Influence of Cardiometabolic Risk Factors on Platelet Function

Cristina Barale, Isabella Russo, Cristina Barale, Isabella Russo

Abstract

Platelets are key players in the thrombotic processes. The alterations of platelet function due to the occurrence of metabolic disorders contribute to an increased trend to thrombus formation and arterial occlusion, thus playing a major role in the increased risk of atherothrombotic events in patients with cardiometabolic risk factors. Several lines of evidence strongly correlate metabolic disorders such as obesity, a classical condition of insulin resistance, dyslipidemia, and impaired glucose homeostasis with cardiovascular diseases. The presence of these clinical features together with hypertension and disturbed microhemorrheology are responsible for the prothrombotic tendency due, at least partially, to platelet hyperaggregability and hyperactivation. A number of clinical platelet markers are elevated in obese and type 2 diabetes (T2DM) patients, including the mean platelet volume, circulating levels of platelet microparticles, oxidation products, platelet-derived soluble P-selectin and CD40L, thus contributing to an intersection between obesity, inflammation, and thrombosis. In subjects with insulin resistance and T2DM some defects depend on a reduced sensitivity to mediators-such as nitric oxide and prostacyclin-playing a physiological role in the control of platelet aggregability. Furthermore, other alterations occur only in relation to hyperglycemia. In this review, the main cardiometabolic risk factors, all components of metabolic syndrome involved in the prothrombotic tendency, will be taken into account considering some of the mechanisms involved in the alterations of platelet function resulting in platelet hyperactivation.

Keywords: adipokines; adipose tissue; hemostasis; insulin resistance; metabolic syndrome; nitric oxide; oxidative stress; platelets; thrombosis.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Potential mechanisms linking cardiometabolic disorders and atherothrombotic vascular diseases.
Figure 2
Figure 2
Biochemical factors involved in the coagulation cascade and the atherosclerotic process released following platelet activation. AA, arachidonic acid; COX, cyclooxygenase; TXA2, thromboxane A2; PDGF, platelet-derived growth factor; TGF-β, transforming growth factor β; EGF, endothelial growth factor; bFGF, fibroblast growth factor; VEGF, vascular endothelial growth factor; IGF, insulin-like growth factor; IL-1β, interleukin-1β; PAI-1, plasminogen activator inhibitor 1; vWF, von Willebrand factor; GP, glycoprotein; PECAM, platelet endothelial cell adhesion molecule; sCD40L, soluble CD40 ligand; sP-selectin, soluble P-selectin; RANTES, regulated on activation, normal T-cell expressed and secreted; MIP-1α, macrophage inflammation protein- 1α; IL-8, interleukin-8; PF4, platelet factor 4; PMPs, platelet-derived microparticles.
Figure 3
Figure 3
Relationships between insulin resistance, increased oxidative stress and inflammation in promoting platelet hyperactivation in obesity. AA, arachidonic acid; A-II, angiotensin-II; cAMP, 3′,5′-cyclic adenosine monophosphate; cGMP, 3′,5′-cyclic guanosine monophosphate; IR, insulin receptor; MPV, mean volume platelet; NO, nitric oxide; PAF, platelet activating factor; PAR, protease-activated receptor; PGI2, prostaglandin I2; PKA, cAMP-dependent protein kinase; PKG, cGMP-dependent protein kinase; ROS, reactive oxygen species; PMP, platelet-derived microparticles; TP, thromboxane receptor; TX, thromboxane.
Figure 4
Figure 4
Biochemical imbalance towards factors promoting endothelial dysfunction and platelet hyperactivation involved in the development of atherothrombotic diseases in the presence of multiple cardiometabolic risk factors. eNOS, endothelial nitric oxide synthase; NFκΒ, nuclear factor kappa Β; PAI-1, plasminogen activator inhibitor-1; AP-1 activator protein-1; NO, nitric oxide; PGI2, prostaglandin I2; EC, endothelial cell; PMPs, platelet-derived microparticles; MS, metabolic syndrome.

References

    1. Mendis S. The contribution of the Framingham Heart Study to the prevention of cardiovascular disease: A global perspective. Prog. Cardiovasc. Dis. 2010;53:10–14. doi: 10.1016/j.pcad.2010.01.001.
    1. Lakka H.-M., Laaksonen D.E., Lakka T.A., Niskanen L.K., Kumpusalo E., Tuomilehto J., Salonen J.T. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA. 2002;288:2709–2716. doi: 10.1001/jama.288.21.2709.
    1. Mente A., Yusuf S., Islam S., McQueen M.J., Tanomsup S., Onen C.L., Rangarajan S., Gerstein H.C., Anand S.S. INTERHEART Investigators Metabolic syndrome and risk of acute myocardial infarction a case-control study of 26,903 subjects from 52 countries. J. Am. Coll. Cardiol. 2010;55:2390–2398. doi: 10.1016/j.jacc.2009.12.053.
    1. Novo S., Peritore A., Guarneri F.P., Corrado E., Macaione F., Evola S., Novo G. Metabolic syndrome (MetS) predicts cardio and cerebrovascular events in a twenty years follow-up. A prospective study. Atherosclerosis. 2012;223:468–472. doi: 10.1016/j.atherosclerosis.2012.05.018.
    1. Towfighi A., Ovbiagele B. Metabolic syndrome and stroke. Curr. Diabetes Rep. 2008;8:37–41. doi: 10.1007/s11892-008-0008-z.
    1. Goossens G.H. The Metabolic Phenotype in Obesity: Fat Mass, Body Fat Distribution, and Adipose Tissue Function. Obes. Facts. 2017;10:207–215. doi: 10.1159/000471488.
    1. Grundy S.M. Obesity, metabolic syndrome, and coronary atherosclerosis. Circulation. 2002;105:2696–2698. doi: 10.1161/01.CIR.0000020650.86137.84.
    1. McGill H.C., McMahan C.A., Herderick E.E., Zieske A.W., Malcom G.T., Tracy R.E., Strong J.P. Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group Obesity accelerates the progression of coronary atherosclerosis in young men. Circulation. 2002;105:2712–2718. doi: 10.1161/01.CIR.0000018121.67607.CE.
    1. Van Gaal L.F., Mertens I.L., De Block C.E. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444:875–880. doi: 10.1038/nature05487.
    1. Després J.-P., Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006;444:881–887. doi: 10.1038/nature05488.
    1. Alberti K.G., Zimmet P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med. 1998;15:539–553. doi: 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>;2-S.
    1. Russo I. The prothrombotic tendency in metabolic syndrome: Focus on the potential mechanisms involved in impaired haemostasis and fibrinolytic balance. Scientifica. 2012;2012:525374. doi: 10.6064/2012/525374.
    1. Ervin R.B. Prevalence of metabolic syndrome among adults 20 years of age and over, by sex, age, race and ethnicity, and body mass index: United States, 2003–2006. Natl. Health Stat. Rep. 2009;5:1–7.
    1. Ford E.S., Giles W.H., Mokdad A.H. Increasing prevalence of the metabolic syndrome among u.s. Adults. Diabetes Care. 2004;27:2444–2449. doi: 10.2337/diacare.27.10.2444.
    1. Ford E.S., Giles W.H., Dietz W.H. Prevalence of the metabolic syndrome among US adults: Findings from the third National Health and Nutrition Examination Survey. JAMA. 2002;287:356–359. doi: 10.1001/jama.287.3.356.
    1. Meigs J.B. Epidemiology of the metabolic syndrome, 2002. Am. J. Manag. Care. 2002;8:S283–S292.
    1. Jacobson T.A., Case C.C., Roberts S., Buckley A., Murtaugh K.M., Sung J.C.Y., Gause D., Varas C., Ballantyne C.M. Characteristics of US adults with the metabolic syndrome and therapeutic implications. Diabetes Obes. Metab. 2004;6:353–362. doi: 10.1111/j.1462-8902.2004.00354.x.
    1. Grundy S.M. Metabolic syndrome pandemic. Arterioscler. Thromb. Vasc. Biol. 2008;28:629–636. doi: 10.1161/ATVBAHA.107.151092.
    1. Grundy S.M., Cleeman J.I., Daniels S.R., Donato K.A., Eckel R.H., Franklin B.A., Gordon D.J., Krauss R.M., Savage P.J., Smith S.C., et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005;112:2735–2752. doi: 10.1161/CIRCULATIONAHA.105.169404.
    1. Alberti K.G.M.M., Eckel R.H., Grundy S.M., Zimmet P.Z., Cleeman J.I., Donato K.A., Fruchart J.-C., James W.P.T., Loria C.M., Smith S.C., et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120:1640–1645.
