How Well Do Current Laboratory Biomarkers Inform Clinical Decision-Making in Chronic Pain Management?

Jonathan M Hagedorn, Joshua Gunn, Ryan Budwany, Ryan S D'Souza, Krishnan Chakravarthy, Timothy R Deer, Jonathan M Hagedorn, Joshua Gunn, Ryan Budwany, Ryan S D'Souza, Krishnan Chakravarthy, Timothy R Deer

Abstract

Objective: Decision-making in chronic pain patients involves a combination of subjective and objective criteria, including patient history, physical examination, imaging, and patient response to prior treatments, clinical experience, probabilities, and recognition of patterns. However, there is a distinct lack of objective laboratory biomarkers in use in routine clinical care. The objective was to review the literature to identify and describe specific biomarkers in chronic pain management.

Methods: This is a narrative review of the literature regarding the use of laboratory biomarkers in chronic pain. A librarian-assisted literature search of the PubMed, Science Direct, and Google Scholar databases was performed and resulted in 304 possible manuscripts. We included manuscripts assessing laboratory collected biomarkers from urine, serum, cerebrospinal fluid, and saliva. After screening and review of the initial literature search results, a total of 75 manuscripts were included in the narrative review.

Conclusion: The studies reviewed suggested that specific biomarkers may help identify those patients at risk of disease development and function as a prognostic indicator for disease progression and treatment response. However, additional research is necessary before specific recommendations can be made, and current clinical decision-making is modified.

Keywords: biomarkers; chronic pain; outcomes.

Conflict of interest statement

Dr Jonathan M Hagedorn reports personal fees for consulting and advisory board from Abbott, Boston Scientific, and Nevro, outside the submitted work. Dr Joshua Gunn has a patent “Methods of Diagnosing and Treating Particular Causal Components of Chronic Pain in a Patient” pending to Ethos Laboratories; and Dr Gunn is the co-founder and Chief Scientific Officer of Ethos Research & Development. Ethos R&D developed and validated a novel biomarker assay mentioned in this manuscript. Dr Timothy R Deer reports personal fees for consulting from Ethos, during the conduct of the study. The authors report no other conflicts of interest in this work.

© 2021 Hagedorn et al.

Figures

Figure 1
Figure 1
Flow Diagram of Screening and Selection Process.

