boonsiri T., Nimmanon T., Chaovanalikit T., Arnutti P. An MMP/TIMP ratio scoring system as a potential predictive marker of diabetic foot ulcer healing. J. Wound Care. 2018;27:849–855. doi: 10.12968/jowc.2018.27.12.849.
    1. Lauhio A., Hastbacka J., Pettila V., Tervahartiala T., Karlsson S., Varpula T., Varpula M., Ruokonen E., Sorsa T., Kolho E. Serum MMP-8, -9 and TIMP-1 in sepsis: High serum levels of MMP-8 and TIMP-1 are associated with fatal outcome in a multicentre, prospective cohort study. Hypothetical impact of tetracyclines. Pharm. Res. 2011;64:590–594. doi: 10.1016/j.phrs.2011.06.019.
    1. Hoffmann U., Bertsch T., Dvortsak E., Liebetrau C., Lang S., Liebe V., Huhle G., Borggrefe M., Brueckmann M. Matrix-metalloproteinases and their inhibitors are elevated in severe sepsis: Prognostic value of TIMP-1 in severe sepsis. Scand. J. Infect. Dis. 2006;38:867–872. doi: 10.1080/00365540600702058.
    1. Fang Y., Li C., Shao R., Yu H., Zhang Q., Zhao L. Prognostic significance of the angiopoietin-2/angiopoietin-1 and angiopoietin-1/Tie-2 ratios for early sepsis in an emergency department. Crit. Care. 2015;19:367. doi: 10.1186/s13054-015-1075-6.
    1. Zheng S., Pan Y., Wang C., Liu Y., Shi M., Ding G. HMGB1 Turns Renal Tubular Epithelial Cells into Inflammatory Promoters by Interacting with TLR4 During Sepsis. J. Interferon Cytokine Res. 2016;36:9–19. doi: 10.1089/jir.2015.0067.
    1. Pierrakos C., Vincent J.L. Sepsis biomarkers: A review. Crit. Care. 2010;14:R15. doi: 10.1186/cc8872.
    1. Raveendran A.V., Kumar A., Gangadharan S. Biomarkers and newer laboratory investigations in the diagnosis of sepsis. J. R. Coll. Physicians Edinb. 2019;49:207–216. doi: 10.4997/JRCPE.2019.308.
    1. Lippi G. Sepsis biomarkers: Past, present and future. Clin. Chem. Lab. Med. 2019;57:1281–1283. doi: 10.1515/cclm-2018-1347.
    1. Sharma D., Farahbakhsh N., Shastri S., Sharma P. Biomarkers for diagnosis of neonatal sepsis: A literature review. J. Matern Fetal Neonatal Med. 2018;31:1646–1659. doi: 10.1080/14767058.2017.1322060.
    1. Klompas M., Calandra T., Singer M. Antibiotics for Sepsis-Finding the Equilibrium. JAMA. 2018;320:1433–1434. doi: 10.1001/jama.2018.12179.
    1. Rello J., Valenzuela-Sanchez F., Ruiz-Rodriguez M., Moyano S. Sepsis: A review of advances in management. Adv. in Ther. 2017;34:2393–2411. doi: 10.1007/s12325-017-0622-8.
    1. Vincent J.-L. The clinical challenge of sepsis identification and monitoring. Plos Med. 2016;13:e1002022. doi: 10.1371/journal.pmed.1002022.
    1. Pammi M., Flores A., Versalovic J., Leeflang M.M. Molecular assays for the diagnosis of sepsis in neonates. Cochrane Database Syst. Rev. 2017;2:CD011926. doi: 10.1002/14651858.CD011926.pub2.
    1. Jordan J.A., Durso M.B. Real-time polymerase chain reaction for detecting bacterial DNA directly from blood of neonates being evaluated for sepsis. J. Mol. Diagn. 2005;7:575–581. doi: 10.1016/S1525-1578(10)60590-9.
    1. Qiu P., Cui X., Barochia A., Li Y., Natanson C., Eichacker P.Q. The evolving experience with therapeutic TNF inhibition in sepsis: Considering the potential influence of risk of death. Expert Opin. Investig. Drugs. 2011;20:1555–1564. doi: 10.1517/13543784.2011.623125.
    1. Marshall J.C. Why have clinical trials in sepsis failed? Trends Mol. Med. 2014;20:195–203. doi: 10.1016/j.molmed.2014.01.007.
