Overground Robot-Assisted Gait Training for Pediatric Cerebral Palsy

Seung Ki Kim, Dongho Park, Beomki Yoo, Dain Shim, Joong-On Choi, Tae Young Choi, Eun Sook Park, Seung Ki Kim, Dongho Park, Beomki Yoo, Dain Shim, Joong-On Choi, Tae Young Choi, Eun Sook Park

Abstract

The untethered exoskeletal robot provides patients with the freest and realistic walking experience by assisting them based on their intended movement. However, few previous studies have reported the effect of robot-assisted gait training (RAGT) using wearable exoskeleton in children with cerebral palsy (CP). This pilot study evaluated the effect of overground RAGT using an untethered torque-assisted exoskeletal wearable robot for children with CP. Three children with bilateral spastic CP were recruited. The robot generates assistive torques according to gait phases automatically detected by force sensors: flexion torque during the swing phase and extension torque during the stance phase at hip and knee joints. The overground RAGT was conducted for 17~20 sessions (60 min per session) in each child. The evaluation was performed without wearing a robot before and after the training to measure (1) the motor functions using the gross motor function measure and the pediatric balance scale and (2) the gait performance using instrumented gait analysis, the 6-min walk test, and oxygen consumption measurement. All three participants showed improvement in gross motor function measure after training. Spatiotemporal parameters of gait analysis improved in participant P1 (9-year-old girl, GMFCS II) and participant P2 (13-year-old boy, GMFCS III). In addition, they walked faster and farther with lower oxygen consumption during the 6-min walk test after the training. Although participant P3 (16-year-old girl, GMFCS IV) needed the continuous help of a therapist for stepping at baseline, she was able to walk with the platform walker independently after the training. Overground RAGT using a torque-assisted exoskeletal wearable robot seems to be promising for improving gross motor function, walking speed, gait endurance, and gait efficiency in children with CP. In addition, it was safe and feasible even for children with severe motor impairment (GMFCS IV).

Keywords: cerebral palsy; exoskeleton; gait; pediatric; robotic training.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The powered exoskeleton used in the clinical experiments. (a) A controller back-pack including a battery, (b) a pelvic frame that rigidly supports the backpack and connects two hip joint actuators, (c) hip joint actuators, (d) knee joint actuators, (e) thigh bands, (f) ankle-foot-orthosis, and (g) shoes. The ground contact sensors are installed under the sole of the ankle-foot-orthosis.
Figure 2
Figure 2
Changes in the 6-min walking test (6MWT) (A) and oxygen consumption (B) in children with CP through before, after 8 sessions, and at the end of robot-assisted gait training (RAGT). In the 6MWT, participant P1 walked with no device, participant P2 walked with bilateral crutches, and participant P3 used a platform walker. The oxygen cost was measured during the 6MWT. Participant P3 did not perform the oxygen consumption test due to complaints of discomfort with the mask while walking.

