Practical Significance of Biomarkers in Axial Spondyloarthritis: Updates on Diagnosis, Disease Activity, and Prognosis

Alexandra-Diana Diaconu, Alexandr Ceasovschih, Victorița Șorodoc, Cristina Pomîrleanu, Cătălina Lionte, Laurențiu Șorodoc, Codrina Ancuța, Alexandra-Diana Diaconu, Alexandr Ceasovschih, Victorița Șorodoc, Cristina Pomîrleanu, Cătălina Lionte, Laurențiu Șorodoc, Codrina Ancuța

Abstract

Axial spondyloarthritis (axSpA) is a chronic inflammatory disease that can lead to ankylosis by secondary ossification of inflammatory lesions, with progressive disability and a significant impact on quality of life. It is also a risk factor for the occurrence of comorbidities, especially cardiovascular diseases (CVDs), mood disorders, osteoporosis, and malignancies. Early diagnosis and treatment are needed to prevent or decrease functional decline and to improve the patient's prognosis. In respect of axSpA, there is an unmet need for biomarkers that can help to diagnose the disease, define disease activity and prognosis, and establish personalized treatment approaches. The aim of this review was to summarize the available information regarding the most promising biomarkers for axSpA. We classified and identified six core categories of biomarkers: (i) systemic markers of inflammation; (ii) molecules involved in bone homeostasis; (iii) HLA-B27 and newer genetic biomarkers; (iv) antibody-based biomarkers; (v) microbiome biomarkers; and (vi) miscellaneous biomarkers. Unfortunately, despite efforts to validate new biomarkers, few of them are used in clinical practice; however, we believe that these studies provide useful data that could aid in better disease management.

Keywords: HLA-B27; antibody-based biomarkers; axial spondyloarthritis; diagnosis; disease activity; microbiome biomarkers; molecules involved in bone homeostasis; newer genetic biomarkers; prognosis; systemic markers of inflammation.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Biomarkers significance in axial spondiloarthtitis.

