Regorafenib plus toripalimab in patients with metastatic colorectal cancer: a phase Ib/II clinical trial and gut microbiome analysis

Feng Wang, Ming-Ming He, Yi-Chen Yao, Xia Zhao, Zhi-Qiang Wang, Ying Jin, Hui-Yan Luo, Ji-Bin Li, Feng-Hua Wang, Miao-Zhen Qiu, Zhi-Da Lv, De-Shen Wang, Yu-Hong Li, Dong-Sheng Zhang, Rui-Hua Xu, Feng Wang, Ming-Ming He, Yi-Chen Yao, Xia Zhao, Zhi-Qiang Wang, Ying Jin, Hui-Yan Luo, Ji-Bin Li, Feng-Hua Wang, Miao-Zhen Qiu, Zhi-Da Lv, De-Shen Wang, Yu-Hong Li, Dong-Sheng Zhang, Rui-Hua Xu

Abstract

This is a phase Ib/II study of regorafenib plus toripalimab for colorectal cancer. The objective response rate (ORR) is 15.2% and the disease control rate is 36.4% in evaluable patients with recommended phase II dose (80 mg regorafenib plus toripalimab). The median progression-free survival (PFS) and the median overall survival are 2.1 months and 15.5 months, respectively. Patients with liver metastases have lower ORR than those without (8.7% versus 30.0%). All patients (3/3) with lung-only metastasis respond, whereas no patients (0/4) with liver-only metastasis respond. 94.9% and 38.5% of patients have grade 1 and grade 3 treatment-related adverse events, respectively. Gut microbiome analysis of the baseline fecal samples shows significantly increased relative abundance and positive detection rate of Fusobacterium in non-responders than responders. Patients with high-abundance Fusobacterium have shorter PFS than those with low abundance (median PFS = 2.0 versus 5.2 months; p = 0.002).

Keywords: colorectal cancer; immunotherapy; microbiome; programmed cell death protein 1; regorafenib; toripalimab.

Conflict of interest statement

The authors declare no competing interests.

© 2021 The Author(s).

Figures

Graphical abstract
Graphical abstract
Figure 1
Figure 1
The mTPI design spreadsheet for phase Ib dose escalation (A) The spreadsheet of the modified toxicity probability interval (mTPI) method. The letters in different colors are computed based on the decision rules under the mTPI method and represent different dose-finding actions. In addition to actions de-escalate the dose (D), stay at the same dose (S), and escalate the dose (E), the table includes action unacceptable toxicity (DU), which is defined as the execution of the dose-exclusion rule in mTPI. (B) The dose escalation of phase Ib. 3 patients were enrolled at 80 mg regorafenib plus 3 mg/kg toripalimab (dose 1), and no one had dose-limiting toxicity (DLT), then 3 patients were enrolled at 120 mg regorafenib plus 3 mg/kg toripalimab (dose 2) and all patients had DLT, and then 6 patients were enrolled at dose 1 and only 1 patient had DLT (pT = 11.1%). The maximum tolerated dose (MTD) was 80 mg regorafenib plus 3 mg/kg toripalimab. HFS, hand-foot syndrome.
Figure 2
Figure 2
Tumor response assessment with Waterfall and Spider plots and treatment exposure and duration with Swimmer plot (A) Waterfall plot of maximum percent change in tumor size from baseline as measured according to RECIST 1.1 in 33 evaluated patients with regorafenib 80 mg and 3 evaluated patients with regorafenib 120 mg. (B) Spider plot of longitudinal change in individual tumor burden over time in RECIST percentage from baseline in 33 evaluated patients with regorafenib 80 mg and 3 evaluated patients with regorafenib 120 mg. (C) Swimmer plot according to dose level in 42 overall patients.
Figure 3
Figure 3
Kaplan-Meier plots of progression-free survival, overall survival, and duration of response (A and B) Kaplan-Meier plot (A) of progression-free survival (PFS) and Kaplan-Meier plot (B) of overall survival (OS) in 33 patients with regorafenib 80 mg as recommended dose. (C) Kaplan-Meier plot of duration of response (DOR) in 5 patients with partial response.
Figure 4
Figure 4
Gut microbiome analysis (A) Composition of gut microbiome at phylum level for the non-responders (NR) and responders (R), with the density plots for the distribution of the number of patients at different relative abundance region for each bacterial phylum. (B) Relative abundance of Fusobacterium in NR and R, with the boxplots for the alpha-diversity Shannon index of the NR and R (∗p < 0.05). (C) Kaplan-Meier plot of PFS in 32 patients with high versus low abundance of Fusobacterium with the best cutoff value of 2.6e−05. (D) Forest plot for multivariate Cox regression analysis of the effect of risk factors (BMI, Fusobacterium, and Alistipes) on patient’s PFS. (E) Time-dependent receiver operating characteristic (ROC) for three-variable (BMI, Fusobacterium, and Alistipes) model at PFS of 3 and 6 months. (F) PFS comparison between the high- and low-risk groups based on Cox model using Kaplan-Meier analysis. See also Tables S2–S6 and Figures S2–S4.