    1. Perrone-Filardi P., Paolillo S., Costanzo P., Savarese G., Trimarco B., Bonow R.O. The role of metabolic syndrome in heart failure. Eur. Heart J. 2015;36:2630–2634. doi: 10.1093/eurheartj/ehv350.
    1. Karnchanasorn R., Ou H.-Y., Chuang L.-M., Chiu K.C. Insulin resistance is not necessarily an essential element of metabolic syndrome. Endocrine. 2013;43:92–99. doi: 10.1007/s12020-012-9702-3.
    1. Eckel R.H., Grundy S.M., Zimmet P.Z. The metabolic syndrome. Lancet. 2005;365:1415–1428. doi: 10.1016/S0140-6736(05)66378-7.
    1. Monteiro R., Azevedo I. Chronic inflammation in obesity and the metabolic syndrome. Med. Inflamm. 2010;2010:289645. doi: 10.1155/2010/289645.
    1. Ford E.S. Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: A summary of the evidence. Diabetes Care. 2005;28:1769–1778. doi: 10.2337/diacare.28.7.1769.
    1. Sullivan P.W., Ghushchyan V., Wyatt H.R., Wu E.Q., Hill J.O. Impact of cardiometabolic risk factor clusters on health-related quality of life in the U.S. Obesity. 2007;15:511–521. doi: 10.1038/oby.2007.580.
    1. Rivera J., Lozano M.L., Navarro-Núñez L., Vicente V. Platelet receptors and signaling in the dynamics of thrombus formation. Haematologica. 2009;94:700–711. doi: 10.3324/haematol.2008.003178.
    1. Heijnen H., van der Sluijs P. Platelet secretory behaviour: As diverse as the granules … or not? J. Thromb. Haemost. 2015;13:2141–2151. doi: 10.1111/jth.13147.
    1. Davì G., Patrono C. Platelet activation and atherothrombosis. N. Engl. J. Med. 2007;357:2482–2494. doi: 10.1056/NEJMra071014.
    1. Ruggeri Z.M. Platelets in atherothrombosis. Nat. Med. 2002;8:1227–1234. doi: 10.1038/nm1102-1227.
    1. Bakogiannis C., Sachse M., Stamatelopoulos K., Stellos K. Platelet-derived chemokines in inflammation and atherosclerosis. Cytokine. 2019;122:154157. doi: 10.1016/j.cyto.2017.09.013.
    1. Silva M., Videira P.A., Sackstein R. E-Selectin Ligands in the Human Mononuclear Phagocyte System: Implications for Infection, Inflammation, and Immunotherapy. Front. Immunol. 2017;8:1878. doi: 10.3389/fimmu.2017.01878.
    1. Holthenrich A., Gerke V. Regulation of von-Willebrand Factor Secretion from Endothelial Cells by the Annexin A2-S100A10 Complex. Int. J. Mol. Sci. 2018;19:1572. doi: 10.3390/ijms19061752.
    1. Koupenova M., Clancy L., Corkrey H.A., Freedman J.E. Circulating Platelets as Mediators of Immunity, Inflammation, and Thrombosis. Circ. Res. 2018;122:337–351. doi: 10.1161/CIRCRESAHA.117.310795.
    1. Gryglewski R.J., Botting R.M., Vane J.R. Mediators produced by the endothelial cell. Hypertension. 1988;12:530–548. doi: 10.1161/01.HYP.12.6.530.
    1. Harrison P., Mackie I., Mumford A., Briggs C., Liesner R., Winter M., Machin S. British Committee for Standards in Haematology Guidelines for the laboratory investigation of heritable disorders of platelet function. Br. J. Haematol. 2011;155:30–44. doi: 10.1111/j.1365-2141.2011.08793.x.
    1. Hayward C.P.M., Moffat K.A., Raby A., Israels S., Plumhoff E., Flynn G., Zehnder J.L. Development of North American consensus guidelines for medical laboratories that perform and interpret platelet function testing using light transmission aggregometry. Am. J. Clin. Pathol. 2010;134:955–963. doi: 10.1309/AJCP9V3RRVNZMKDS.
    1. Cattaneo M., Cerletti C., Harrison P., Hayward C.P.M., Kenny D., Nugent D., Nurden P., Rao A.K., Schmaier A.H., Watson S.P., et al. Recommendations for the Standardization of Light Transmission Aggregometry: A Consensus of the Working Party from the Platelet Physiology Subcommittee of SSC/ISTH. J. Thromb. Haemost. 2013 doi: 10.1111/jth.12231.
    1. Mackie I.J., Jones R., Machin S.J. Platelet impedance aggregation in whole blood and its inhibition by antiplatelet drugs. J. Clin. Pathol. 1984;37:874–878. doi: 10.1136/jcp.37.8.874.
    1. Furman M.I., Barnard M.R., Krueger L.A., Fox M.L., Shilale E.A., Lessard D.M., Marchese P., Frelinger A.L., Goldberg R.J., Michelson A.D. Circulating monocyte-platelet aggregates are an early marker of acute myocardial infarction. J. Am. Coll. Cardiol. 2001;38:1002–1006. doi: 10.1016/S0735-1097(01)01485-1.
    1. Barnard M.R., Linden M.D., Frelinger A.L., Li Y., Fox M.L., Furman M.I., Michelson A.D. Effects of platelet binding on whole blood flow cytometry assays of monocyte and neutrophil procoagulant activity. J. Thromb. Haemost. 2005;3:2563–2570. doi: 10.1111/j.1538-7836.2005.01603.x.
    1. Robert S., Lacroix R., Poncelet P., Harhouri K., Bouriche T., Judicone C., Wischhusen J., Arnaud L., Dignat-George F. High-sensitivity flow cytometry provides access to standardized measurement of small-size microparticles-Brief report. Arterioscler. Thromb. Vasc. Biol. 2012;32:1054–1058. doi: 10.1161/ATVBAHA.111.244616.
    1. De Cuyper I.M., Meinders M., van de Vijver E., de Korte D., Porcelijn L., de Haas M., Eble J.A., Seeger K., Rutella S., Pagliara D., et al. A novel flow cytometry-based platelet aggregation assay. Blood. 2013;121:e70–e80. doi: 10.1182/blood-2012-06-437723.
    1. Pakala R., Waksman R. Currently available methods for platelet function analysis: Advantages and disadvantages. Cardiovasc. Revas. Med. 2011;12:312–322. doi: 10.1016/j.carrev.2010.09.005.
    1. Kehrel B.E., Brodde M.F. State of the art in platelet function testing. Transfus. Med. Hemother. 2013;40:73–86. doi: 10.1159/000350469.
    1. Fontana P., Zufferey A., Daali Y., Reny J.-L. Antiplatelet therapy: Targeting the TxA2 pathway. J. Cardiovasc. Transl. Res. 2014;7:29–38. doi: 10.1007/s12265-013-9529-1.
    1. Csige I., Ujvárosy D., Szabó Z., Lőrincz I., Paragh G., Harangi M., Somodi S. The Impact of Obesity on the Cardiovascular System. J. Diabetes Res. 2018;2018:3407306. doi: 10.1155/2018/3407306.
    1. Afshin A., Forouzanfar M.H., Reitsma M.B., Sur P., Estep K., Lee A., Marczak L., Mokdad A.H., Moradi-Lakeh M., GBD 2015 Obesity Collaborators Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017;377:13–27.
    1. Tchernof A., Després J.-P. Pathophysiology of human visceral obesity: An update. Physiol. Rev. 2013;93:359–404. doi: 10.1152/physrev.00033.2011.
    1. Kakafika A.I., Liberopoulos E.N., Karagiannis A., Athyros V.G., Mikhailidis D.P. Dyslipidaemia, hypercoagulability and the metabolic syndrome. Curr. Vasc. Pharmacol. 2006;4:175–183. doi: 10.2174/157016106777698432.
    1. Ritchie S.A., Connell J.M.C. The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr. Metab. Cardiovasc. Dis. 2007;17:319–326. doi: 10.1016/j.numecd.2006.07.005.
    1. Mertens I., Van Gaal L.F. Obesity, haemostasis and the fibrinolytic system. Obes. Rev. 2002;3:85–101. doi: 10.1046/j.1467-789X.2002.00056.x.
    1. Anfossi G., Russo I., Trovati M. Platelet dysfunction in central obesity. Nutr. Metab. Cardiovasc. Dis. 2009;19:440–449. doi: 10.1016/j.numecd.2009.01.006.
    1. Beavers C.J., Heron P., Smyth S.S., Bain J.A., Macaulay T.E. Obesity and Antiplatelets-Does One Size Fit All? Thromb. Res. 2015;136:712–716. doi: 10.1016/j.thromres.2015.07.015.