    1. Reinhart K., Karzai W. Anti-tumor necrosis factor therapy in sepsis: Update on clinical trials and lessons learned. Crit. Care Med. 2001;29:S121–S125. doi: 10.1097/00003246-200107001-00037.
    1. Kotsaki A., Giamarellos-Bourboulis E.J. Emerging drugs for the treatment of sepsis. Expert Opin. Emerg. Drugs. 2012;17:379–391. doi: 10.1517/14728214.2012.697151.
    1. Panacek E.A., Marshall J.C., Albertson T.E., Johnson D.H., Johnson S., MacArthur R.D., Miller M., Barchuk W.T., Fischkoff S., Kaul M., et al. Efficacy and safety of the monoclonal anti-tumor necrosis factor antibody F(ab’)2 fragment afelimomab in patients with severe sepsis and elevated interleukin-6 levels. Crit. Care Med. 2004;32:2173–2182. doi: 10.1097/01.CCM.0000145229.59014.6C.
    1. Conrad U., Plagmann I., Malchow S., Sack M., Floss D.M., Kruglov A.A., Nedospasov S.A., Rose-John S., Scheller J. ELPylated anti-human TNF therapeutic single-domain antibodies for prevention of lethal septic shock. Plant Biotechnol. J. 2011;9:22–31. doi: 10.1111/j.1467-7652.2010.00523.x.
    1. Shirey K.A., Lai W., Scott A.J., Lipsky M., Mistry P., Pletneva L.M., Karp C.L., McAlees J., Gioannini T.L., Weiss J., et al. The TLR4 antagonist Eritoran protects mice from lethal influenza infection. Nature. 2013;497:498–502. doi: 10.1038/nature12118.
    1. Matsunaga N., Tsuchimori N., Matsumoto T., Ii M. TAK-242 (resatorvid), a small-molecule inhibitor of Toll-like receptor (TLR) 4 signaling, binds selectively to TLR4 and interferes with interactions between TLR4 and its adaptor molecules. Mol. Pharm. 2011;79:34–41. doi: 10.1124/mol.110.068064.
    1. Opal S.M., Laterre P.F., Francois B., LaRosa S.P., Angus D.C., Mira J.P., Wittebole X., Dugernier T., Perrotin D., Tidswell M., et al. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: The ACCESS randomized trial. JAMA. 2013;309:1154–1162. doi: 10.1001/jama.2013.2194.
    1. Ii M., Matsunaga N., Hazeki K., Nakamura K., Takashima K., Seya T., Hazeki O., Kitazaki T., Iizawa Y. A novel cyclohexene derivative, ethyl (6R)-6-[N-(2-Chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), selectively inhibits toll-like receptor 4-mediated cytokine production through suppression of intracellular signaling. Mol. Pharm. 2006;69:1288–1295. doi: 10.1124/mol.105.019695.
    1. Sha T., Iizawa Y., Ii M. Combination of imipenem and TAK-242, a Toll-like receptor 4 signal transduction inhibitor, improves survival in a murine model of polymicrobial sepsis. Shock. 2011;35:205–209. doi: 10.1097/SHK.0b013e3181f48942.
    1. Giamarellos-Bourboulis E.J., Raftogiannis M. The immune response to severe bacterial infections: Consequences for therapy. Expert Rev. Anti. Infect. 2012;10:369–380. doi: 10.1586/eri.12.2.
    1. Davies B., Cohen J. Endotoxin removal devices for the treatment of sepsis and septic shock. Lancet Infect. Dis. 2011;11:65–71. doi: 10.1016/S1473-3099(10)70220-6.
    1. Hanasawa K., Tani T., Oka T., Yoshioka T., Aoki H., Endo Y., Kodama M. Selective removal of endotoxin from the blood by extracorporeal hemoperfusion with polymyxin B immobilized fiber. Prog Clin. Biol. Res. 1988;264:337–341.
    1. Nemoto H., Nakamoto H., Okada H., Sugahara S., Moriwaki K., Arai M., Kanno Y., Suzuki H. Newly developed immobilized polymyxin B fibers improve the survival of patients with sepsis. Blood Purif. 2001;19:361–368. doi: 10.1159/000046966. discussion 368–369.
    1. Cutuli S.L., Artigas A., Fumagalli R., Monti G., Ranieri V.M., Ronco C., Antonelli M., Group E.C. Polymyxin-B hemoperfusion in septic patients: Analysis of a multicenter registry. Ann. Intensive Care. 2016;6:77. doi: 10.1186/s13613-016-0178-9.