References

    1. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424.
    1. Wang Z.-X., Yao Y.-C., Mai Z.-J., Lin W.-H., Huang Y.-S., Jin Y., Luo H.-Y., Zhang D.-S., Wang F.-H., Wang F. Temporal change in treatment patterns of metastatic colorectal cancer and its association with patient survival: a retrospective cohort study based on an intelligent big-data platform. Engineering. 2021;7:526–533.
    1. Li J., Qin S., Xu R., Yau T.C., Ma B., Pan H., Xu J., Bai Y., Chi Y., Wang L., CONCUR Investigators Regorafenib plus best supportive care versus placebo plus best supportive care in Asian patients with previously treated metastatic colorectal cancer (CONCUR): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2015;16:619–629.
    1. Grothey A., Van Cutsem E., Sobrero A., Siena S., Falcone A., Ychou M., Humblet Y., Bouché O., Mineur L., Barone C., CORRECT Study Group Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 2013;381:303–312.
    1. Le D.T., Uram J.N., Wang H., Bartlett B.R., Kemberling H., Eyring A.D., Skora A.D., Luber B.S., Azad N.S., Laheru D. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 2015;372:2509–2520.
    1. Overman M.J., McDermott R., Leach J.L., Lonardi S., Lenz H.J., Morse M.A., Desai J., Hill A., Axelson M., Moss R.A. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18:1182–1191.
    1. Wang Y., Wang M., Wu H.-X., Xu R.-H. Advancing to the era of cancer immunotherapy. Cancer Commun. (Lond.) 2021 doi: 10.1002/cac2.12178. Published online June 24, 2021.
    1. Giannakis M., Mu X.J., Shukla S.A., Qian Z.R., Cohen O., Nishihara R., Bahl S., Cao Y., Amin-Mansour A., Yamauchi M. Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep. 2016;15:857–865.
    1. Topalian S.L., Hodi F.S., Brahmer J.R., Gettinger S.N., Smith D.C., McDermott D.F., Powderly J.D., Carvajal R.D., Sosman J.A., Atkins M.B. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 2012;366:2443–2454.
    1. Tada Y., Togashi Y., Kotani D., Kuwata T., Sato E., Kawazoe A., Doi T., Wada H., Nishikawa H., Shitara K. Targeting VEGFR2 with ramucirumab strongly impacts effector/ activated regulatory T cells and CD8+ T cells in the tumor microenvironment. J. Immunother. Cancer. 2018;6:106.
    1. Voron T., Colussi O., Marcheteau E., Pernot S., Nizard M., Pointet A.L., Latreche S., Bergaya S., Benhamouda N., Tanchot C. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J. Exp. Med. 2015;212:139–148.
    1. Chen C.-W., Ou D.-L., Hsu C.-L., Lin L., Cheng A.-L., Hsu C. Regorafenib may enhance efficacy of anti-program cell death-1 (PD-1) therapy in hepatocellular carcinoma through modulation of macrophage polarization. J. Hepatol. 2019;70:e605–e606.
    1. Hoff S., Grünewald S., Röse L., Zopf D. Immunomodulation by regorafenib alone and in combination with anti PD1 antibody on murine models of colorectal cancer. Ann. Oncol. 2017;28 V423.
    1. Mettu N.B., Twohy E., Ou F.-S., Halfdanarson T.R., Lenz H.J., Breakstone R., Boland P.M., Crysler O., Wu C., Grothey A. 533PD - BACCI: A phase II randomized, double-blind, multicenter, placebo-controlled study of capecitabine (C) bevacizumab (B) plus atezolizumab (A) or placebo (P) in refractory metastatic colorectal cancer (mCRC): An ACCRU network study. Ann. Oncol. 2019;30:v203.