    1. Barrachina M.N., Sueiro A.M., Izquierdo I., Hermida-Nogueira L., Guitián E., Casanueva F.F., Farndale R.W., Moroi M., Jung S.M., Pardo M., et al. GPVI surface expression and signalling pathway activation are increased in platelets from obese patients: Elucidating potential anti-atherothrombotic targets in obesity. Atherosclerosis. 2019;281:62–70. doi: 10.1016/j.atherosclerosis.2018.12.023.
    1. Anfossi G., Russo I., Doronzo G., Pomero A., Trovati M. Adipocytokines in atherothrombosis: Focus on platelets and vascular smooth muscle cells. Med. Inflamm. 2010;2010:174341. doi: 10.1155/2010/174341.
    1. Santilli F., Vazzana N., Liani R., Guagnano M.T., Davì G. Platelet activation in obesity and metabolic syndrome. Obes. Rev. 2012;13:27–42. doi: 10.1111/j.1467-789X.2011.00930.x.
    1. Anfossi G., Russo I., Trovati M. Platelet resistance to the anti-aggregating agents in the insulin resistant states. Curr. Diabetes Rev. 2006;2:409–430.
    1. Anfossi G., Russo I., Massucco P., Mattiello L., Doronzo G., De Salve A., Trovati M. Impaired synthesis and action of antiaggregating cyclic nucleotides in platelets from obese subjects: Possible role in platelet hyperactivation in obesity. Eur. J. Clin. Investig. 2004;34:482–489. doi: 10.1111/j.1365-2362.2004.01370.x.
    1. Russo I., Del Mese P., Doronzo G., De Salve A., Secchi M., Trovati M., Anfossi G. Platelet resistance to the antiaggregatory cyclic nucleotides in central obesity involves reduced phosphorylation of vasodilator-stimulated phosphoprotein. Clin. Chem. 2007;53:1053–1060. doi: 10.1373/clinchem.2006.076208.
    1. Russo I., Traversa M., Bonomo K., De Salve A., Mattiello L., Del Mese P., Doronzo G., Cavalot F., Trovati M., Anfossi G. In central obesity, weight loss restores platelet sensitivity to nitric oxide and prostacyclin. Obesity. 2010;18:788–797. doi: 10.1038/oby.2009.302.
    1. Bodary P.F., Westrick R.J., Wickenheiser K.J., Shen Y., Eitzman D.T. Effect of leptin on arterial thrombosis following vascular injury in mice. JAMA. 2002;287:1706–1709. doi: 10.1001/jama.287.13.1706.
    1. Vilahur G., Ben-Aicha S., Badimon L. New insights into the role of adipose tissue in thrombosis. Cardiovasc. Res. 2017;113:1046–1054. doi: 10.1093/cvr/cvx086.
    1. Klöting N., Blüher M. Adipocyte dysfunction, inflammation and metabolic syndrome. Rev. Endocr. Metab. Disord. 2014;15:277–287. doi: 10.1007/s11154-014-9301-0.
    1. Elbatarny H.S., Netherton S.J., Ovens J.D., Ferguson A.V., Maurice D.H. Adiponectin, ghrelin, and leptin differentially influence human platelet and human vascular endothelial cell functions: Implication in obesity-associated cardiovascular diseases. Eur. J. Pharmacol. 2007;558:7–13. doi: 10.1016/j.ejphar.2006.11.052.
    1. Kato H., Kashiwagi H., Shiraga M., Tadokoro S., Kamae T., Ujiie H., Honda S., Miyata S., Ijiri Y., Yamamoto J., et al. Adiponectin acts as an endogenous antithrombotic factor. Arterioscler. Thromb. Vasc. Biol. 2006;26:224–230. doi: 10.1161/01.ATV.0000194076.84568.81.
    1. Golia E., Limongelli G., Natale F., Fimiani F., Maddaloni V., Russo P.E., Riegler L., Bianchi R., Crisci M., Palma G.D., et al. Adipose tissue and vascular inflammation in coronary artery disease. World J. Cardiol. 2014;6:539–554. doi: 10.4330/wjc.v6.i7.539.
    1. Abdel-Moneim A., Mahmoud B., Sultan E.A., Mahmoud R. Relationship of leukocytes, platelet indices and adipocytokines in metabolic syndrome patients. Diabetes Metab. Syndr. 2019;13:874–880. doi: 10.1016/j.dsx.2018.12.016.
    1. Yetkin E. Mean platelet volume not so far from being a routine diagnostic and prognostic measurement. Thromb. Haemost. 2008;100:3–4. doi: 10.1160/TH08-05-0336.
    1. Coban E., Ozdogan M., Yazicioglu G., Akcit F. The mean platelet volume in patients with obesity. Int. J. Clin. Pract. 2005;59:981–982. doi: 10.1111/j.1742-1241.2005.00500.x.
    1. Pinto R.V.L., Rodrigues G., Simões R.L., Porto L.C. Analysis of Post-Sample Collection EDTA Effects on Mean Platelet Volume Values in Relation to Overweight and Obese Patient Status. Acta Haematol. 2019;142:149–153. doi: 10.1159/000499101.
    1. Montilla M., Santi M.J., Carrozas M.A., Ruiz F.A. Biomarkers of the prothrombotic state in abdominal obesity. Nutr. Hosp. 2014;31:1059–1066.
    1. Raoux L., Moszkowicz D., Vychnevskaia K., Poghosyan T., Beauchet A., Clauser S., Bretault M., Czernichow S., Carette C., Bouillot J.-L. Effect of Bariatric Surgery-Induced Weight Loss on Platelet Count and Mean Platelet Volume: A 12-Month Follow-Up Study. Obes. Surg. 2017;27:387–393. doi: 10.1007/s11695-016-2292-z.
    1. Smyth E.M. Thromboxane and the thromboxane receptor in cardiovascular disease. Clin. Lipidol. 2010;5:209–219. doi: 10.2217/clp.10.11.
    1. Maclouf J., Folco G., Patrono C. Eicosanoids and iso-eicosanoids: Constitutive, inducible and transcellular biosynthesis in vascular disease. Thromb. Haemost. 1998;79:691–705.
    1. Simeone P., Boccatonda A., Liani R., Santilli F. Significance of urinary 11-dehydro-thromboxane B2 in age-related diseases: Focus on atherothrombosis. Ageing Res. Rev. 2018;48:51–78. doi: 10.1016/j.arr.2018.09.004.
    1. Graziani F., Biasucci L.M., Cialdella P., Liuzzo G., Giubilato S., Della Bona R., Pulcinelli F.M., Iaconelli A., Mingrone G., Crea F. Thromboxane production in morbidly obese subjects. Am. J. Cardiol. 2011;107:1656–1661. doi: 10.1016/j.amjcard.2011.01.053.
    1. Vincent H.K., Innes K.E., Vincent K.R. Oxidative stress and potential interventions to reduce oxidative stress in overweight and obesity. Diabetes Obes. Metab. 2007;9:813–839. doi: 10.1111/j.1463-1326.2007.00692.x.
    1. Horng T., Hotamisligil G.S. Linking the inflammasome to obesity-related disease. Nat. Med. 2011;17:164–165. doi: 10.1038/nm0211-164.
    1. Choi A.M.K., Nakahira K. Dampening insulin signaling by an NLRP3 “meta-flammasome”. Nat. Immunol. 2011;12:379–380. doi: 10.1038/ni.2028.
    1. Audoly L.P., Rocca B., Fabre J.E., Koller B.H., Thomas D., Loeb A.L., Coffman T.M., FitzGerald G.A. Cardiovascular responses to the isoprostanes iPF(2alpha)-III and iPE(2)-III are mediated via the thromboxane A(2) receptor in vivo. Circulation. 2000;101:2833–2840. doi: 10.1161/01.CIR.101.24.2833.
    1. André P., Hartwell D., Hrachovinová I., Saffaripour S., Wagner D.D. Pro-coagulant state resulting from high levels of soluble P-selectin in blood. Proc. Natl. Acad. Sci. USA. 2000;97:13835–13840. doi: 10.1073/pnas.250475997.
    1. Hamburger S.A., McEver R.P. GMP-140 mediates adhesion of stimulated platelets to neutrophils. Blood. 1990;75:550–554. doi: 10.1182/blood.V75.3.550.550.
    1. Patel M.S., Miranda-Nieves D., Chen J., Haller C.A., Chaikof E.L. Targeting P-selectin glycoprotein ligand-1/P-selectin interactions as a novel therapy for metabolic syndrome. Transl. Res. 2017;183:1–13. doi: 10.1016/j.trsl.2016.11.007.
    1. Evangelista V., Manarini S., Coller B.S., Smyth S.S. Role of P-selectin, beta2-integrins, and Src tyrosine kinases in mouse neutrophil-platelet adhesion. J. Thromb. Haemost. 2003;1:1048–1054. doi: 10.1046/j.1538-7836.2003.00214.x.