    1. Li Bassi G., Marti J.D., Xiol E.A., Comaru T., De Rosa F., Rigol M., Terraneo S., Rinaudo M., Fernandez L., Ferrer M., et al. The effects of direct hemoperfusion using a polymyxin B-immobilized column in a pig model of severe Pseudomonas aeruginosa pneumonia. Ann. Intensive Care. 2016;6:58. doi: 10.1186/s13613-016-0155-3.
    1. Koga Y., Oba U., Takimoto T., Suminoe A., Takada H., Hara T. Polymyxin B-immobilized fiber column hemoperfusion therapy for septic shock. Shock. 2013;40:233. doi: 10.1097/SHK.0b013e31829f218f.
    1. Iwagami M., Yasunaga H., Doi K., Horiguchi H., Fushimi K., Matsubara T., Yahagi N., Noiri E. Postoperative polymyxin B hemoperfusion and mortality in patients with abdominal septic shock: A propensity-matched analysis. Crit Care Med. 2014;42:1187–1193. doi: 10.1097/CCM.0000000000000150.
    1. Levi M., van der Poll T. Coagulation and sepsis. Thromb Res. 2017;149:38–44. doi: 10.1016/j.thromres.2016.11.007.
    1. Payen D.M., Guilhot J., Launey Y., Lukaszewicz A.C., Kaaki M., Veber B., Pottecher J., Joannes-Boyau O., Martin-Lefevre L., Jabaudon M., et al. Early use of polymyxin B hemoperfusion in patients with septic shock due to peritonitis: A multicenter randomized control trial. Intensive Care Med. 2015;41:975–984. doi: 10.1007/s00134-015-3751-z.
    1. Derhaschnig U., Reiter R., Knobl P., Baumgartner M., Keen P., Jilma B. Recombinant human activated protein C (rhAPC; drotrecogin alfa [activated]) has minimal effect on markers of coagulation, fibrinolysis, and inflammation in acute human endotoxemia. Blood. 2003;102:2093–2098. doi: 10.1182/blood-2003-02-0416.
    1. Abraham E., Laterre P.F., Garg R., Levy H., Talwar D., Trzaskoma B.L., Francois B., Guy J.S., Bruckmann M., Rea-Neto A., et al. Drotrecogin alfa (activated) for adults with severe sepsis and a low risk of death. N. Engl. J. Med. 2005;353:1332–1341. doi: 10.1056/NEJMoa050935.
    1. Hagiwara S., Iwasaka H., Goto K., Ochi Y., Mizunaga S., Saikawa T., Noguchi T. Recombinant thrombomodulin prevents heatstroke by inhibition of high-mobility group box 1 protein in sera of rats. Shock. 2010;34:402–406. doi: 10.1097/SHK.0b013e3181d492e4.
    1. Yamakawa K., Murao S., Aihara M. Recombinant Human Soluble Thrombomodulin in Sepsis-Induced Coagulopathy: An Updated Systematic Review and Meta-Analysis. Thromb Haemost. 2019;119:56–65. doi: 10.1055/s-0038-1676345.
    1. Zhang C., Wang H., Yang H., Tong Z. Recombinant human soluble thrombomodulin and short-term mortality of infection patients with DIC: A meta-analysis. Am. J. Emerg. Med. 2016;34:1876–1882. doi: 10.1016/j.ajem.2016.06.001.
    1. Iba T., Gando S., Thachil J. Anticoagulant therapy for sepsis-associated disseminated intravascular coagulation: The view from Japan. J. Thromb Haemost. 2014;12:1010–1019. doi: 10.1111/jth.12596.
    1. Yamakawa K., Ogura H., Fujimi S., Morikawa M., Ogawa Y., Mohri T., Nakamori Y., Inoue Y., Kuwagata Y., Tanaka H., et al. Recombinant human soluble thrombomodulin in sepsis-induced disseminated intravascular coagulation: A multicenter propensity score analysis. Intensive Care Med. 2013;39:644–652. doi: 10.1007/s00134-013-2822-2.
    1. Vincent J.L., Ramesh M.K., Ernest D., LaRosa S.P., Pachl J., Aikawa N., Hoste E., Levy H., Hirman J., Levi M., et al. A randomized, double-blind, placebo-controlled, Phase 2b study to evaluate the safety and efficacy of recombinant human soluble thrombomodulin, ART-123, in patients with sepsis and suspected disseminated intravascular coagulation. Crit. Care Med. 2013;41:2069–2079. doi: 10.1097/CCM.0b013e31828e9b03.
