Attenuation of the pressor responses to laryngoscopy and endotracheal intubation with intravenous dexmedetomidine versus magnesium sulphate under bispectral index-controlled anaesthesia: A placebo-controlled prospective randomised trial

Lakshmi Mahajan, Manjot Kaur, Ruchi Gupta, Kuljeet Singh Aujla, Avtar Singh, Ashreen Kaur, Lakshmi Mahajan, Manjot Kaur, Ruchi Gupta, Kuljeet Singh Aujla, Avtar Singh, Ashreen Kaur

Abstract

Background and aims: Laryngoscopy and intubation cause sympathetic stimulation and arousal reactions. We evaluated the role of dexmedetomidine and magnesium sulphate on pressor responses to laryngoscopy and intubation as compared to placebo, when depth of anaesthesia was maintained at a constant bispectral index (BIS) range 40-50 (±5).

Methods: One hundred and twenty patients were randomised to receive either dexmedetomidine 1 μg/kg (Group DS), magnesium sulphate 30 mg/kg diluted in 100 ml saline (Group MS) or 100 ml normal saline (Group NS) 15 min before induction of anaesthesia in a double blind manner. After achieving BIS 40-50 (±5), laryngoscopy and intubation were performed. Heart rate (HR), systolic blood pressure (SBP) and diastolic blood pressure (DBP) were recorded pre-drug, after drug, at intubation, at intervals of 1 min till 5 min, then every 2 min till 10 min and every 10 min for 30 min. Statistical analysis was done using Chi-square test and one way analysis of variance.

Results: SBP, DBP and HR fell in the DS and MS groups. No significant changes in BP were seen in the NS group at induction and after intubation. HR rose in the NS group (P < 0.001) at induction from 86.35 ± 9.05 to 95.35 ± 11.60 at 2 min. Patients in DS and MS groups had significantly lower HR, SBP and DBP at laryngoscopy and intubation.

Conclusion: At BIS levels 40-50 (±5) there was no pressor response to intubation in the NS Group. Dexmedetomidine and magnesium sulphate significantly reduced the heart rate and blood pressure from baseline.

Keywords: Bi-spectral index; dexmedetomidine; laryngoscopy; magnesium sulphate; pressor response; tracheal intubation.

Conflict of interest statement

There are no conflicts of interest.

Figures

Figure 1
Figure 1
Consort Diagram
Figure 2
Figure 2
Comparison of mean heart rate among three groups
Figure 3
Figure 3
Comparison of mean systolic blood pressure among three groups
Figure 4
Figure 4
Comparison of mean diastolic blood pressure among three groups

