Effects of a Single Proprioceptive Neuromuscular Facilitation Stretching Exercise With and Without Post-stretching Activation on the Muscle Function and Mechanical Properties of the Plantar Flexor Muscles

Marina Reiner, Markus Tilp, Gaël Guilhem, Antonio Morales-Artacho, Masatoshi Nakamura, Andreas Konrad, Marina Reiner, Markus Tilp, Gaël Guilhem, Antonio Morales-Artacho, Masatoshi Nakamura, Andreas Konrad

Abstract

A single proprioceptive neuromuscular facilitation (PNF) stretching exercise can increase the range of motion (ROM) of a joint but can lead to a decrease in performance immediately after the stretching exercise. Post-stretching activation (PSA) exercises are known as a possible way to counteract such a drop in performance following a single stretching exercise. However, to date, no study has investigated the combination of PNF stretching with PSA. Thus, the aim of this study was to compare the effects of a PNF stretching exercise with and without PSA on the muscle function (e.g., ROM) and mechanical properties of the plantar flexor muscles. Eighteen physically active males volunteered in the study, which had a crossover design and a random order. The passive shear modulus of the gastrocnemius medialis (GM) and gastrocnemius lateralis (GL) was measured in a neutral position with shear wave elastography, both pre- and post-intervention. Maximum voluntary isometric contraction (MVIC) peak torque, maximum voluntary dynamic contraction peak torque, dorsiflexion ROM, and passive resistive torque (PRT) were also measured with a dynamometer. The interventions were 4×30s of PNF stretching (5s of contraction) and two sets of three exercises with 20 or 40 fast ground contacts (PNF stretching+PSA) and PNF stretching only. ROM was found to have increased in both groups (+4%). In addition, the PNF stretching+PSA group showed a decrease in PRT at a given angle (-7%) and a decrease in GM and mean shear modulus (GM+GL; -6%). Moreover, the MVIC peak torque decreased (-4%) only in the PNF stretching group (without PSA). Therefore, we conclude that, if PNF stretching is used as a warm-up exercise, target-muscle-specific PSA should follow to keep the performance output at the same level while maintaining the benefit of a greater ROM.

Keywords: mechanical properties; muscle function; muscle shear modulus; muscle stiffness; plantar flexor muscles; post-stretching activation; proprioceptive neuromuscular facilitation stretching; specific warm-up.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Reiner, Tilp, Guilhem, Morales-Artacho, Nakamura and Konrad.

Figures

Figure 1
Figure 1
Overview of the test procedure. SWE, shear wave elastography; MVIC, maximum voluntary isometric contraction; MVDC, maximum voluntary dynamic contraction; ROM, range of motion; PRT, passive resistive torque; control condition=4min rest; and post-stretching activation (PSA)=2×(skipping with 40 ground contacts, 20 jumps with straight legs, and high knee running with 40 ground contacts).
Figure 2
Figure 2
Measurement setup in the laboratory. The participant is positioned prone and fixed on the dynamometer to prevent evasive movements. The pillow underneath the non-testing leg was used to increase subjects’ comfort during the measurements.
Figure 3
Figure 3
The standing wall push exercise used for the proprioceptive neuromuscular facilitation (PNF) stretching intervention.
Figure 4
Figure 4
An example for signal changes in shear wave elastography in the GM muscle in the PNF+PSA group. For the analysis, the area within the colored box was analyzed. Each colored pixel has a value according to the scale on the right upper corner (max 300kPa) and the average of the chosen area was taken for further analysis.
Figure 5
Figure 5
Pre- and post-mean shear modulus values of both groups (PNF only and PNF+PSA) and the individual changes. *=significant change between pre- and post-values.
Figure 6
Figure 6
Pre- and post-MVIC peak torque values of both groups (PNF only and PNF+PSA) and the individual changes. *=significant change between pre- and post-values.
Figure 7
Figure 7
Pre- and post-dorsiflexion ROM values of both groups (PNF only and PNF+PSA) and the individual changes. *=significant changes between pre- and post-values.