    1. Adel M., Awad H.A., Abdel-Naim A.B., Al-Azizi M.M. Effects of pentoxifylline on coagulation profile and disseminated intravascular coagulation incidence in Egyptian septic neonates. J. Clin. Pharm. 2010;35:257–265. doi: 10.1111/j.1365-2710.2009.01077.x.
    1. Hotchkiss R.S., Monneret G., Payen D. Immunosuppression in sepsis: A novel understanding of the disorder and a new therapeutic approach. Lancet Infect. Dis. 2013;13:260–268. doi: 10.1016/S1473-3099(13)70001-X.
    1. Bo L., Wang F., Zhu J., Li J., Deng X. Granulocyte-colony stimulating factor (G-CSF) and granulocyte-macrophage colony stimulating factor (GM-CSF) for sepsis: A meta-analysis. Crit. Care. 2011;15:R58. doi: 10.1186/cc10031.
    1. Stephens D.P., Thomas J.H., Higgins A., Bailey M., Anstey N.M., Currie B.J., Cheng A.C. Randomized, double-blind, placebo-controlled trial of granulocyte colony-stimulating factor in patients with septic shock. Crit. Care Med. 2008;36:448–454. doi: 10.1097/01.CCM.0B013E318161E480.
    1. Chen L., Flies D.B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol. 2013;13:227–242. doi: 10.1038/nri3405.
    1. Hutchins N.A., Unsinger J., Hotchkiss R.S., Ayala A. The new normal: Immunomodulatory agents against sepsis immune suppression. Trends Mol. Med. 2014;20:224–233. doi: 10.1016/j.molmed.2014.01.002.
    1. Gianchecchi E., Delfino D.V., Fierabracci A. Recent insights into the role of the PD-1/PD-L1 pathway in immunological tolerance and autoimmunity. Autoimmun. Rev. 2013;12:1091–1100. doi: 10.1016/j.autrev.2013.05.003.
    1. Rossi A.L., Le M., Chung C.S., Chen Y., Fallon E.A., Matoso A., Xu S., Chun T.T., Erickson C.P., Ayala A. A novel role for programmed cell death receptor ligand 2 in sepsis-induced hepatic dysfunction. Am. J. Physiol Gastrointest Liver Physiol. 2019;316:G106–G114. doi: 10.1152/ajpgi.00204.2018.
    1. Wilson J.K., Zhao Y., Singer M., Spencer J., Shankar-Hari M. Lymphocyte subset expression and serum concentrations of PD-1/PD-L1 in sepsis - pilot study. Crit. Care. 2018;22:95. doi: 10.1186/s13054-018-2020-2.
    1. Huang X., Venet F., Wang Y.L., Lepape A., Yuan Z., Chen Y., Swan R., Kherouf H., Monneret G., Chung C.S., et al. PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. Proc. Natl. Acad. Sci. USA. 2009;106:6303–6308. doi: 10.1073/pnas.0809422106.
    1. Brahmamdam P., Inoue S., Unsinger J., Chang K.C., McDunn J.E., Hotchkiss R.S. Delayed administration of anti-PD-1 antibody reverses immune dysfunction and improves survival during sepsis. J. Leukoc. Biol. 2010;88:233–240. doi: 10.1189/jlb.0110037.
    1. Watanabe E., Thampy L.K., Hotchkiss R.S. Immunoadjuvant therapy in sepsis: Novel strategies for immunosuppressive sepsis coming down the pike. Acute Med. Surg. 2018;5:309–315. doi: 10.1002/ams2.363.
    1. Kawamoto E., Masui-Ito A., Eguchi A., Soe Z.Y., Prajuabjinda O., Darkwah S., Park E.J., Imai H., Shimaoka M. Integrin and PD-1 Ligand Expression on Circulating Extracellular Vesicles in Systemic Inflammatory Response Syndrome and Sepsis. Shock. 2019;52:13–22. doi: 10.1097/SHK.0000000000001228.
    1. Nelson G.E., Mave V., Gupta A. Biomarkers for sepsis: A review with special attention to India. Biomed Res. Int. 2014;2014:264351. doi: 10.1155/2014/264351.
    1. Jacobs L., Wong H.R. Emerging infection and sepsis biomarkers: Will they change current therapies? Expert Rev. Anti. Infect. 2016;14:929–941. doi: 10.1080/14787210.2016.1222272.

Source: PubMed

3
Se inscrever