References

    1. Carvalho I., Pinto S.M., Chagas D.D.V., Praxedes Dos Santos J.L., de Sousa Oliveira T., Batista L.A. Robotic Gait Training for Individuals with Cerebral Palsy: A Systematic Review and Meta-Analysis. Arch. Phys. Med. Rehabil. 2017;98:2332–2344. doi: 10.1016/j.apmr.2017.06.018.
    1. Lefmann S., Russo R., Hillier S. The effectiveness of robotic-assisted gait training for paediatric gait disorders: Systematic review. J. Neuroeng. Rehabil. 2017;14:1. doi: 10.1186/s12984-016-0214-x.
    1. Esquenazi A., Talaty M. Robotics for Lower Limb Rehabilitation. Phys. Med. Rehabil. Clin. N. Am. 2019;30:385–397. doi: 10.1016/j.pmr.2018.12.012.
    1. Israel J.F., Campbell D.D., Kahn J.H., Hornby T.G. Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury. Phys. Ther. 2006;86:1466–1478. doi: 10.2522/ptj.20050266.
    1. Hidler J.M., Wall A.E. Alterations in muscle activation patterns during robotic-assisted walking. Clin. Biomech. 2005;20:184–193. doi: 10.1016/j.clinbiomech.2004.09.016.
    1. Esquenazi A., Talaty M., Jayaraman A. Powered Exoskeletons for Walking Assistance in Persons with Central Nervous System Injuries: A Narrative Review. PMR. 2017;9:46–62. doi: 10.1016/j.pmrj.2016.07.534.
    1. Bortole M., Venkatakrishnan A., Zhu F., Moreno J.C., Francisco G.E., Pons J.L., Contreras-Vidal J.L. The H2 robotic exoskeleton for gait rehabilitation after stroke: Early findings from a clinical study. J. Neuroeng. Rehabil. 2015;12:54. doi: 10.1186/s12984-015-0048-y.
    1. Wall A., Borg J., Palmcrantz S. Clinical application of the Hybrid Assistive Limb (HAL) for gait training—A systematic review. Front. Syst. Neurosci. 2015;9:48. doi: 10.3389/fnsys.2015.00048.
    1. Kressler J., Thomas C.K., Field-Fote E.C., Sanchez J., Widerstrom-Noga E., Cilien D.C., Gant K., Ginnety K., Gonzalez H., Martinez A., et al. Understanding therapeutic benefits of overground bionic ambulation: Exploratory case series in persons with chronic, complete spinal cord injury. Arch. Phys. Med. Rehabil. 2014;95:1878–1887.e1874. doi: 10.1016/j.apmr.2014.04.026.
    1. Nilsson A., Vreede K.S., Haglund V., Kawamoto H., Sankai Y., Borg J. Gait training early after stroke with a new exoskeleton--the hybrid assistive limb: A study of safety and feasibility. J. Neuroeng. Rehabil. 2014;11:92. doi: 10.1186/1743-0003-11-92.
    1. Choi H., Na B., Kim S., Lee J., Kim H., Kim D., Cho D., Kim J., Shin S., Rha D.-W. Angel-suit: A Modularized Lower-limb Wearable Robot for Assistance of People with Partially Impaired Walking Ability; Proceedings of the 2019 Wearable Robotics Association Conference (WearRAcon); Scottsdale, AZ, USA. 25–27 March 2019; pp. 51–56.
    1. Aach M., Cruciger O., Sczesny-Kaiser M., Hoffken O., Meindl R., Tegenthoff M., Schwenkreis P., Sankai Y., Schildhauer T.A. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: A pilot study. Spine J. 2014;14:2847–2853. doi: 10.1016/j.spinee.2014.03.042.
    1. Esquenazi A., Talaty M., Packel A., Saulino M. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am. J. Phys. Med. Rehabil. 2012;91:911–921. doi: 10.1097/PHM.0b013e318269d9a3.
    1. Wu C.H., Mao H.F., Hu J.S., Wang T.Y., Tsai Y.J., Hsu W.L. The effects of gait training using powered lower limb exoskeleton robot on individuals with complete spinal cord injury. J. Neuroeng. Rehabil. 2018;15:14. doi: 10.1186/s12984-018-0355-1.
    1. Matsuda M., Iwasaki N., Mataki Y., Mutsuzaki H., Yoshikawa K., Takahashi K., Enomoto K., Sano K., Kubota A., Nakayama T., et al. Robot-assisted training using Hybrid Assistive Limb(R) for cerebral palsy. Brain Dev. 2018;40:642–648. doi: 10.1016/j.braindev.2018.04.004.