References

    1. Avela J., Kyröläinen H., Komi P. V. (1999). Altered reflex sensitivity after repeated and prolonged passive muscle stretching. J. Appl. Physiol. 86, 1283–1291. doi: 10.1152/jappl.1999.86.4.1283, PMID:
    1. Behm D. G., Blazevich A. J., Kay A. D., McHugh M. (2016). Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: a systematic review. Appl. Physiol. Nutr. Metab. 41, 1–11. doi: 10.1139/apnm-2015-0235, PMID:
    1. Behm D. G., Button D. C., Butt J. C. (2001). Factors affecting force loss with prolonged stretching. Can. J. Appl. Physiol. 26, 262–272. doi: 10.1139/h01-017, PMID:
    1. Behm D. G., Chaouachi A. (2011). A review of the acute effects of static and dynamic stretching on performance. Eur. J. Appl. Physiol. 111, 2633–2651. doi: 10.1007/s00421-011-1879-2, PMID:
    1. Behm D. G., Kay A. D., Trajano G. S., Blazevich A. J. (2021). Mechanisms underlying performance impairments following prolonged static stretching without a comprehensive warm-up. Eur. J. Appl. Physiol. 121, 67–94. doi: 10.1007/s00421-020-04538-8, PMID:
    1. Bercoff J., Tanter M., Fink M. (2004). Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 396–409. doi: 10.1109/TUFFC.2004.1295425, PMID:
    1. Blazevich A. J., Gill N. D., Kvorning T., Kay A. D., Goh A. G., Hilton B., et al. . (2018). No effect of muscle stretching within a full, dynamic warm-up on athletic performance. Med. Sci. Sports Exerc. 50, 1258–1266. doi: 10.1249/MSS.0000000000001539, PMID:
    1. Bradley P. S., Olsen P. D., Portas M. D. (2007). The effect of static, ballistic, and proprioceptive neuromuscular faciliation stretching on vertical jump performance. J. Strength Cond. Res. 21, 223–226. doi: 10.1519/00124278-200702000-00040, PMID:
    1. Christensen B. K., Nordstrom B. J. (2008). The effects of proprioceptive neuromuscular facilitation and dynamic stretching techniques on vertical jump performance. J. Strength Cond. Res. 22, 1826–1831. doi: 10.1519/JSC.0b013e31817ae316, PMID:
    1. Cohen J. (2013). Statistical Power Analysis for the Behavioral Sciences. New York: Academic press.
    1. Cramer J. T., Housh T. J., Weir J. P., Johnson G. O., Coburn J. W., Beck T. W. (2005). The acute effects of static stretching on peak torque, mean power output, electromyography, and mechanomyography. Eur. J. Appl. Physiol. 93, 530–539. doi: 10.1007/s00421-004-1199-x, PMID:
    1. Fowles J. R., Sale D. G., Macdougall J. D. (2000). Reduced strength after passive stretch of the human plantarflexors. J. Appl. Physiol. 89, 1179–1188. doi: 10.1152/jappl.2000.89.3.1179, PMID:
    1. Gajdosik R. L., Vander Linden D. W., McNair P. J., Williams A. K., Riggin T. J. (2005). Effects of an eight-week stretching program on the passive-elastic properties and function of the calf muscles of older women. Clin. Biomech. 20, 973–983. doi: 10.1016/j.clinbiomech.2005.05.011, PMID:
    1. Hermens H. J., Freriks B., Merletti R., Stegeman D., Blok J., Rau G., et al. . (1999). European recommendations for surface electromyography. Roessingh Res. Dev. 8, 13–54.
    1. Hindle K., Whitcomb T., Briggs W., Hong J. (2012). Proprioceptive neuromuscular facilitation (PNF): its mechanisms and effects on range of motion and muscular function. J. Hum. Kinet. 31, 105–113. doi: 10.2478/v10078-012-0011-y, PMID:
    1. Hirayama K., Yanai T., Kanehisa H., Fukunaga T., Kawakami Y. (2012). Neural modulation of muscle-tendon control strategy after a single practice session. Med. Sci. Sports Exerc. 44, 1512–1518. doi: 10.1249/mss.0b013e3182535da5, PMID:
    1. Hug F., Tucker K., Gennisson J. L., Tanter M., Nordez A. (2015). Elastography for muscle biomechanics: toward the estimation of individual muscle force. Exerc. Sport Sci. Rev. 43, 125–133. doi: 10.1249/JES.0000000000000049, PMID:
    1. Kato E., Kanehisa H., Fukunaga T., Kawakami Y. (2010). Changes in ankle joint stiffness due to stretching: the role of tendon elongation of the gastrocnemius muscle. Eur. J. Sport Sci. 10, 111–119. doi: 10.1080/17461390903307834
    1. Kay A. D., Dods S., Blazevich A. J. (2016). Acute effects of contract-relax (CR) stretch versus a modified CR technique. Eur. J. Appl. Physiol. 116, 611–621. doi: 10.1007/s00421-015-3320-8, PMID:
    1. Kay A. D., Husbands-Beasley J., Blazevich A. J. (2015). Effects of contract-relax, static stretching, and isometric contractions on muscle-tendon mechanics. Med. Sci. Sports Exerc. 47, 2181–2190. doi: 10.1249/MSS.0000000000000632, PMID:
    1. Konrad A., Stafilidis S., Tilp M. (2017). Effects of acute static, ballistic, and PNF stretching exercise on the muscle and tendon tissue properties. Scand. J. Med. Sci. Sports 27, 1070–1080. doi: 10.1111/sms.12725, PMID:
    1. Konrad A., Tilp M. (2020). The time course of muscle-tendon unit function and structure following three minutes of static stretching. J. Sports Sci. Med. 19, 52–58. PMID:
    1. Kot B. C. W., Zhang Z. J., Lee A. W. C., Leung V. Y. F., Fu S. N. (2012). Elastic modulus of muscle and tendon with shear wave ultrasound elastography: variations with different technical settings. PLoS One 7:e44348. doi: 10.1371/journal.pone.0044348, PMID:
    1. Kubo K., Ikebukuro T. (2019). Changes in joint, muscle, and tendon stiffness following repeated hopping exercise. Physiol. Rep. 7:e14237. doi: 10.14814/phy2.14237, PMID:
    1. Kubo K., Ishigaki T., Ikebukuro T. (2017). Effects of plyometric and isometric training on muscle and tendon stiffness in vivo. Physiol. Rep. 5:e13374. doi: 10.14814/phy2.13374, PMID:
    1. Kubo K., Kanehisa H., Fukunaga T. (2002). Effects of resistance and stretching training programmes on the viscoelastic properties of human tendon structures in vivo. J. Physiol. 538, 219–226. doi: 10.1113/jphysiol.2001.012703, PMID:
    1. Lacourpaille L., Hug F., Bouillard K., Hogrel J. Y., Nordez A. (2012). Supersonic shear imaging provides a reliable measurement of resting muscle shear elastic modulus. Physiol. Meas. 33, N19–N28. doi: 10.1088/0967-3334/33/3/N19, PMID:
    1. Le Sant G., Nordez A., Andrade R., Hug F., Freitas S., Gross R. (2017). Stiffness mapping of lower leg muscles during passive dorsiflexion. J. Athl. Train. 230, 639–650. doi: 10.1111/joa.12589, PMID:
    1. Lempke L., Wilkinson R., Murray C., Stanek J. (2018). The effectiveness of PNF versus static stretching on increasing hip-flexion range of motion. J. Sport Rehabil. 27, 289–294. doi: 10.1123/jsr.2016-0098, PMID:
    1. Magnusson S. P., Simonsen E. B., Aagaard P., Soørensen H., Kjær M. (1996). A mechanism for altered flexibility in human skeletal muscle. J. Physiol. 497, 291–298. doi: 10.1113/jphysiol.1996.sp021768, PMID:
    1. Mahieu N. N., Cools A., De Wilde B., Boon M., Witvrouw E. (2009). Effect of proprioceptive neuromuscular facilitation stretching on the plantar flexor muscle-tendon tissue properties. Scand. J. Med. Sci. Sports 19, 553–560. doi: 10.1111/j.1600-0838.2008.00815.x, PMID:
    1. Manoel M. E., Harris-Love M. O., Danoff J. V., Miller T. A. (2008). Acute effects of static, dynamic, and proprioceptive neuromuscular facilitation stretching on muscle power in women. J. Strength Cond. Res. 22, 1528–1534. doi: 10.1519/JSC.0b013e31817b0433, PMID:
    1. Marek S. M., Cramer J. T., Fincher A. L., Massey L. L., Dangelmaier S. M., Purkayastha S., et al. . (2005). Acute effects of static and proprioceptive neuromuscular facilitation stretching on muscle strength and power output. J. Athl. Train. 40, 94–103. PMID: /PMCID:
    1. Miyahara Y., Naito H., Ogura Y., Katamoto S., Akoi J. (2013). Effects of proprioceptive neuromuscular facilitation stretching and static stretching on maximal voluntary contraction. J. Strength Cond. Res. 27, 195–201. doi: 10.1519/JSC.0b013e3182510856, PMID:
    1. Molacek Z. D., Conley D. S., Evetovich T. K., Hinnerichs K. R. (2010). Effects of low- and high-volume stretching on bench press performance in collegiate football players. J. Strength Cond. Res. 24, 711–716. doi: 10.1519/JSC.0b013e3181c7c242, PMID:
    1. Morales-Artacho A. J., Lacourpaille L., Guilhem G. (2017). Effects of warm-up on hamstring muscles stiffness: cycling vs foam rolling. Scand. J. Med. Sci. Sports 27, 1959–1969. doi: 10.1111/sms.12832, PMID:
    1. Nakamura M., Ikezoe T., Takeno Y., Ichihashi N. (2011). Acute and prolonged effect of static stretching on the passive stiffness of the human gastrocnemius muscle tendon unit in vivo. J. Orthop. Res. 29, 1759–1763. doi: 10.1002/jor.21445, PMID:
    1. Nakamura M., Ikezoe T., Tokugawa T., Ichihashi N. (2015). Acute effects of stretching on passive properties of human gastrocnemius muscle-tendon unit: analysis of differences between hold-relax and static stretching. J. Sport Rehabil. 24, 286–292. doi: 10.1123/jsr.2014-0164, PMID:
    1. Pacheco L., Balius R. B., Aliste L., Pujol M., Pedret C. (2011). The acute effects of different stretching exercises on jump performance. J. Strength Cond. Res. 25, 2991–2998. doi: 10.1519/JSC.0b013e318212dac0, PMID:
    1. Phillips J., Diggin D., King D. L., Sforzo G. A. (2018). The Effect Of Varying Self-myofascial Release Duration On Subsequent Athletic Performance. Med. Sci. Sport. Exerc. 35, 746–753. doi: 10.1519/JSC.0000000000002751, PMID:
    1. Proske U., Morgan D. L. (1999). Do cross-bridges contribute to the tension during stretch of passive muscle? J. Muscle Res. Cell Motil. 20, 433–442. doi: 10.1023/A:1005573625675, PMID:
    1. Reid J. C., Greene R., Young J. D., Hodgson D. D., Blazevich A. J., Behm D. G. (2018). The effects of different durations of static stretching within a comprehensive warm-up on voluntary and evoked contractile properties. Eur. J. Appl. Physiol. 118, 1427–1445. doi: 10.1007/s00421-018-3874-3, PMID:
    1. Reiner M. M., Glashüttner C., Bernsteiner D., Tilp M., Guilhem G., Morales-Artacho A., et al. . (2021). A comparison of foam rolling and vibration foam rolling on the quadriceps muscle function and mechanical properties. Eur. J. Appl. Physiol. 121, 1461–1471. doi: 10.1007/s00421-021-04619-2, PMID:
    1. Samson M., Button D. C., Chaouachi A., Behm D. G. (2012). Effects of dynamic and static stretching within general and activity specific warm-up protocols. J. Sports Sci. Med. 11, 279–285. PMID:
    1. Sapin-De Brosses E., Gennisson J. L., Pernot M., Fink M., Tanter M. (2010). Temperature dependence of the shear modulus of soft tissues assessed by ultrasound. Phys. Med. Biol. 55, 1701–1718. doi: 10.1088/0031-9155/55/6/011, PMID:
    1. Sharman M. J., Cresswell A. G., Riek S. (2006). Proprioceptive neuromuscular facilitation stretching: mechanisms and clinical implications. Sports Med. 36, 929–939. doi: 10.2165/00007256-200636110-00002, PMID:
    1. Simpson C. L., Kim B. D. H., Bourcet M. R., Jones G. R., Jakobi J. M. (2017). Stretch training induces unequal adaptation in muscle fascicles and thickness in medial and lateral gastrocnemii. Scand. J. Med. Sci. Sports 27, 1597–1604. doi: 10.1111/sms.12822, PMID:
    1. Takeuchi K., Takemura M., Nakamura M., Tsukuda F., Miyakawa S. (2021). The effects of using a combination of static stretching and aerobic exercise on muscle tendon unit stiffness and strength in ankle plantar-flexor muscles. Eur. J. Sport Sci. 18, 1–7. doi: 10.1080/17461391.2020.1866079, PMID:
    1. Weppler C. H., Magnusson S. P. (2010). Increasing muscle extensibility: a matter of increasing length or modifying sensation? Phys. Ther. 90, 438–449. doi: 10.2522/ptj.20090012, PMID:

Source: PubMed

3
Se inscrever