References

    1. Reckziegel D, Vachon-Presseau E, Petre B, et al. Deconstructing biomarkers for chronic pain: context and hypothesis dependent biomarker types in relation to chronic pain. Pain. 2019;160(Suppl 1):S37–S48. doi:10.1097/j.pain.0000000000001529
    1. Sun AL, Ni YH, Li XB, et al. Urinary methylmalonic acid as an indicator of early vitamin B12 deficiency and its role in polyneuropathy in type 2 diabetes. J Diabetes Res. 2014;2014:1–6. doi:10.1155/2014/921616
    1. Langan R, Goodbred A. Vitamin B12 deficiency: recognition and management. Am Fam Physician. 2017;96(6):384–389.
    1. Gürsoy AE, Kolukısa M, Babacan-Yıldız G, Çelebi A. Subacute combined degeneration of the spinal cord due to different etiologies and improvement of MRI findings. Case Rep Neurol Med. 2013;2013:1–5.
    1. Hammond N, Wang Y, Dimachkie MM, Barohn RJ. Nutritional neuropathies. Neurol Clin. 2013;31(2):477–489. doi:10.1016/j.ncl.2013.02.002
    1. Heller CA, Friedman PA. Pyridoxine deficiency and peripheral neuropathy associated with long-term phenelzine therapy. Am J Med. 1983;75(5):887–888. doi:10.1016/0002-9343(83)90422-9
    1. Raskin NH, Fishman RA. Pyridoxine-deficiency neuropathy due to hydralazine. N Engl J Med. 1965;273(22):1182–1185. doi:10.1056/NEJM196511252732203
    1. Corken M, Porter J. Is vitamin B 6 deficiency an under-recognized risk in patients receiving haemodialysis? A systematic review: 2000–2010. Nephrology. 2011;16(7):619–625. doi:10.1111/j.1440-1797.2011.01479.x
    1. Sande JS, Ulvik A, Midttun Ø, et al. Vitamin B-6 status correlates with disease activity in rheumatoid arthritis patients during treatment with TNFα inhibitors. J Nutr. 2019;149(5):770–775. doi:10.1093/jn/nxz001
    1. Kohlstadt I, ed. Food and Nutrients in Disease Management. 1st ed. Boca Raton: CRC Press; 2009.
    1. Kamat PK, Mallonee CJ, George AK, Tyagi SC, Tyagi N. Homocysteine, alcoholism, and its potential epigenetic mechanism. Alcohol Clin Exp Res. 2016;40(12):2474–2481. doi:10.1111/acer.13234
    1. Morrow LE, Grimsley EW. Long-term diuretic therapy in hypertensive patients: effects on serum homocysteine, vitamin B6, vitamin B12, and red blood cell folate concentrations. South Med J. 1999;92(9):866–870. doi:10.1097/00007611-199909000-00003
    1. Butler B, Acosta G, Shi R. Exogenous Acrolein intensifies sensory hypersensitivity after spinal cord injury in rat. J Neurol Sci. 2017;379:29–35. doi:10.1016/j.jns.2017.05.039
    1. Lin Y, Chen Z, Tang J, Cao P, Shi R. Acrolein contributes to the neuropathic pain and neuron damage after ischemic–reperfusion spinal cord injury. Neuroscience. 2018;384:120–130. doi:10.1016/j.neuroscience.2018.05.029
    1. Moghe A, Ghare S, Lamoreau B, et al. Molecular mechanisms of acrolein toxicity: relevance to human disease. Toxicol Sci. 2015;143(2):242–255. doi:10.1093/toxsci/kfu233
    1. Kim H, Chen L, Lim G, et al. Brain indoleamine 2,3-dioxygenase contributes to the comorbidity of pain and depressionUEG Week 2013 Oral Presentations. J Clin Invest. 2012;122(8):2940–2954. doi:10.1172/JCI61884
    1. Dantzer R, O’Connor JC, Lawson MA, Kelley KW. Inflammation-associated depression: from serotonin to kynurenine. Psychoneuroendocrinology. 2011;36(3):426–436. doi:10.1016/j.psyneuen.2010.09.012
    1. Dantzer R. Role of the kynurenine metabolism pathway in inflammation-induced depression: preclinical approaches. In: Current Topics in Behavioral Neurosciences. Vol. 31. Springer Verlag; 2017:117.
    1. de Oliveira FR, Fantucci MZ, Adriano L, et al. Neurological and inflammatory manifestations in Sjogren's syndrome: the role of the kynurenine metabolic pathway. Int J Mol Sci. 2018;19(12):3953. doi:10.3390/ijms19123953
    1. Savitz J. The kynurenine pathway: a finger in every pie. Mol Psychiatry. 2020;25(1):131–147. doi:10.1038/s41380-019-0414-4