    1. Da Costa Martins P., van den Berk N., Ulfman L.H., Koenderman L., Hordijk P.L., Zwaginga J.J. Platelet-monocyte complexes support monocyte adhesion to endothelium by enhancing secondary tethering and cluster formation. Arterioscler. Thromb. Vasc. Biol. 2004;24:193–199. doi: 10.1161/01.ATV.0000106320.40933.E5.
    1. Kim K.H., Barazia A., Cho J. Real-time imaging of heterotypic platelet-neutrophil interactions on the activated endothelium during vascular inflammation and thrombus Formation in live mice. J. Vis. Exp. 2013 doi: 10.3791/50329.
    1. Sreeramkumar V., Adrover J.M., Ballesteros I., Cuartero M.I., Rossaint J., Bilbao I., Nácher M., Pitaval C., Radovanovic I., Fukui Y., et al. Neutrophils scan for activated platelets to initiate inflammation. Science. 2014;346:1234–1238. doi: 10.1126/science.1256478.
    1. Bielinski S.J., Berardi C., Decker P.A., Kirsch P.S., Larson N.B., Pankow J.S., Sale M., de Andrade M., Sicotte H., Tang W., et al. P-selectin and subclinical and clinical atherosclerosis: The Multi-Ethnic Study of Atherosclerosis (MESA) Atherosclerosis. 2015;240:3–9. doi: 10.1016/j.atherosclerosis.2015.02.036.
    1. De Pergola G., Pannacciulli N., Coviello M., Scarangella A., Di Roma P., Caringella M., Venneri M.T., Quaranta M., Giorgino R. sP-selectin plasma levels in obesity: Association with insulin resistance and related metabolic and prothrombotic factors. Nutr. Metab. Cardiovasc. Dis. 2008;18:227–232. doi: 10.1016/j.numecd.2006.09.010.
    1. André P., Nannizzi-Alaimo L., Prasad S.K., Phillips D.R. Platelet-derived CD40L: The switch-hitting player of cardiovascular disease. Circulation. 2002;106:896–899. doi: 10.1161/01.CIR.0000028962.04520.01.
    1. Henn V., Slupsky J.R., Gräfe M., Anagnostopoulos I., Förster R., Müller-Berghaus G., Kroczek R.A. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature. 1998;391:591–594. doi: 10.1038/35393.
    1. Vishnevetsky D., Kiyanista V.A., Gandhi P.J. CD40 ligand: A novel target in the fight against cardiovascular disease. Ann. Pharmacother. 2004;38:1500–1508. doi: 10.1345/aph.1D611.
    1. Poggi M., Engel D., Christ A., Beckers L., Wijnands E., Boon L., Driessen A., Cleutjens J., Weber C., Gerdes N., et al. CD40L deficiency ameliorates adipose tissue inflammation and metabolic manifestations of obesity in mice. Arterioscler. Thromb. Vasc. Biol. 2011;31:2251–2260. doi: 10.1161/ATVBAHA.111.231357.
    1. Chakrabarti S., Rizvi M., Pathak D., Kirber M.T., Freedman J.E. Hypoxia influences CD40-CD40L mediated inflammation in endothelial and monocytic cells. Immunol. Lett. 2009;122:170–184. doi: 10.1016/j.imlet.2008.12.010.
    1. Jeon H.J., Choi J.-H., Jung I.-H., Park J.-G., Lee M.-R., Lee M.-N., Kim B., Yoo J.-Y., Jeong S.-J., Kim D.-Y., et al. CD137 (4-1BB) deficiency reduces atherosclerosis in hyperlipidemic mice. Circulation. 2010;121:1124–1133. doi: 10.1161/CIRCULATIONAHA.109.882704.
    1. Nomura S., Shouzu A., Omoto S., Inami N., Shimazu T., Satoh D., Kajiura T., Yamada K., Urase F., Maeda Y., et al. Effects of pitavastatin on monocyte chemoattractant protein-1 in hyperlipidemic patients. Blood Coagul. Fibrinolysis. 2009;20:440–447. doi: 10.1097/MBC.0b013e32832e0618.
    1. Aggarwal A., Blum A., Schneider D.J., Sobel B.E., Dauerman H.L. Soluble CD40 ligand is an early initiator of inflammation after coronary intervention. Coron. Artery Dis. 2004;15:471–475. doi: 10.1097/00019501-200412000-00003.
    1. Cipollone F., Chiarelli F., Davì G., Ferri C., Desideri G., Fazia M., Iezzi A., Santilli F., Pini B., Cuccurullo C., et al. Enhanced soluble CD40 ligand contributes to endothelial cell dysfunction in vitro and monocyte activation in patients with diabetes mellitus: Effect of improved metabolic control. Diabetologia. 2005;48:1216–1224. doi: 10.1007/s00125-005-1750-2.
    1. Ueland T., Aukrust P., Yndestad A., Otterdal K., Frøland S.S., Dickstein K., Kjekshus J., Gullestad L., Damås J.K. Soluble CD40 ligand in acute and chronic heart failure. Eur. Heart J. 2005;26:1101–1107. doi: 10.1093/eurheartj/ehi132.
    1. Oviedo-Orta E., Bermudez-Fajardo A., Karanam S., Benbow U., Newby A.C. Comparison of MMP-2 and MMP-9 secretion from T helper 0, 1 and 2 lymphocytes alone and in coculture with macrophages. Immunology. 2008;124:42–50. doi: 10.1111/j.1365-2567.2007.02728.x.
    1. Jiang R.-H., Xu X.-Q., Wu C.-J., Lu S.-S., Zu Q.-Q., Zhao L.-B., Liu S., Shi H.-B. The CD40/CD40L system regulates rat cerebral microvasculature after focal ischemia/reperfusion via the mTOR/S6K signaling pathway. Neurol. Res. 2018;40:717–723. doi: 10.1080/01616412.2018.1473075.
    1. Dovizio M., Bruno A., Contursi A., Grande R., Patrignani P. Platelets and extracellular vesicles in cancer: Diagnostic and therapeutic implications. Cancer Metastasis Rev. 2018;37:455–467. doi: 10.1007/s10555-018-9730-4.
    1. George J.N., Thoi L.L., McManus L.M., Reimann T.A. Isolation of human platelet membrane microparticles from plasma and serum. Blood. 1982;60:834–840. doi: 10.1182/blood.V60.4.834.834.
    1. Zahran A.M., Sayed S.K., Abd El Hafeez H.A., Khalifa W.A., Mohamed N.A., Hetta H.F. Circulating microparticle subpopulation in metabolic syndrome: Relation to oxidative stress and coagulation markers. Diabetes Metab. Syndr. Obes. 2019;12:485–493. doi: 10.2147/DMSO.S191750.
    1. Murakami T., Horigome H., Tanaka K., Nakata Y., Ohkawara K., Katayama Y., Matsui A. Impact of weight reduction on production of platelet-derived microparticles and fibrinolytic parameters in obesity. Thromb. Res. 2007;119:45–53. doi: 10.1016/j.thromres.2005.12.013.
    1. Grande R., Dovizio M., Marcone S., Szklanna P.B., Bruno A., Ebhardt H.A., Cassidy H., Ní Áinle F., Caprodossi A., Lanuti P., et al. Platelet-Derived Microparticles from Obese Individuals: Characterization of Number, Size, Proteomics, and Crosstalk with Cancer and Endothelial Cells. Front. Pharmacol. 2019;10:7. doi: 10.3389/fphar.2019.00007.
    1. Belfiore A., Frasca F., Pandini G., Sciacca L., Vigneri R. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr. Rev. 2009;30:586–623. doi: 10.1210/er.2008-0047.
    1. White M.F., Kahn C.R. The insulin signaling system. J. Biol. Chem. 1994;269:1–4.
    1. Taniguchi C.M., Emanuelli B., Kahn C.R. Critical nodes in signalling pathways: Insights into insulin action. Nat. Rev. Mol. Cell Biol. 2006;7:85–96. doi: 10.1038/nrm1837.
    1. Reaven G.M. Insulin resistance/compensatory hyperinsulinemia, essential hypertension, and cardiovascular disease. J. Clin. Endocrinol. Metab. 2003;88:2399–2403. doi: 10.1210/jc.2003-030087.
    1. Baron A.D. Insulin resistance and vascular function. J. Diabetes Complicat. 2002;16:92–102. doi: 10.1016/S1056-8727(01)00209-4.
    1. Muniyappa R., Quon M.J. Insulin action and insulin resistance in vascular endothelium. Curr. Opin. Clin. Nutr. Metab. Care. 2007;10:523–530. doi: 10.1097/MCO.0b013e32819f8ecd.