    1. Lerner Z.F., Damiano D.L., Bulea T.C. A lower-extremity exoskeleton improves knee extension in children with crouch gait from cerebral palsy. Sci. Transl. Med. 2017;9 doi: 10.1126/scitranslmed.aam9145.
    1. Kuroda M., Nakagawa S., Mutsuzaki H., Mataki Y., Yoshikawa K., Takahashi K., Nakayama T., Iwasaki N. Robot-assisted gait training using a very small-sized Hybrid Assistive Limb(R) for pediatric cerebral palsy: A case report. Brain Dev. 2020;42:468–472. doi: 10.1016/j.braindev.2019.12.009.
    1. Russell D.J., Rosenbaum P.L., Cadman D.T., Gowland C., Hardy S., Jarvis S. The gross motor function measure: A means to evaluate the effects of physical therapy. Dev. Med. Child Neurol. 1989;31:341–352. doi: 10.1111/j.1469-8749.1989.tb04003.x.
    1. Franjoine M.R., Gunther J.S., Taylor M.J. Pediatric balance scale: A modified version of the berg balance scale for the school-age child with mild to moderate motor impairment. Pediatr. Phys. Ther. 2003;15:114–128. doi: 10.1097/01.PEP.0000068117.48023.18.
    1. Maher C.A., Williams M.T., Olds T.S. The six-minute walk test for children with cerebral palsy. Int. J. Rehabil. Res. 2008;31:185–188. doi: 10.1097/MRR.0b013e32830150f9.
    1. Nsenga Leunkeu A., Shephard R.J., Ahmaidi S. Six-minute walk test in children with cerebral palsy gross motor function classification system levels I and II: Reproducibility, validity, and training effects. Arch. Phys. Med. Rehabil. 2012;93:2333–2339. doi: 10.1016/j.apmr.2012.06.005.
    1. Thompson P., Beath T., Bell J., Jacobson G., Phair T., Salbach N.M., Wright F.V. Test-retest reliability of the 10-metre fast walk test and 6-minute walk test in ambulatory school-aged children with cerebral palsy. Dev. Med. Child. Neurol. 2008;50:370–376. doi: 10.1111/j.1469-8749.2008.02048.x.
    1. Unnithan V.B., Clifford C., Bar-Or O. Evaluation by exercise testing of the child with cerebral palsy. Sports Med. 1998;26:239–251. doi: 10.2165/00007256-199826040-00003.
    1. Corry I.S., Duffy C.M., Cosgrave A.P., Graham H.K. Measurement of oxygen consumption in disabled children by the Cosmed K2 portable telemetry system. Dev. Med. Child. Neurol. 1996;38:585–593. doi: 10.1111/j.1469-8749.1996.tb12123.x.
    1. Maltais D.B., Robitaille N.M., Dumas F., Boucher N., Richards C.L. Measuring steady-state oxygen uptake during the 6-min walk test in adults with cerebral palsy: Feasibility and construct validity. Int. J. Rehabil. Res. 2012;35:181–183. doi: 10.1097/MRR.0b013e3283527792.
    1. Lusardi M.M., Jorge M., Nielsen C.C. Orthotics and Prosthetics in Rehabilitation-E-Book. Elsevier Health Sciences; Philadelphia, PA, USA: 2013.
    1. Oeffinger D., Bagley A., Rogers S., Gorton G., Kryscio R., Abel M., Damiano D., Barnes D., Tylkowski C. Outcome tools used for ambulatory children with cerebral palsy: Responsiveness and minimum clinically important differences. Dev. Med. Child Neurol. 2008;50:918–925. doi: 10.1111/j.1469-8749.2008.03150.x.
    1. Tudor-Locke C., Schuna J.M., Jr., Han H., Aguiar E.J., Larrivee S., Hsia D.S., Ducharme S.W., Barreira T.V., Johnson W.D. Cadence (steps/min) and intensity during ambulation in 6–20 year olds: The CADENCE-kids study. Int. J. Behav. Nutr. Phys. Act. 2018;15:20. doi: 10.1186/s12966-018-0651-y.
    1. Wessels M., Lucas C., Eriks I., de Groot S. Body weight-supported gait training for restoration of walking in people with an incomplete spinal cord injury: A systematic review. J. Rehabil. Med. 2010;42:513–519. doi: 10.2340/16501977-0525.