    1. Figueroa-Romero C, Sadidi M, Feldman EL. Mechanisms of disease: the oxidative stress theory of diabetic neuropathy. Rev Endocr Metab Disord. 2008;9(4):301–314. doi:10.1007/s11154-008-9104-2
    1. Darmaun D, Smith SD, Sweeten S, Sager BK, Welch S, Mauras N. Evidence for accelerated rates of glutathione utilization and glutathione depletion in adolescents with poorly controlled type 1 diabetes. Diabetes. 2005;54(1):190–196. doi:10.2337/diabetes.54.1.190
    1. Emmett M. Acetaminophen toxicity and 5-oxoproline (pyroglutamic acid): a tale of two cycles, one an ATP-depleting futile cycle and the other a useful cycle. Clin J Am Soc Nephrol. 2014;9(1):191–200. doi:10.2215/CJN.07730713
    1. Qu H, Guo M, Chai H, Wang WT, Ga ZY, Shi DZ. Effects of coenzyme Q10 on statin-induced myopathy: an updated meta-analysis of randomized controlled trials. J Am Heart Assoc. 2018;7(19):e009835. doi:10.1161/JAHA.118.009835
    1. Hernández-Camacho JD, Bernier M, López-Lluch G, Navas P. Coenzyme Q10 supplementation in aging and disease. Front Physiol. 2018;9(FEB):44. doi:10.3389/fphys.2018.00044
    1. Flanagan JL, Simmons PA, Vehige J, Willcox MD, Garrett Q. Role of carnitine in disease. Nutr Metab. 2010;1:7.
    1. Miranda-Massari R. Metabolic Correction in the Management of Diabetic Peripheral Neuropathy: improving Clinical Results Beyond Symptom Control. Curr Clin Pharmacol. 2011;6(4):260–273. doi:10.2174/157488411798375967
    1. Sforzini L, Nettis MA, Mondelli V, Pariante CM. Inflammation in cancer and depression: a starring role for the kynurenine pathway. Psychopharmacology. 2019;236(10):2997–3011. doi:10.1007/s00213-019-05200-8
    1. Lapin IP, Oxenkrug GF. Intensification of the central serotoninergic processes as a possible determinant of the thymoleptic effect. Lancet. 1969;293(7586):132–136. doi:10.1016/S0140-6736(69)91140-4
    1. Martin SL, Power A, Boyle Y, Anderson IM, Silverdale MA, Jones AKP. 5-HT modulation of pain perception in humans. Psychopharmacology. 2017;234(19):2929–2939. doi:10.1007/s00213-017-4686-6
    1. Pertovaara A. Noradrenergic pain modulation. Prog Neurobiol. 2006;80(2):53–83. doi:10.1016/j.pneurobio.2006.08.001
    1. Bannister K, Dickenson AH. What do monoamines do in pain modulation? Curr Opin Support Palliat Care. 2016;10(2):143–148. doi:10.1097/SPC.0000000000000207
    1. Liang W, Wu Z, Zhang G, et al. A urine-based biomarker for chronic prostatitis/chronic pelvic pain syndrome: a retrospective multi-center study. Transl Androl Urol. 2020;9(5):2218226. doi:10.21037/tau-20-1268
    1. Gu CY, Huang YQ, Han CT, et al. Clinical significance of urine prostatic exosomal protein in the diagnosis of prostate cancer. Am J Cancer Res. 2019;9(5):1074–1078.
    1. Roy RA, Stephens AJ, Daisy C, et al. Association of longitudinal changes in symptoms and urinary biomarkers in patients with urological chronic pelvic pain syndrome: a MAPP Research Network Study. J Urol. 2021;205(2):514–523. doi:10.1097/JU.0000000000001391
    1. Woodworth DC, Dagher A, Curatolo A, et al. Changes in brain white matter structure are associated with urine proteins in urological chronic pelvic pain syndrome (UCPPS): a MAPP Network study. PLoS One. 2018;13(12):e0206807. doi:10.1371/journal.pone.0206807
    1. Dagher A, Curatolo A, Sachdev M, et al. Identification of Novel Non-invasive Biomarkers of Urinary Chronic Pelvic Pain Syndrome (UCPPS): findings from the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network. BJU Int. 2017;120(1):130. doi:10.1111/bju.13832
    1. Harpole M, Davis J, Espina V. Current state of the art for enhancing urine biomarker discovery. Expert Rev Proteomics. 2016;13(6):609. doi:10.1080/14789450.2016.1190651
    1. Lopez-Gonzalez MJ, Landry M, Favereaux A. MicroRNA and chronic pain: from mechanisms to therapeutic potential. Pharmacol Ther. 2017;180:1–15. doi:10.1016/j.pharmthera.2017.06.001