    1. Anfossi G., Russo I., Doronzo G., Trovati M. Contribution of insulin resistance to vascular dysfunction. Arch. Physiol. Biochem. 2009;115:199–217. doi: 10.1080/13813450903136791.
    1. Dandona P., Aljada A., Chaudhuri A., Mohanty P., Garg R. Metabolic syndrome: A comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation. 2005;111:1448–1454. doi: 10.1161/01.CIR.0000158483.13093.9D.
    1. Falcon C., Pfliegler G., Deckmyn H., Vermylen J. The platelet insulin receptor: Detection, partial characterization, and search for a function. Biochem. Biophys. Res. Commun. 1988;157:1190–1196. doi: 10.1016/S0006-291X(88)81000-3.
    1. Russo I., Massucco P., Mattiello L., Cavalot F., Anfossi G., Trovati M. Comparison between the effects of the rapid recombinant insulin analog aspart and those of human regular insulin on platelet cyclic nucleotides and aggregation. Thromb. Res. 2002;107:31–37. doi: 10.1016/S0049-3848(02)00182-2.
    1. Russo I., Massucco P., Mattiello L., Anfossi G., Trovati M. Comparison between the effects of the rapid recombinant insulin analog Lispro (Lys B28, Pro B29) and those of human regular insulin on platelet cyclic nucleotides and aggregation. Thromb. Res. 2003;109:323–327. doi: 10.1016/S0049-3848(03)00255-X.
    1. Westerbacka J., Yki-Järvinen H., Turpeinen A., Rissanen A., Vehkavaara S., Syrjälä M., Lassila R. Inhibition of platelet-collagen interaction: An in vivo action of insulin abolished by insulin resistance in obesity. Arterioscler. Thromb. Vasc. Biol. 2002;22:167–172. doi: 10.1161/hq0102.101546.
    1. Mayfield R.K., Halushka P.V., Wohltmann H.J., Lopes-Virella M., Chambers J.K., Loadholt C.B., Colwell J.A. Platelet function during continuous insulin infusion treatment in insulin-dependent diabetic patients. Diabetes. 1985;34:1127–1133. doi: 10.2337/diab.34.11.1127.
    1. Trovati M., Anfossi G., Massucco P., Mattiello L., Costamagna C., Piretto V., Mularoni E., Cavalot F., Bosia A., Ghigo D. Insulin stimulates nitric oxide synthesis in human platelets and, through nitric oxide, increases platelet concentrations of both guanosine-3′, 5′-cyclic monophosphate and adenosine-3′, 5′-cyclic monophosphate. Diabetes. 1997;46:742–749. doi: 10.2337/diab.46.5.742.
    1. Gerrits A.J., Gitz E., Koekman C.A., Visseren F.L., van Haeften T.W., Akkerman J.W.N. Induction of insulin resistance by the adipokines resistin, leptin, plasminogen activator inhibitor-1 and retinol binding protein 4 in human megakaryocytes. Haematologica. 2012;97:1149–1157. doi: 10.3324/haematol.2011.054916.
    1. Kawahara Y., Yamanishi J., Fukuzaki H. Inhibitory action of guanosine 3’,5’-monophosphate on thrombin-induced calcium mobilization in human platelets. Thromb. Res. 1984;33:203–209. doi: 10.1016/0049-3848(84)90181-6.
    1. Resnick L.M. Cellular ions in hypertension, insulin resistance, obesity, and diabetes: A unifying theme. J. Am. Soc. Nephrol. 1992;3:S78–S85.
    1. Anfossi G., Mularoni E.M., Burzacca S., Ponziani M.C., Massucco P., Mattiello L., Cavalot F., Trovati M. Platelet resistance to nitrates in obesity and obese NIDDM, and normal platelet sensitivity to both insulin and nitrates in lean NIDDM. Diabetes Care. 1998;21:121–126. doi: 10.2337/diacare.21.1.121.
    1. Davì G., Guagnano M.T., Ciabattoni G., Basili S., Falco A., Marinopiccoli M., Nutini M., Sensi S., Patrono C. Platelet activation in obese women: Role of inflammation and oxidant stress. JAMA. 2002;288:2008–2014. doi: 10.1001/jama.288.16.2008.
    1. Simeone P., Liani R., Tripaldi R., Di Castelnuovo A., Guagnano M.T., Tartaro A., Bonadonna R.C., Federico V., Cipollone F., Consoli A., et al. Thromboxane-Dependent Platelet Activation in Obese Subjects with Prediabetes or Early Type 2 Diabetes: Effects of Liraglutide- or Lifestyle Changes-Induced Weight Loss. Nutrients. 2018;10:1872. doi: 10.3390/nu10121872.
    1. Cameron-Vendrig A., Reheman A., Siraj M.A., Xu X.R., Wang Y., Lei X., Afroze T., Shikatani E., El-Mounayri O., Noyan H., et al. Glucagon-Like Peptide 1 Receptor Activation Attenuates Platelet Aggregation and Thrombosis. Diabetes. 2016;65:1714–1723. doi: 10.2337/db15-1141.
    1. Barale C., Buracco S., Cavalot F., Frascaroli C., Guerrasio A., Russo I. Glucagon-like peptide 1-related peptides increase nitric oxide effects to reduce platelet activation. Thromb. Haemost. 2017;117:1115–1128. doi: 10.1160/TH16-07-0586.
    1. Matsuno H., Tokuda H., Ishisaki A., Zhou Y., Kitajima Y., Kozawa O. P2Y12 receptors play a significant role in the development of platelet microaggregation in patients with diabetes. J. Clin. Endocrinol. Metab. 2005;90:920–927. doi: 10.1210/jc.2004-0137.
    1. Watala C. Blood platelet reactivity and its pharmacological modulation in (people with) diabetes mellitus. Curr. Pharm. Des. 2005;11:2331–2365. doi: 10.2174/1381612054367337.
    1. Braunwald E., Angiolillo D., Bates E., Berger P.B., Bhatt D., Cannon C.P., Furman M.I., Gurbel P., Michelson A.D., Peterson E., et al. Investigating the mechanisms of hyporesponse to antiplatelet approaches. Clin. Cardiol. 2008;31:I21–I27. doi: 10.1002/clc.20360.
    1. Santilli F., Marchisio M., Lanuti P., Boccatonda A., Miscia S., Davì G. Microparticles as new markers of cardiovascular risk in diabetes and beyond. Thromb. Haemost. 2016;116:220–234. doi: 10.1160/TH16-03-0176.
    1. Santilli F., Simeone P., Liani R., Davì G. Platelets and diabetes mellitus. Prostaglandins Other Lipid Mediat. 2015;120:28–39. doi: 10.1016/j.prostaglandins.2015.05.002.
    1. Aryangat A.V., Gerich J.E. Type 2 diabetes: Postprandial hyperglycemia and increased cardiovascular risk. Vasc. Health Risk Manag. 2010;6:145–155.
    1. Sottero B., Gargiulo S., Russo I., Barale C., Poli G., Cavalot F. Postprandial Dysmetabolism and Oxidative Stress in Type 2 Diabetes: Pathogenetic Mechanisms and Therapeutic Strategies. Med. Res. Rev. 2015;35:968–1031. doi: 10.1002/med.21349.
    1. Davì G., Catalano I., Averna M., Notarbartolo A., Strano A., Ciabattoni G., Patrono C. Thromboxane biosynthesis and platelet function in type II diabetes mellitus. N. Engl. J. Med. 1990;322:1769–1774. doi: 10.1056/NEJM199006213222503.
    1. Temelkova-Kurktschiev T.S., Koehler C., Henkel E., Leonhardt W., Fuecker K., Hanefeld M. Postchallenge plasma glucose and glycemic spikes are more strongly associated with atherosclerosis than fasting glucose or HbA1c level. Diabetes Care. 2000;23:1830–1834. doi: 10.2337/diacare.23.12.1830.
    1. Donahue R.P., Abbott R.D., Reed D.M., Yano K. Postchallenge glucose concentration and coronary heart disease in men of Japanese ancestry. Honolulu Heart Program. Diabetes. 1987;36:689–692. doi: 10.2337/diab.36.6.689.
    1. Glucose tolerance and mortality: Comparison of WHO and American Diabetes Association diagnostic criteria. The DECODE study group. European Diabetes Epidemiology Group. Diabetes Epidemiology: Collaborative analysis of Diagnostic criteria in Europe. Lancet. 1999;354:617–621.