    1. Gou M., Yan H., E L.T., Wang Z., Si H., Chen S., Pan Y., Fan R., Qian N., Dai G. Fruquintinib combination with sintilimab in refractory metastatic colorectal cancer patients in China. J. Clin. Oncol. 2020;38:4028.
    1. Lieu C.H., Davis S.L., Leong S., Leal A.D., Blatchford P.J., Sandhu G.S., Purcell W.T., Kim S.S., Van De Voorde Z., Telles R. Results from the safety lead-in for a phase II study of pembrolizumab in combination with binimetinib and bevacizumab in patients with refractory metastatic colorectal cancer (mCRC) J. Clin. Oncol. 2020;38:4031.
    1. Grothey A., Tabernero J., Arnold D., De Gramont A., Ducreux M.P., O’Dwyer P.J., Van Cutsem E., Bosanac I., Srock S., Mancao C. Fluoropyrimidine (FP)+ bevacizumab (BEV) + atezolizumab vs FP/BEV in BRAFwt metastatic colorectal cancer (mCRC): Findings from Cohort 2 of MODUL–a multicentre, randomized trial of biomarker-driven maintenance treatment following first-line induction therapy. Ann. Oncol. 2018;29:714–715.
    1. Fukuoka S., Hara H., Takahashi N., Kojima T., Kawazoe A., Asayama M., Yoshii T., Kotani D., Tamura H., Mikamoto Y. Regorafenib plus nivolumab in patients with advanced gastric or colorectal cancer: an open-label, dose-escalation, and dose-expansion phase Ib trial (REGONIVO, EPOC1603) J. Clin. Oncol. 2020;38:2053–2061.
    1. Cousin S., Bellera C.A., Guégan J.P., Gomez-Roca C.A., Metges J.-P., Adenis A., Pernot S., Cantarel C., Kind M., Toulmonde M. REGOMUNE: a phase II study of regorafenib plus avelumab in solid tumors—results of the non-MSI-H metastatic colorectal cancer (mCRC) cohort. J. Clin. Oncol. 2020;38:4019.
    1. Wang F., Wei X.-L., Feng J., Li Q., Xu N., Hu X., Liao W., Jiang Y., Lin X., Zhang Q. Clinical response and biomarker analysis of POLARIS-02 a phase II study of toripalimab, a humanized IgG4 mAb against programmed death-1 (PD-1) in patients with metastatic nasopharyngeal carcinoma. J. Clin. Oncol. 2020;38:6542.
    1. Wei X.L., Ren C., Wang F.H., Zhang Y., Zhao H.Y., Zou B.Y., Wang Z.Q., Qiu M.Z., Zhang D.S., Luo H.Y. A phase I study of toripalimab, an anti-PD-1 antibody, in patients with refractory malignant solid tumors. Cancer Commun. (Lond.) 2020;40:345–354.
    1. Wang F., Wei X.L., Wang F.H., Xu N., Shen L., Dai G.H., Yuan X.L., Chen Y., Yang S.J., Shi J.H. Safety, efficacy and tumor mutational burden as a biomarker of overall survival benefit in chemo-refractory gastric cancer treated with toripalimab, a PD-1 antibody in phase Ib/II clinical trial NCT02915432. Ann. Oncol. 2019;30:1479–1486.
    1. Sheng X., Yan X., Chi Z., Si L., Cui C., Tang B., Li S., Mao L., Lian B., Wang X. Axitinib in combination with toripalimab, a humanized immunoglobulin G4 monoclonal antibody against programmed cell death-1, in patients with metastatic mucosal melanoma: an open-label phase IB trial. J. Clin. Oncol. 2019;37:2987–2999.
    1. Gopalakrishnan V., Spencer C.N., Nezi L., Reuben A., Andrews M.C., Karpinets T.V., Prieto P.A., Vicente D., Hoffman K., Wei S.C. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359:97–103.
    1. Routy B., Le Chatelier E., Derosa L., Duong C.P.M., Alou M.T., Daillère R., Fluckiger A., Messaoudene M., Rauber C., Roberti M.P. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359:91–97.
    1. Mager L.F., Burkhard R., Pett N., Cooke N.C.A., Brown K., Ramay H., Paik S., Stagg J., Groves R.A., Gallo M. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science. 2020;369:1481–1489.