    1. Niculescu AB, Le-niculescu H, Levey DF, et al. Towards precision medicine for pain: diagnostic biomarkers and repurposed drugs. Mol Psychiatry. 2019;24(4):501–522. doi:10.1038/s41380-018-0345-5
    1. Choi HY, Lee CH. Can beta-endorphin be used as a biomarker for chronic low back pain? a meta-analysis of randomized controlled trials. Pain Med. 2019;20(1):28–36. doi:10.1093/pm/pny186
    1. D’Agnelli S, Arendt-Nielsen L, Gerra MC, et al. Fibromyalgia: genetics and epigenetics insights may provide the basis for the development of diagnostic biomarkers. Mol Pain. 2019;2:15.
    1. Calvo M, Davies AJ, Hebert HL, et al. The genetics of neuropathic pain from model organisms to clinical application. Neuron. 2019;104(4):637–653. doi:10.1016/j.neuron.2019.09.018
    1. Gunn J, Hill M, Cotten B, Deer TR. An analysis of biomarkers in chronic pain patients. Pain Physician. 2020;23:23.
    1. Amirdelfan K, Pope JE, Gunn J, et al. Clinical validation of a multi-biomarker assay for the evaluation of chronic pain patients in a cross-sectional, observational study. Pain Ther. 2020;9(2):511–529. doi:10.1007/s40122-020-00175-3
    1. Peabody J, Paculdo D, Tamondong-Lachica D, Cabaluna IT, Gunn J. Randomized trial on the clinical utility of a novel biomarker panel to identify treatable determinants of chronic pain. Diagnostics. 2020;10(8):513. doi:10.3390/diagnostics10080513
    1. McCloy K, Doan N, Abeyratne U, Systematic A. Review of the association between urinary biomarkers and pain. IFMBE Proc. 2017;63:443–447.
    1. Gebhardt K, Brenner H, Sturmer T, et al. The course of high-sensitive C-reactive protein in correlation with pain and clinical function in patients with acute lumbosciatic pain and chronic low back pain - a 6 months prospective longitudinal study. Eur J Pain. 2006;10(8):711–719. doi:10.1016/j.ejpain.2005.11.005
    1. Stürmer T, Raum E, Buchner M, et al. Pain and high sensitivity C reactive protein in patients with chronic low back pain and acute sciatic pain. Ann Rheum Dis. 2005;64(6):921–925. doi:10.1136/ard.2004.027045
    1. Zu B, Pan H, Zhang XJ, Yin ZS. Serum levels of the inflammatory cytokines in patients with lumbar radicular pain due to disc herniation. Asian Spine J. 2016;10(5):843–849. doi:10.4184/asj.2016.10.5.843
    1. Gadient RA, Otten UH. Interleukin-6 (IL-6)-a molecule with both beneficial and destructive potentials. Prog Neurobiol. 1997;52(5):379–390. doi:10.1016/S0301-0082(97)00021-X
    1. Cunha FQ, Poole S, Lorenzetti BB, Ferreira SH. The pivotal role of tumour necrosis factor alpha in the development of inflammatory hyperalgesia. Br J Pharmacol. 1992;107(3):660–664. doi:10.1111/j.1476-5381.1992.tb14503.x
    1. De Queiroz BZ, Sirineu Pereira D, Antunes Lopes R, et al. Association Between the plasma levels of mediators of inflammation with pain and disability in the elderly with acute low back pain: data from the Back Complaints in the Elders (BACE)-Brazil study. Spine. 2016;41(3):197–203. doi:10.1097/BRS.0000000000001214
    1. Bruunsgaard H, Galbo H, Halkjaer-Kristensen J, Johansen TL, MacLean DA, Pedersen BK. Exercise-induced increase in serum interleukin-6 in humans is related to muscle damage. J Physiol. 1997;499(Pt 3):833–841. doi:10.1113/jphysiol.1997.sp021972
    1. Pedersen BK, Steensberg A, Schjerling P. Muscle-derived interleukin-6: possible biological effects. J Physiol. 2001;536(Pt 2):329–337. doi:10.1111/j.1469-7793.2001.0329c.xd
    1. Pedersen LM, Schistad E, Jacobsen LM, Roe C, Gjerstad J. Serum levels of the pro-inflammatory interleukins 6 (IL-6) and-8 (IL-8) in patients with lumbar radicular pain due to disc herniation: a month prospective study. Brain Behav Immun. 2015;46:132–136. doi:10.1016/j.bbi.2015.01.008