    1. Gresele P., Guglielmini G., De Angelis M., Ciferri S., Ciofetta M., Falcinelli E., Lalli C., Ciabattoni G., Davì G., Bolli G.B. Acute, short-term hyperglycemia enhances shear stress-induced platelet activation in patients with type II diabetes mellitus. J. Am. Coll. Cardiol. 2003;41:1013–1020. doi: 10.1016/S0735-1097(02)02972-8.
    1. Barstad R.M., Orvim U., Hamers M.J., Tjønnfjord G.E., Brosstad F.R., Sakariassen K.S. Reduced effect of aspirin on thrombus formation at high shear and disturbed laminar blood flow. Thromb. Haemost. 1996;75:827–832. doi: 10.1055/s-0038-1650374.
    1. Folts J.D., Schafer A.I., Loscalzo J., Willerson J.T., Muller J.E. A perspective on the potential problems with aspirin as an antithrombotic agent: A comparison of studies in an animal model with clinical trials. J. Am. Coll. Cardiol. 1999;33:295–303. doi: 10.1016/S0735-1097(98)00601-9.
    1. Russo I., Viretto M., Barale C., Mattiello L., Doronzo G., Pagliarino A., Cavalot F., Trovati M., Anfossi G. High glucose inhibits the aspirin-induced activation of the nitric oxide/cGMP/cGMP-dependent protein kinase pathway and does not affect the aspirin-induced inhibition of thromboxane synthesis in human platelets. Diabetes. 2012;61:2913–2921. doi: 10.2337/db12-0040.
    1. Finamore F., Reny J.-L., Malacarne S., Fontana P., Sanchez J.-C. A high glucose level is associated with decreased aspirin-mediated acetylation of platelet cyclooxygenase (COX)-1 at serine 529: A pilot study. J. Proteomics. 2019;192:258–266. doi: 10.1016/j.jprot.2018.09.007.
    1. Ferroni P., Basili S., Falco A., Davì G. Platelet activation in type 2 diabetes mellitus. J. Thromb. Haemost. 2004;2:1282–1291. doi: 10.1111/j.1538-7836.2004.00836.x.
    1. Chung S.S.M., Ho E.C.M., Lam K.S.L., Chung S.K. Contribution of polyol pathway to diabetes-induced oxidative stress. J. Am. Soc. Nephrol. 2003;14:S233–S236. doi: 10.1097/01.ASN.0000077408.15865.06.
    1. Wachowicz B., Olas B., Zbikowska H.M., Buczyński A. Generation of reactive oxygen species in blood platelets. Platelets. 2002;13:175–182. doi: 10.1080/09533710022149395.
    1. Tang W.H., Stitham J., Gleim S., Di Febbo C., Porreca E., Fava C., Tacconelli S., Capone M., Evangelista V., Levantesi G., et al. Glucose and collagen regulate human platelet activity through aldose reductase induction of thromboxane. J. Clin. Investig. 2011;121:4462–4476. doi: 10.1172/JCI59291.
    1. Santilli F., Davì G., Consoli A., Cipollone F., Mezzetti A., Falco A., Taraborelli T., Devangelio E., Ciabattoni G., Basili S., et al. Thromboxane-dependent CD40 ligand release in type 2 diabetes mellitus. J. Am. Coll. Cardiol. 2006;47:391–397. doi: 10.1016/j.jacc.2005.03.079.
    1. Russo I., Penna C., Musso T., Popara J., Alloatti G., Cavalot F., Pagliaro P. Platelets, diabetes and myocardial ischemia/reperfusion injury. Cardiovasc. Diabetol. 2017;16:71. doi: 10.1186/s12933-017-0550-6.
    1. Przyklenk K., Maynard M., Greiner D.L., Whittaker P. Cardioprotection with postconditioning: Loss of efficacy in murine models of type-2 and type-1 diabetes. Antioxid. Redox Signal. 2011;14:781–790. doi: 10.1089/ars.2010.3343.
    1. Russo I., Femminò S., Barale C., Tullio F., Geuna S., Cavalot F., Pagliaro P., Penna C. Cardioprotective Properties of Human Platelets Are Lost in Uncontrolled Diabetes Mellitus: A Study in Isolated Rat Hearts. Front. Physiol. 2018;9:875. doi: 10.3389/fphys.2018.00875.
    1. Tang W.H., Stitham J., Jin Y., Liu R., Lee S.H., Du J., Atteya G., Gleim S., Spollett G., Martin K., et al. Aldose reductase-mediated phosphorylation of p53 leads to mitochondrial dysfunction and damage in diabetic platelets. Circulation. 2014;129:1598–1609. doi: 10.1161/CIRCULATIONAHA.113.005224.
    1. Thushara R.M., Hemshekhar M., Basappa, Kemparaju K., Rangappa K.S., Girish K.S. Biologicals, platelet apoptosis and human diseases: An outlook. Crit. Rev. Oncol. Hematol. 2015;93:149–158. doi: 10.1016/j.critrevonc.2014.11.002.
    1. Williams P.C., Coffey M.J., Coles B., Sanchez S., Morrow J.D., Cockcroft J.R., Lewis M.J., O’Donnell V.B. In vivo aspirin supplementation inhibits nitric oxide consumption by human platelets. Blood. 2005;106:2737–2743. doi: 10.1182/blood-2005-02-0664.
    1. Worthley M.I., Holmes A.S., Willoughby S.R., Kucia A.M., Heresztyn T., Stewart S., Chirkov Y.Y., Zeitz C.J., Horowitz J.D. The deleterious effects of hyperglycemia on platelet function in diabetic patients with acute coronary syndromes mediation by superoxide production, resolution with intensive insulin administration. J. Am. Coll. Cardiol. 2007;49:304–310. doi: 10.1016/j.jacc.2006.08.053.
    1. Watala C., Boncer M., Golański J., Koziołkiewcz W., Trojanowski Z., Walkowiak B. Platelet membrane lipid fluidity and intraplatelet calcium mobilization in type 2 diabetes mellitus. Eur. J. Haematol. 1998;61:319–326. doi: 10.1111/j.1600-0609.1998.tb01095.x.
    1. Obydennyy S.I., Sveshnikova A.N., Ataullakhanov F.I., Panteleev M.A. Dynamics of calcium spiking, mitochondrial collapse and phosphatidylserine exposure in platelet subpopulations during activation. J. Thromb. Haemost. 2016;14:1867–1881. doi: 10.1111/jth.13395.
    1. Pignatelli P., Carnevale R., Di Santo S., Bartimoccia S., Sanguigni V., Lenti L., Finocchi A., Mendolicchio L., Soresina A.R., Plebani A., et al. Inherited human gp91phox deficiency is associated with impaired isoprostane formation and platelet dysfunction. Arterioscler. Thromb. Vasc. Biol. 2011;31:423–434. doi: 10.1161/ATVBAHA.110.217885.
    1. Carnevale R., Loffredo L., Nocella C., Bartimoccia S., Sanguigni V., Soresina A., Plebani A., Azzari C., Martire B., Pignata C., et al. Impaired platelet activation in patients with hereditary deficiency of p47phox. Br. J. Haematol. 2018;180:454–456. doi: 10.1111/bjh.14347.
    1. Cangemi R., Pignatelli P., Carnevale R., Nigro C., Proietti M., Angelico F., Lauro D., Basili S., Violi F. Platelet isoprostane overproduction in diabetic patients treated with aspirin. Diabetes. 2012;61:1626–1632. doi: 10.2337/db11-1243.
    1. Lawson J.A., Rokach J., FitzGerald G.A. Isoprostanes: Formation, analysis and use as indices of lipid peroxidation in vivo. J. Biol. Chem. 1999;274:24441–24444. doi: 10.1074/jbc.274.35.24441.
    1. Davì G., Ciabattoni G., Consoli A., Mezzetti A., Falco A., Santarone S., Pennese E., Vitacolonna E., Bucciarelli T., Costantini F., et al. In vivo formation of 8-iso-prostaglandin f2alpha and platelet activation in diabetes mellitus: Effects of improved metabolic control and vitamin E supplementation. Circulation. 1999;99:224–229. doi: 10.1161/01.CIR.99.2.224.
    1. Grabowski E.F., Jaffe E.A., Weksler B.B. Prostacyclin production by cultured endothelial cell monolayers exposed to step increases in shear stress. J. Lab. Clin. Med. 1985;105:36–43.
    1. Schlossmann J., Feil R., Hofmann F. Signaling through NO and cGMP-dependent protein kinases. Ann. Med. 2003;35:21–27. doi: 10.1080/07853890310004093.
    1. Mazzucato M., Santomaso A., Canu P.M., Ruggeri Z., De Marco L. Flow dynamics and haemostasis. Ann. dell’Istituto Super. Sanità. 2007;43:130–138.