References

    1. Reid LC, Brace DE. Irritation of respiratory tract and its reflex effect on heart. Surg Gynecol Obstet. 1940;70:157.
    1. Kovac AL. Controlling the hemodynamic response to laryngoscopy and endotracheal intubation. J Clin Anesth. 1996;8:63–79.
    1. Joffe AM, Deem SA. Physiologic and pathophysiologic responses to intubation. In: Benumof J, Hagberg CA, editors. Benumof and Hagberg's Airway Management. 3rd ed. Philadelphia: Elsevier Saunders; 2012. pp. 184–95.
    1. Charuluxananan S, Kyokong O, Somboonviboon W, Balmongkon B, Chaisomboonpan S. Nicardipine versus lidocaine for attenuating the cardiovascular response to endotracheal intubation. J Anesth. 2000;14:77–81.
    1. Tanskanen PE, Kyttä JV, Randell TT, Aantaa RE. Dexmedetomidine as an anaesthetic adjuvant in patients undergoing intracranial tumour surgery: A double-blind, randomized and placebo-controlled study. Br J Anaesth. 2006;97:658–65.
    1. James MF, Beer RE, Esser JD. Intravenous magnesium sulfate inhibits catecholamine release associated with tracheal intubation. Anesth Analg. 1989;68:772–6.
    1. Keniya VM, Ladi S, Naphade R. Dexmedetomidine attenuates sympathoadrenal response to tracheal intubation and reduces perioperative anaesthetic requirement. Indian J Anaesth. 2011;55:352–7.
    1. Montazeri K, Fallah MA. Dose response study of magnesium sulphate in suppressing cardiovascular responses to laryngoscopy and endotracheal intubation. J Res Med Sci. 2005;10:82–6.
    1. Hazarika A, Deori AK, Bora J, Deori J, Tiwari PK. Attenuation of haemodynamic responses to laryngoscopy and intubation: A clinical study of dexmedetomidine. Int J Contemp Med Res. 2016;3:3536–8.
    1. Mi WD, Sakai T, Takahashi S, Matsuki A. Haemodynamic and electroencephalograph responses to intubation during induction with propofol or propofol/fentanyl. Can J Anaesth. 1998;45:19–22.
    1. Kanaya N, Nakayama M, Fujita S, Namiki A. Haemodynamic and EEG changes during rapid-sequence induction of anaesthesia. Can J Anaesth. 1994;41:699–702.
    1. Bachofen M. Suppression of blood pressure increases during intubation: Lidocaine or fentanyl? Anaesthesist. 1988;37:156–61.
    1. Saǧıroǧlu AE, Celik M, Orhon Z, Yüzer S, Sen B. Dıfferent doses of dexmedetomidine on controlling haemodynamic responses to tracheal intubation. Internet J Anesthesiol. 2010;27:2.
    1. Lawrence CJ, De Lange S. Effects of a single pre-operative dexmedetomidine dose on isoflurane requirements and peri-operative haemodynamic stability. Anaesthesia. 1997;52:736–44.
    1. Paul S, Biswas P, Bhattacharjee DP, Sengupta J. Effects of magnesium sulfate on hemodynamic response to carbon dioxide pneumoperitoneum in patients undergoing laparoscopic cholecystectomy. Anesth Essays Res. 2013;7:228–31.
    1. Derbyshire DR, Chmielewski A, Fell D, Vater M, Achola K, Smith G, et al. Plasma catecholamine responses to tracheal intubation. Br J Anaesth. 1983;55:855–60.
    1. Shribman AJ, Smith G, Achola KJ. Cardiovascular and catecholamine responses to laryngoscopy with and without tracheal intubation. Br J Anaesth. 1987;59:295–9.
    1. Shin HW, Yoo HN, Kim DH, Lee H, Shin HJ, Lee HW, et al. Preanesthetic dexmedetomidine 1 μg/kg single infusion is a simple, easy, and economic adjuvant for general anesthesia. Korean J Anesthesiol. 2013;65:114–20.
    1. Menda F, Köner O, Sayin M, Türe H, Imer P, Aykaç B, et al. Dexmedetomidine as an adjunct to anesthetic induction to attenuate hemodynamic response to endotracheal intubation in patients undergoing fast-track CABG. Ann Card Anaesth. 2010;13:16–21.
    1. Yildiz M, Tavlan A, Tuncer S, Reisli R, Yosunkaya A, Otelcioglu S, et al. Effect of dexmedetomidine on haemodynamic responses to laryngoscopy and intubation: Perioperative haemodynamics and anaesthetic requirements. Drugs R D. 2006;7:43–52.
    1. Altura BM, Altura BT. Magnesium and vascular tone and reactivity. Blood Vessels. 1978;15:5–16.
    1. Ryu JH, Kang MH, Park KS, Do SH. Effects of magnesium sulphate on intraoperative anaesthetic requirements and postoperative analgesia in gynaecology patients receiving total intravenous anaesthesia. Br J Anaesth. 2008;100:397–403.
    1. Srivastava VK, Mishra A, Agrawal S, Kumar S, Sharma S, Kumar R, et al. Comparative evaluation of dexmedetomidine and magnesium sulphate on propofol consumption, haemodynamics and postoperative recovery in Spine surgery: A Prospective, randomized, placebo controlled, double-blind study. Adv Pharm Bull. 2016;6:75–81.
    1. Song D, Joshi GP, White PF. Titration of volatile anesthetics using bispectral index facilitates recovery after ambulatory anesthesia. Anesthesiology. 1997;87:842–8.
    1. Ekman A, Lindholm ML, Lennmarken C, Sandin R. Reduction in the incidence of awareness using BIS monitoring. Acta Anaesthesiol Scand. 2004;48:20–6.

Source: PubMed

3
Se inscrever