    1. Ostrowski K, Rohde T, Zacho M, Asp S, Pedersen BK. Evidence that interleukin-6 is produced in human skeletal muscle during prolonged running. J Physiol. 1998;508(Pt 3):949–953. doi:10.1111/j.1469-7793.1998.949bp.x
    1. Uçeyler N, Rogausch JP, Toyka KV, Sommer C. Differential expression of cytokines in painful and painless neuropathies. Neurology. 2007;69(1):42–49. doi:10.1212/01.wnl.0000265062.92340.a5
    1. Luchting B, Rachinger-Adam B, Zeitler J, et al. Disrupted TH17/Treg balance in patients with chronic low back pain. PLoS One. 2014;9(8):e104883. doi:10.1371/journal.pone.0104883
    1. Cheng L, Fan W, Liu B, Wang X, Nie L. Th17 lymphocyte levels are higher in patients with ruptured than non-ruptured lumbar discs, and are correlated with pain intensity. Injury. 2013;12:1805–1810. doi:10.1016/j.injury.2013.04.010
    1. Xue H, Yao Y, Wang X, et al. Interleukin-21 is associated with the pathogenesis of lumbar disc herniation. Iran J Allergy Asthma Immunol. 2015;14(5):509–518.
    1. Sowa GA, Perera S, Bechara B, et al. Associations between serum biomarkers and pain and pain-related function in older adults with low back pain: a pilot study. J Am Geriatr Soc. 2014;62(11):2047–2055. doi:10.1111/jgs.13102
    1. Xie P, Liu B, Chen R, et al. Comparative analysis of serum proteomes: identification of proteins associated with sciatica due to lumbar intervertebral disc herniation. Biomed Rep. 2014;2(5):693–698. doi:10.3892/br.2014.295
    1. Licciardone JC, Kearns CM, Hodge LM, Bergamini MV. Associations of cytokine concentrations with key osteopathic lesions and clinical outcomes in patients with nonspecific chronic low back pain: results from the OSTEOPATHIC Trial. J Am Osteopath Assoc. 2012;112(9):596–605. doi:10.7556/jaoa.2012.112.9.596
    1. Wang K, Bao JP, Yang S, et al. A cohort study comparing the serum levels of pro- or anti-inflammatory cytokines in patients with lumbar radicular pain and healthy subjects. Eur Spine J. 2016;25(5):1428–1434. doi:10.1007/s00586-015-4349-4
    1. Wang H, Schiltenwolf M, Buchner M. The role of TNF-alpha in patients with chronic low back pain-a prospective comparative longitudinal study. Clin J Pain. 2008;24(3):273–278. doi:10.1097/AJP.0b013e31816111d3
    1. Wang H, Ahrens C, Rief W, Gantz S, Schiltenwolf M, Richter W. Influence of depression symptoms on serum tumour necrosis factor-alpha of patients with chronic low back pain. Arthritis Res Ther. 2010;12(5):R186. doi:10.1186/ar3156
    1. Ang DC, Moore MN, Hilligoss J, Tabbey R. MCP-1 and IL-8 as pain biomarkers in fibromyalgia: a pilot study. Pain Med. 2011;12(8):1154–1161. doi:10.1111/j.1526-4637.2011.01179.x
    1. Brisby H, Olmarker K, Larsson K, Nutu M, Rydevik B. Proinflammatory cytokines in cerebrospinal fluid and serum in patients with disc herniation and sciatica. Eur Spine J. 2002;11(1):62–66. doi:10.1007/s005860100306
    1. Wahlbeck K, Sundblom M, Kalso E, Tigerstedt I, Rimón R. Elevated plasma vasopressin and normal cerebrospinal fluid angiotensin-converting enzyme in chronic pain disorder. Biol Psychiatry. 1996;40(10):994–999. doi:10.1016/0006-3223(95)00577-3
    1. Sarchielli P, Alberti A, Candeliere A, Floridi A, Capocchi G, Calabresi P. Glial cell line-derived neurotrophic factor and somatostatin levels in cerebrospinal fluid of patients affected by chronic migraine and fibromyalgia. Cephalalgia. 2006;26(4):409–415. doi:10.1111/j.1468-2982.2005.01048.x
    1. Royds J, Conroy MJ, Dunne MR, et al. Examination and characterisation of burst spinal cord stimulation on cerebrospinal fluid cellular and protein constituents in patient responders with chronic neuropathic pain - A Pilot Study. J Neuroimmunol. 2020;344:577249. doi:10.1016/j.jneuroim.2020.577249
    1. Khoonsari PE, Ossipova E, Lengqvist J, et al. The human CSF pain proteome. J Proteomics. 2019;190:67–76. doi:10.1016/j.jprot.2018.05.012