    1. Westein E., Hoefer T., Calkin A.C. Thrombosis in diabetes: A shear flow effect? Clin. Sci. 2017;131:1245–1260. doi: 10.1042/CS20160391.
    1. Choi H., Aboulfatova K., Pownall H.J., Cook R., Dong J. Shear-induced disulfide bond formation regulates adhesion activity of von Willebrand factor. J. Biol. Chem. 2007;282:35604–35611. doi: 10.1074/jbc.M704047200.
    1. Rehder D.S., Borges C.R. Cysteine sulfenic acid as an intermediate in disulfide bond formation and nonenzymatic protein folding. Biochemistry. 2010;49:7748–7755. doi: 10.1021/bi1008694.
    1. Jain S.K. Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human red blood cells. J. Biol. Chem. 1989;264:21340–21345.
    1. Da Q., Teruya M., Guchhait P., Teruya J., Olson J.S., Cruz M.A. Free hemoglobin increases von Willebrand factor-mediated platelet adhesion in vitro: Implications for circulatory devices. Blood. 2015;126:2338–2341. doi: 10.1182/blood-2015-05-648030.
    1. Carvalho A.C., Colman R.W., Lees R.S. Platelet function in hyperlipoproteinemia. N. Engl. J. Med. 1974;290:434–438. doi: 10.1056/NEJM197402212900805.
    1. Pawlowska Z., Swiatkowska M., Krzeslowska J., Pawlicki L., Cierniewski C.S. Increased platelet-fibrinogen interaction in patients with hypercholesterolemia and hypertriglyceridemia. Atherosclerosis. 1993;103:13–20. doi: 10.1016/0021-9150(93)90035-S.
    1. Relou I.A.M., Hackeng C.M., Akkerman J.-W.N., Malle E. Low-density lipoprotein and its effect on human blood platelets. Cell. Mol. Life Sci. 2003;60:961–971. doi: 10.1007/s00018-003-2249-y.
    1. Ou H.-C., Song T.-Y., Yeh Y.-C., Huang C.-Y., Yang S.-F., Chiu T.-H., Tsai K.-L., Chen K.-L., Wu Y.-J., Tsai C.-S., et al. EGCG protects against oxidized LDL-induced endothelial dysfunction by inhibiting LOX-1-mediated signaling. J. Appl. Physiol. 2010;108:1745–1756. doi: 10.1152/japplphysiol.00879.2009.
    1. Naseem K.M. The role of nitric oxide in cardiovascular diseases. Mol. Aspects Med. 2005;26:33–65. doi: 10.1016/j.mam.2004.09.003.
    1. Barale C., Frascaroli C., Cavalot F., Russo I. Hypercholesterolemia impairs the Glucagon-like peptide 1 action on platelets: Effects of a lipid-lowering treatment with simvastatin. Thromb. Res. 2019;180:74–85. doi: 10.1016/j.thromres.2019.06.010.
    1. Willoughby S.R., Stewart S., Holmes A.S., Chirkov Y.Y., Horowitz J.D. Platelet nitric oxide responsiveness: A novel prognostic marker in acute coronary syndromes. Arterioscler. Thromb. Vasc. Biol. 2005;25:2661–2666. doi: 10.1161/01.ATV.0000193622.77294.57.
    1. Riba R., Nicolaou A., Troxler M., Homer-Vaniasinkam S., Naseem K.M. Altered platelet reactivity in peripheral vascular disease complicated with elevated plasma homocysteine levels. Atherosclerosis. 2004;175:69–75. doi: 10.1016/j.atherosclerosis.2004.02.008.
    1. Magwenzi S., Woodward C., Wraith K.S., Aburima A., Raslan Z., Jones H., McNeil C., Wheatcroft S., Yuldasheva N., Febbriao M., et al. Oxidized LDL activates blood platelets through CD36/NOX2-mediated inhibition of the cGMP/protein kinase G signaling cascade. Blood. 2015;125:2693–2703. doi: 10.1182/blood-2014-05-574491.
    1. Akkerman J.W.N. From low-density lipoprotein to platelet activation. Int. J. Biochem. Cell Biol. 2008;40:2374–2378. doi: 10.1016/j.biocel.2008.04.002.
    1. Barale C., Bonomo K., Frascaroli C., Morotti A., Guerrasio A., Cavalot F., Russo I. Platelet function and activation markers in primary hypercholesterolemia treated with anti-PCSK9 monoclonal antibody: A 12-month follow-up. Nutr. Metab. Cardiovasc. Dis. 2019 doi: 10.1016/j.numecd.2019.09.012.
    1. Barale C., Frascaroli C., Senkeev R., Cavalot F., Russo I. Simvastatin Effects on Inflammation and Platelet Activation Markers in Hypercholesterolemia. Biomed. Res. Int. 2018;2018:6508709. doi: 10.1155/2018/6508709.
    1. Kanshana J.S., Khanna V., Singh V., Jain M., Misra A., Kumar S., Farooqui M., Barthwal M.K., Dikshit M. Progression and Characterization of the Accelerated Atherosclerosis in Iliac Artery of New Zealand White Rabbits: Effect of Simvastatin. J. Cardiovasc. Pharmacol. 2017;69:314–325. doi: 10.1097/FJC.0000000000000477.
    1. Chu F., Wang M., Ma H., Zhu J. Simvastatin Modulates Interaction Between Vascular Smooth Muscle Cell/Macrophage and TNF-α-Activated Endothelial Cell. J. Cardiovasc. Pharmacol. 2018;71:268–274. doi: 10.1097/FJC.0000000000000567.
    1. Diamantis E., Kyriakos G., Quiles-Sanchez L.V., Farmaki P., Troupis T. The Anti-Inflammatory Effects of Statins on Coronary Artery Disease: An Updated Review of the Literature. Curr. Cardiol. Rev. 2017;13:209–216. doi: 10.2174/1573403X13666170426104611.
    1. Kinlay S., Selwyn A.P. Effects of statins on inflammation in patients with acute and chronic coronary syndromes. Am. J. Cardiol. 2003;91:9B–13B. doi: 10.1016/S0002-9149(02)03268-X.
    1. Sadowitz B., Maier K.G., Gahtan V. Basic science review: Statin therapy—Part I: The pleiotropic effects of statins in cardiovascular disease. Vasc. Endovasc. Surg. 2010;44:241–251. doi: 10.1177/1538574410362922.
    1. Sobol A.B., Watala C. The role of platelets in diabetes-related vascular complications. Diabetes Res. Clin. Pract. 2000;50:1–16. doi: 10.1016/S0168-8227(00)00160-1.
    1. Vinik A.I., Erbas T., Park T.S., Nolan R., Pittenger G.L. Platelet dysfunction in type 2 diabetes. Diabetes Care. 2001;24:1476–1485. doi: 10.2337/diacare.24.8.1476.
    1. Okerson T., Chilton R.J. The cardiovascular effects of GLP-1 receptor agonists. Cardiovasc. Ther. 2012;30:e146–e155. doi: 10.1111/j.1755-5922.2010.00256.x.
    1. Ban K., Noyan-Ashraf M.H., Hoefer J., Bolz S.-S., Drucker D.J., Husain M. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation. 2008;117:2340–2350. doi: 10.1161/CIRCULATIONAHA.107.739938.
    1. Seidah N.G. Proprotein convertase subtilisin kexin 9 (PCSK9) inhibitors in the treatment of hypercholesterolemia and other pathologies. Curr. Pharm. Des. 2013;19:3161–3172. doi: 10.2174/13816128113199990313.
    1. Camera M., Rossetti L., Barbieri S.S., Zanotti I., Canciani B., Trabattoni D., Ruscica M., Tremoli E., Ferri N. PCSK9 as a Positive Modulator of Platelet Activation. J. Am. Coll. Cardiol. 2018;71:952–954. doi: 10.1016/j.jacc.2017.11.069.
    1. Navarese E.P., Kolodziejczak M., Winter M.-P., Alimohammadi A., Lang I.M., Buffon A., Lip G.Y., Siller-Matula J.M. Association of PCSK9 with platelet reactivity in patients with acute coronary syndrome treated with prasugrel or ticagrelor: The PCSK9-REACT study. Int. J. Cardiol. 2017;227:644–649. doi: 10.1016/j.ijcard.2016.10.084.
    1. Li S., Zhu C.-G., Guo Y.-L., Xu R.-X., Zhang Y., Sun J., Li J.-J. The relationship between the plasma PCSK9 levels and platelet indices in patients with stable coronary artery disease. J. Atheroscler. Thromb. 2015;22:76–84. doi: 10.5551/jat.25841.