    1. Borggraefe I., Schaefer J.S., Klaiber M., Dabrowski E., Ammann-Reiffer C., Knecht B., Berweck S., Heinen F., Meyer-Heim A. Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy. Eur. J. Paediatr. Neurol. 2010;14:496–502. doi: 10.1016/j.ejpn.2010.01.002.
    1. Willoughby K.L., Dodd K.J., Shields N., Foley S. Efficacy of partial body weight-supported treadmill training compared with overground walking practice for children with cerebral palsy: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2010;91:333–339. doi: 10.1016/j.apmr.2009.10.029.
    1. Ueno T., Watanabe H., Kawamoto H., Shimizu Y., Endo A., Shimizu T., Ishikawa K., Kadone H., Ohto T., Kamada H., et al. Feasibility and safety of Robot Suit HAL treatment for adolescents and adults with cerebral palsy. J. Clin. Neurosci. 2019;68:101–104. doi: 10.1016/j.jocn.2019.07.026.
    1. Hanna S.E., Bartlett D.J., Rivard L.M., Russell D.J. Reference curves for the Gross Motor Function Measure: Percentiles for clinical description and tracking over time among children with cerebral palsy. Phys. Ther. 2008;88:596–607. doi: 10.2522/ptj.20070314.
    1. Beckung E., Carlsson G., Carlsdotter S., Uvebrant P. The natural history of gross motor development in children with cerebral palsy aged 1 to 15 years. Dev. Med. Child Neurol. 2007;49:751–756. doi: 10.1111/j.1469-8749.2007.00751.x.
    1. Lotze M., Braun C., Birbaumer N., Anders S., Cohen L.G. Motor learning elicited by voluntary drive. Brain. 2003;126:866–872. doi: 10.1093/brain/awg079.
    1. Johnston T.E., Moore S.E., Quinn L.T., Smith B.T. Energy cost of walking in children with cerebral palsy: Relation to the Gross Motor Function Classification System. Dev. Med. Child Neurol. 2004;46:34–38. doi: 10.1111/j.1469-8749.2004.tb00431.x.
    1. Cimolin V., Galli M., Piccinini L., Berti M., Crivellini M., Turconi A.C. Quantitative analysis of gait pattern and energy consumption in children with cerebral palsy. J. Appl. Biomater. Biomech. 2007;5:28–33.
    1. Bell K.L., Davies P.S. Energy expenditure and physical activity of ambulatory children with cerebral palsy and of typically developing children. Am. J. Clin. Nutr. 2010;92:313–319. doi: 10.3945/ajcn.2010.29388.
    1. Batista K.G., de Oliveira Lopes P., Serradilha S.M., de Souza G.A.F., Bella G.P., de Souza R.C.T. Benefícios do condicionamento cardiorrespiratório em crianças ou adolescentes com paralisia cerebral. Fisioterapia em Movimento. 2010;23:201–209. doi: 10.1590/S0103-51502010000200004.
    1. Maltais D.B., Wiart L., Fowler E., Verschuren O., Damiano D.L. Health-related physical fitness for children with cerebral palsy. J. Child Neurol. 2014;29:1091–1100. doi: 10.1177/0883073814533152.
    1. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002;166:111–117. doi: 10.1164/ajrccm.166.1.at1102.
    1. Grecco L.A., Zanon N., Sampaio L.M., Oliveira C.S. A comparison of treadmill training and overground walking in ambulant children with cerebral palsy: Randomized controlled clinical trial. Clin. Rehabil. 2013;27:686–696. doi: 10.1177/0269215513476721.
    1. Bayon C., Martin-Lorenzo T., Moral-Saiz B., Ramirez O., Perez-Somarriba A., Lerma-Lara S., Martinez I., Rocon E. A robot-based gait training therapy for pediatric population with cerebral palsy: Goal setting, proposal and preliminary clinical implementation. J. Neuroeng. Rehabil. 2018;15:69. doi: 10.1186/s12984-018-0412-9.

Source: PubMed

3
Se inscrever