    1. Lind AL, Just D, Mikus M, et al. CSF levels of apolipoprotein C1 and autotaxin found to associate with neuropathic pain and fibromyalgia. J Pain Res. 2019;12:2875–2889. doi:10.2147/JPR.S215348
    1. Mannes AJ, Martin BM, Yang HT, et al. Cystatin C as a cerebrospinal fluid biomarker for pain in humans. Pain. 2003;102(3):251–256. doi:10.1016/S0304-3959(02)00403-7
    1. Ericson H, Abu Hamdeh S, Freyhult E, et al. Cerebrospinal fluid biomarkers of inflammation in trigeminal neuralgia patients operated with microvascular decompression. Pain. 2019;160(11):2603–2611. doi:10.1097/j.pain.0000000000001649
    1. Catley D, Kaell AT, Kirschbaum C, Stone AA. A naturalistic evaluation of cortisol secretion in persons with fibromyalgia and rheumatoid arthritis. Arthritis Care Res. 2000;13(1):51–61. doi:10.1002/1529-0131(200002)13:1<51::AID-ART8>;2-Q
    1. Generaal E, Vogelzangs N, Macfarlane GJ, et al. Reduced hypothalamic-pituitary-adrenal axis activity in chronic multi-site musculoskeletal pain: partly masked by depressive and anxiety disorders. BMC Musculoskelet Disord. 2014;15:227. doi:10.1186/1471-2474-15-227
    1. Haug SR, Marthinussen MC. Acute dental pain and salivary biomarkers for stress and inflammation in patients with pulpal or periapical inflammation. J Oral Facial Pain Headache. 2019;33(2):227–233. doi:10.11607/ofph.2007
    1. Fischer S, Doerr JM, Strahler J, Mewes R, Thieme K, Nater UM. Stress exacerbates pain in the everyday lives of women with fibromyalgia syndrome–The role of cortisol and alpha-amylase. Psychoneuroendocrinology. 2016;63:68–77. doi:10.1016/j.psyneuen.2015.09.018
    1. Lopez-Jornet P, Felipe CC, Pardo-Marin L, Ceron JJ, Pons-Fuster E, Tvarijonaviciute A. Salivary biomarkers and their correlation with pain and stress in patients with burning mouth syndrome. J Clin Med. 2020;9(4):929. doi:10.3390/jcm9040929
    1. Jasim H, Ghafouri B, Gerdle B, Hedenberg-Magnusson B, Ernberg M. Altered levels of salivary and plasma pain related markers in temporomandibular disorders. J Headache Pain. 2020;21(1):105. doi:10.1186/s10194-020-01160-z
    1. Bazzichi L, Ciregia F, Giusti L, et al. Detection of potential markers of primary fibromyalgia syndrome in human saliva. Proteomics Clin Appl. 2009;3(11):1296–1304. doi:10.1002/prca.200900076
    1. Bazzichi L, Da Valle Y, Rossi A, et al. A multidisciplinary approach to study the effects of balneotherapy and mud-bath therapy treatments on fibromyalgia. Clin Exp Rheumatol. 2013;31(6 Suppl 79):S111–20.
    1. Nam JH, Lee HS, Kim J, Chu MK. Salivary glutamate is elevated in individuals with chronic migraine. Cephalalgia. 2018;38(8):1485–1492. doi:10.1177/0333102417742366
    1. Aurer A, Jorgić-Srdjak K, Plancak D, Stavljenić-Rukavina A, Aurer-Kozelj J. Proinflammatory factors in saliva as possible markers for periodontal disease. Coll Antropol. 2005;29(2):435–439.
    1. Srinivasan M, Kodumudi KN, Zunt SL. Soluble CD14 and toll-like receptor-2 are potential salivary biomarkers for oral lichen planus and burning mouth syndrome. Clin Immunol. 2008;126(1):31–37. doi:10.1016/j.clim.2007.08.014
    1. Malamud D. Saliva as a diagnostic fluid. Dent Clin North Am. 2011;55(1):159–178. doi:10.1016/j.cden.2010.08.004
    1. Scala A, Checchi L, Montevecchi M, Marini I, Giamberardino MA. Update on burning mouth syndrome: overview and patient management. Crit Rev Oral Biol Med. 2003;14(4):275–291. doi:10.1177/154411130301400405
    1. Ramadan NM. Glutamate and migraine: from Ikeda to the 21st century. Cephalalgia. 2014;34(2):86–89. doi:10.1177/0333102413499646
    1. Backryd E. Pain in the blood? Envisioning mechanism-based diagnoses and biomarkers in clinical pain medicine. Diagnostics. 2015;5(1):84–95. doi:10.3390/diagnostics5010084

Source: PubMed

3
Se inscrever