    1. Pastori D., Nocella C., Farcomeni A., Bartimoccia S., Santulli M., Vasaturo F., Carnevale R., Menichelli D., Violi F., Pignatelli P., et al. Relationship of PCSK9 and Urinary Thromboxane Excretion to Cardiovascular Events in Patients with Atrial Fibrillation. J. Am. Coll. Cardiol. 2017;70:1455–1462. doi: 10.1016/j.jacc.2017.07.743.
    1. Harmon J.T., Tandon N.N., Hoeg J.M., Jamieson G.A. Thrombin binding and response in platelets from patients with dyslipoproteinemias: Increased stimulus-response coupling in type II hyperlipoproteinemia. Blood. 1986;68:498–505. doi: 10.1182/blood.V68.2.498.498.
    1. Yamazaki M., Uchiyama S., Xiong Y., Nakano T., Nakamura T., Iwata M. Effect of remnant-like particle on shear-induced platelet activation and its inhibition by antiplatelet agents. Thromb. Res. 2005;115:211–218. doi: 10.1016/j.thromres.2004.08.029.
    1. Mineo C., Deguchi H., Griffin J.H., Shaul P.W. Endothelial and antithrombotic actions of HDL. Circ. Res. 2006;98:1352–1364. doi: 10.1161/01.RES.0000225982.01988.93.
    1. Calkin A.C., Drew B.G., Ono A., Duffy S.J., Gordon M.V., Schoenwaelder S.M., Sviridov D., Cooper M.E., Kingwell B.A., Jackson S.P. Reconstituted high-density lipoprotein attenuates platelet function in individuals with type 2 diabetes mellitus by promoting cholesterol efflux. Circulation. 2009;120:2095–2104. doi: 10.1161/CIRCULATIONAHA.109.870709.
    1. Ma Y., Ashraf M.Z., Podrez E.A. Scavenger receptor BI modulates platelet reactivity and thrombosis in dyslipidemia. Blood. 2010;116:1932–1941. doi: 10.1182/blood-2010-02-268508.
    1. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) JAMA. 2001;285:2486–2497.
    1. Kearney P.M., Whelton M., Reynolds K., Muntner P., Whelton P.K., He J. Global burden of hypertension: Analysis of worldwide data. Lancet. 2005;365:217–223. doi: 10.1016/S0140-6736(05)17741-1.
    1. Diodati J.G., Cannon R.O., Hussain N., Quyyumi A.A. Inhibitory effect of nitroglycerin and sodium nitroprusside on platelet activation across the coronary circulation in stable angina pectoris. Am. J. Cardiol. 1995;75:443–448. doi: 10.1016/S0002-9149(99)80578-5.
    1. Cooke J.P., Dzau V.J. Nitric oxide synthase: Role in the genesis of vascular disease. Annu. Rev. Med. 1997;48:489–509. doi: 10.1146/annurev.med.48.1.489.
    1. Nityanand S., Pande I., Bajpai V.K., Singh L., Chandra M., Singh B.N. Platelets in essential hypertension. Thromb. Res. 1993;72:447–454. doi: 10.1016/0049-3848(93)90245-J.
    1. Torsellini A., Becucci A., Citi S., Cozzolino F., Guidi G., Lombardi V., Vercelli D., Veloci M. Effects of pressure excursions on human platelets. In vitro studies on betathromboglobulin (beta-TG) and platelet factor 4 (PF4) release and on platelet sensitivity to ADP-aggregation. Haematologica. 1982;67:860–866.
    1. Camilletti A., Moretti N., Giacchetti G., Faloia E., Martarelli D., Mantero F., Mazzanti L. Decreased nitric oxide levels and increased calcium content in platelets of hypertensive patients. Am. J. Hypertens. 2001;14:382–386. doi: 10.1016/S0895-7061(00)01297-8.
    1. Cerecedo D., Martínez-Vieyra I., Alonso-Rangel L., Benítez-Cardoza C., Ortega A. Epithelial sodium channel modulates platelet collagen activation. Eur. J. Cell Biol. 2014;93:127–136. doi: 10.1016/j.ejcb.2014.02.003.
    1. Galluccio E., Cassina L., Russo I., Gelmini F., Setola E., Rampoldi L., Citterio L., Rossodivita A., Kamami M., Colombo A., et al. A novel truncated form of eNOS associates with altered vascular function. Cardiovasc. Res. 2014;101:492–502. doi: 10.1093/cvr/cvt267.
    1. Lüscher T.F., Barton M. Biology of the endothelium. Clin. Cardiol. 1997;20:II–3–10.
    1. Taddei S., Ghiadoni L., Virdis A., Versari D., Salvetti A. Mechanisms of endothelial dysfunction: Clinical significance and preventive non-pharmacological therapeutic strategies. Curr. Pharm. Des. 2003;9:2385–2402. doi: 10.2174/1381612033453866.
    1. Russo I., Viretto M., Doronzo G., Barale C., Mattiello L., Anfossi G., Trovati M. A short-term incubation with high glucose impairs VASP phosphorylation at serine 239 in response to the nitric oxide/cGMP pathway in vascular smooth muscle cells: Role of oxidative stress. Biomed. Res. Int. 2014;2014:328959. doi: 10.1155/2014/328959.
    1. Paolocci N., Biondi R., Bettini M., Lee C.I., Berlowitz C.O., Rossi R., Xia Y., Ambrosio G., L’Abbate A., Kass D.A., et al. Oxygen radical-mediated reduction in basal and agonist-evoked NO release in isolated rat heart. J. Mol. Cell. Cardiol. 2001;33:671–679. doi: 10.1006/jmcc.2000.1334.
    1. Marletta M.A. Nitric oxide synthase structure and mechanism. J. Biol. Chem. 1993;268:12231–12234.
    1. Moncada S., Higgs A. The L-arginine-nitric oxide pathway. N. Engl. J. Med. 1993;329:2002–2012.
    1. Dean W.L., Pope J.E., Brier M.E., Aronoff G.R. Platelet calcium transport in hypertension. Hypertension. 1994;23:31–37. doi: 10.1161/01.HYP.23.1.31.
    1. Möhle R., Green D., Moore M.A., Nachman R.L., Rafii S. Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc. Natl. Acad. Sci. USA. 1997;94:663–668. doi: 10.1073/pnas.94.2.663.
    1. Blann A.D., Belgore F.M., Constans J., Conri C., Lip G.Y. Plasma vascular endothelial growth factor and its receptor Flt-1 in patients with hyperlipidemia and atherosclerosis and the effects of fluvastatin or fenofibrate. Am. J. Cardiol. 2001;87:1160–1163. doi: 10.1016/S0002-9149(01)01486-2.
    1. Tsai W.-C., Li Y.-H., Huang Y.-Y., Lin C.-C., Chao T.-H., Chen J.-H. Plasma vascular endothelial growth factor as a marker for early vascular damage in hypertension. Clin. Sci. 2005;109:39–43. doi: 10.1042/CS20040307.
    1. Belgore F.M., Blann A.D., Li-Saw-Hee F.L., Beevers D.G., Lip G.Y. Plasma levels of vascular endothelial growth factor and its soluble receptor (SFlt-1) in essential hypertension. Am. J. Cardiol. 2001;87:805–807. doi: 10.1016/S0002-9149(00)01512-5.
    1. Ferroni P., Martini F., D’Alessandro R., Magnapera A., Raparelli V., Scarno A., Davì G., Basili S., Guadagni F. In vivo platelet activation is responsible for enhanced vascular endothelial growth factor levels in hypertensive patients. Clin. Chim. Acta. 2008;388:33–37. doi: 10.1016/j.cca.2007.09.026.
    1. Zicha J., Kunes J., Devynck M.A. Abnormalities of membrane function and lipid metabolism in hypertension: A review. Am. J. Hypertens. 1999;12:315–331. doi: 10.1016/S0895-7061(98)00178-2.
    1. Chap H.J., Zwaal R.F., van Deenen L.L. Action of highly purified phospholipases on blood platelets. Evidence for an asymmetric distribution of phospholipids in the surface membrane. Biochim. Biophys. Acta. 1977;467:146–164. doi: 10.1016/0005-2736(77)90192-4.
    1. Bevers E.M., Comfurius P., Zwaal R.F. Changes in membrane phospholipid distribution during platelet activation. Biochim. Biophys. Acta. 1983;736:57–66. doi: 10.1016/0005-2736(83)90169-4.
    1. García-Rubio D., Rodríguez-Varela M., Martínez-Vieyra I., de la Mora M.B., Méndez-Méndez J.V., Durán-Álvarez J.C., Cerecedo D. Alterations to the contents of plasma membrane structural lipids are associated with structural changes and compartmentalization in platelets in hypertension. Exp. Cell Res. 2019;385:111692. doi: 10.1016/j.yexcr.2019.111692.

Source: PubMed

3
Se inscrever