    1. Ervin S.M., Hanley R.P., Lim L., Walton W.G., Pearce K.H., Bhatt A.P., James L.I., Redinbo M.R. Targeting regorafenib-induced toxicity through inhibition of gut microbial β-glucuronidases. ACS Chem. Biol. 2019;14:2737–2744.
    1. Eng C., Kim T.W., Bendell J., Argilés G., Tebbutt N.C., Di Bartolomeo M., Falcone A., Fakih M., Kozloff M., Segal N.H., IMblaze370 Investigators Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol. 2019;20:849–861.
    1. Osorio J.C., Arbour K.C., Le D.T., Durham J.N., Plodkowski A.J., Halpenny D.F., Ginsberg M.S., Sawan P., Crompton J.G., Yu H.A. Lesion-level response dynamics to programmed cell death protein (PD-1) blockade. J. Clin. Oncol. 2019;37:3546–3555.
    1. Pires da Silva I., Lo S., Quek C., Gonzalez M., Carlino M.S., Long G.V., Menzies A.M. Site-specific response patterns, pseudoprogression, and acquired resistance in patients with melanoma treated with ipilimumab combined with anti-PD-1 therapy. Cancer. 2020;126:86–97.
    1. Fakih M., Sandhu J.S., Wang C., Ye J., Lee P. 495P Lack of liver metastases identifies a group of MSS metastatic colorectal cancer with potential benefit from PD-1/PD-L1 targeting. Ann. Oncol. 2020;31:S450–S451.
    1. Yu J., Green M.D., Li S., Sun Y., Journey S.N., Choi J.E., Rizvi S.M., Qin A., Waninger J.J., Lang X. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat. Med. 2021;27:152–164.
    1. Lee J., Mehdizadeh S., Tsai K., Algazi A., Rosenblum M., Daud A., Bluestone J.A. Immunological insights into liver metastasis associated resistance to checkpoint blockade cancer immunotherapy. J. Immunol. 2018;200 122.126.
    1. Martinelli E., Sforza V., Cardone C., Capasso A., Nappi A., Martini G., Napolitano S., Rachiglio A.M., Normanno N., Cappabianca S. Clinical outcome and molecular characterisation of chemorefractory metastatic colorectal cancer patients with long-term efficacy of regorafenib treatment. ESMO Open. 2017;2:e000177.
    1. Mishima S., Kawazoe A., Nakamura Y., Sasaki A., Kotani D., Kuboki Y., Bando H., Kojima T., Doi T., Ohtsu A. Clinicopathological and molecular features of responders to nivolumab for patients with advanced gastric cancer. J. Immunother. Cancer. 2019;7:24.
    1. Zhao J., Chen A.X., Gartrell R.D., Silverman A.M., Aparicio L., Chu T., Bordbar D., Shan D., Samanamud J., Mahajan A. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat. Med. 2019;25:462–469.
    1. Bastman J.J., Serracino H.S., Zhu Y., Koenig M.R., Mateescu V., Sams S.B., Davies K.D., Raeburn C.D., McIntyre R.C., Jr., Haugen B.R., French J.D. Tumor-infiltrating T cells and the PD-1 checkpoint pathway in advanced differentiated and anaplastic thyroid cancer. J. Clin. Endocrinol. Metab. 2016;101:2863–2873.
    1. Castellarin M., Warren R.L., Freeman J.D., Dreolini L., Krzywinski M., Strauss J., Barnes R., Watson P., Allen-Vercoe E., Moore R.A., Holt R.A. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22:299–306.
    1. Guo S., Li L., Xu B., Li M., Zeng Q., Xiao H., Xue Y., Wu Y., Wang Y., Liu W., Zhang G. A simple and novel fecal biomarker for colorectal cancer: ratio of Fusobacterium Nucleatum to probiotics populations, based on their antagonistic effect. Clin. Chem. 2018;64:1327–1337.
    1. Edgar R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–2461.

Source: PubMed

3
Se inscrever