References

    1. Firestein G.S., Budd R.C., Koretzky G., Gabriel S.E., McInnes I.B., O’Dell J.R. Firestein & Kelley’s Textbook of Rheumatology. 11th ed. Volume 2. Elsevier; Amsterdam, The Netherlands: 2020. p. 1307.
    1. Cardelli C., Monti S., Terenzi R., Carli L. One year in review 2021: Axial spondyloarthritis. Clin. Exp. Rheumatol. 2021;39:1272–1281. doi: 10.55563/clinexprheumatol/jlyd1l.
    1. Walsh J.A., Magrey M. Clinical Manifestations and Diagnosis of Axial Spondyloarthritis. J. Clin. Rheumatol. 2021;27:e547–e560. doi: 10.1097/RHU.0000000000001575.
    1. Ancuta C., Pomirleanu C. Principii de Diagnostic si Tratament in Reumatologie. 2nd ed. Universitatea de Medicină și Farmacie „Grigore T. Popa” din Iași; Iasi, Romania: 2019. p. 177.
    1. Califf R.M. Biomarker definitions and their applications. Exp. Biol. Med. 2018;243:213–221. doi: 10.1177/1535370217750088.
    1. Abdal S.J., Yesmin S., Shazzad M.N., Azad M.A.K., Shahin M.A., Choudhury M.R., Islam M.N., Haq S.A. Development of a Bangla version of the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) and the Bath Ankylosing Spondylitis Functional Index (BASFI) Int. J. Rheum. Dis. 2021;24:74–80. doi: 10.1111/1756-185X.14008.
    1. Abdelaziz M.M., Gamal R.M., Ismail N.M., Lafy R.A., Hetta H.F. Diagnostic value of anti-CD74 antibodies in early and late axial spondyloarthritis and its relationship to disease activity. Rheumatology. 2021;60:263–268. doi: 10.1093/rheumatology/keaa292.
    1. Do L., Granåsen G., Hellman U., Lejon K., Geijer M., Baraliakos X., Witte T., Forsblad-d’Elia H. Anti-CD74 IgA autoantibodies in radiographic axial spondyloarthritis: A longitudinal Swedish study. Rheumatology. 2021;60:4085–4093. doi: 10.1093/rheumatology/keaa882.
    1. Ziade N.R., Mallak I., Merheb G., Ghorra P., Baerlecken N., Witte T., Baraliakos X. Added Value of Anti-CD74 Autoantibodies in Axial SpondyloArthritis in a Population with Low HLA-B27 Prevalence. Front. Immunol. 2019;10:574. doi: 10.3389/fimmu.2019.00574.
    1. de Winter J.J., van de Sande M.G., Baerlecken N., Berg I., Ramonda R., van der Heijde D., van Gaalen F.A., Witte T., Baeten D.L. Anti-CD74 antibodies have no diagnostic value in early axial spondyloarthritis: Data from the spondyloarthritis caught early (SPACE) cohort. Arthritis Res. Ther. 2018;20:38. doi: 10.1186/s13075-018-1535-x.
    1. Hu C.J., Li M.T., Li X., Peng L.Y., Zhang S.Z., Leng X.M., Su J.M., Zeng X.F. CD74 auto-antibodies display little clinical value in Chinese Han population with axial spondyloarthritis. Medicine. 2020;99:23433. doi: 10.1097/MD.0000000000023433.
    1. Descamps E., Molto A., Borderie D., Lories R., Richard C.M., Pons M., Roux C., Briot K. Changes in bone formation regulator biomarkers in early axial spondyloarthritis. Rheumatology. 2021;60:1185–1194. doi: 10.1093/rheumatology/keaa296.
    1. Navarini L., Currado D., Marino A., Di Donato S., Biaggi A., Caso F., Costa L., Tasso M., Ruscitti P., Pavlych V., et al. Persistence of C-reactive protein increased levels and high disease activity are predictors of cardiovascular disease in patients with axial spondyloarthritis. Sci. Rep. 2022;12:7498. doi: 10.1038/s41598-022-11640-8.
    1. Baraliakos X., Szumski A., Koenig A.S., Jones H. The role of C-reactive protein as a predictor of treatment response in patients with ankylosing spondylitis. Semin. Arthritis Rheum. 2019;48:997–1004. doi: 10.1016/j.semarthrit.2018.10.019.
    1. Xu Y., Jiang W., Zhang H. Association between C-reactive protein gene variant and treatment efficacy of etanercept in ankylosing spondylitis patients receiving hip arthroplasty. J. Clin. Lab. Anal. 2020;34:e23343. doi: 10.1002/jcla.23343.
    1. Sundström B., Ljung L., Wållberg-Jonsson S. Exercise habits and C-reactive protein may predict development of spinal immobility in patients with ankylosing spondylitis. Clin. Rheumatol. 2018;37:2881–2885. doi: 10.1007/s10067-018-4195-y.
    1. Sohn D.H., Jeong H., Roh J.S., Lee H.N., Kim E., Koh J.H., Lee S.G. Serum CCL11 level is associated with radiographic spinal damage in patients with ankylosing spondylitis. Rheumatol. Int. 2018;38:1455–1464. doi: 10.1007/s00296-018-4073-6.
    1. Heftdal L.D., Loft A.G., Hendricks O., Ashouri Christiansen A., Schiøttz-Christensen B., Arnbak B., Jurik A.G., Østgård R., Winding Deleuran B., Møller H.J., et al. Divergent effects on macrophage biomarkers soluble CD163 and CD206 in axial spondyloarthritis. Scand. J. Clin. Lab. Investig. 2018;78:483–489. doi: 10.1080/00365513.2018.1500704.
    1. Wilbrink R., Spoorenberg A., Arends S., van der Geest K.S.M., Brouwer E., Bootsma H., Kroese F.G.M., Verstappen G.M. CD27-CD38lowCD21low B-Cells Are Increased in Axial Spondyloarthritis. Front. Immunol. 2021;12:686273. doi: 10.3389/fimmu.2021.686273.
    1. Luo Q., Fu B., Zhang L., Guo Y., Huang Z., Li J. Expression and clinical significance of circular RNA hsa_circ_0079787 in the peripheral blood of patients with axial spondyloarthritis. Mol. Med. Rep. 2020;22:4197–4206. doi: 10.3892/mmr.2020.11520.
    1. Perez-Sanchez C., Font-Ugalde P., Ruiz-Limon P., Lopez-Pedrera C., Castro-Villegas M.C., Abalos-Aguilera M.C., Barbarroja N., Arias-de la Rosa I., Lopez-Montilla M.D., Escudero-Contreras A., et al. Circulating microRNAs as potential biomarkers of disease activity and structural damage in ankylosing spondylitis patients. Hum. Mol. Genet. 2018;27:875–890. doi: 10.1093/hmg/ddy008.
    1. Arias de la Rosa I., Font P., Escudero-Contreras A., López-Montilla M.D., Pérez-Sánchez C., Ábalos-Aguilera M.C., Ladehesa-Pineda L., Ibáñez-Costa A., Torres-Granados C., Jimenez-Gomez Y., et al. Complement component 3 as biomarker of disease activity and cardiometabolic risk factor in rheumatoid arthritis and spondyloarthritis. Ther. Adv. Chronic. Dis. 2020;11:2040622320965067. doi: 10.1177/2040622320965067.
    1. Zhong Z., Huang Y., Liu Y., Chen J., Liu M., Huang Q., Zheng S., Guo X., Deng W., Li T. Correlation between C-Reactive Protein to Albumin Ratio and Disease Activity in Patients with Axial Spondyloarthritis. Dis. Markers. 2021;2021:6642486. doi: 10.1155/2021/6642486.
    1. Pamukcu M., Duran T.I. Could C-Reactive Protein/Albumin Ratio be an Indicator of Activation in Axial Spondyloarthritis? J. Coll. Physicians Surg. Pak. 2021;30:537–541.
    1. Zhao Z., Wang G., Wang Y., Yang J., Wang Y., Zhu J., Huang F. Correlation between magnetic resonance imaging (MRI) findings and the new bone formation factor Dkk-1 in patients with spondyloarthritis. Clin. Rheumatol. 2019;38:465–475. doi: 10.1007/s10067-018-4284-y.
    1. Liao H.T., Lin Y.F., Tsai C.Y., Chou T.C. Bone morphogenetic proteins and Dickkopf-1 in ankylosing spondylitis. Scand. J. Rheumatol. 2018;47:56–61. doi: 10.1080/03009742.2017.1287305.
    1. Kraev K., Geneva-Popova M., Popova V., Popova S., Maneva A., Batalov A., Stankova T., Delcheva G., Stefanova K. Drug-neutralizing Antibodies against TNF-α blockers as Biomarkers of Therapy Effect Evaluation. Folia Med. 2020;62:282–289. doi: 10.3897/folmed.62.e39402.
    1. Wiśniewski A., Kasprzyk S., Majorczyk E., Nowak I., Wilczyńska K., Chlebicki A., Zoń-Giebel A., Kuśnierczyk P. ERAP1-ERAP2 haplotypes are associated with ankylosing spondylitis in Polish patients. Hum. Immunol. 2019;80:339–343. doi: 10.1016/j.humimm.2019.02.004.
    1. Kang K.Y., Chung M.K., Kim H.N., Hong Y.S., Ju J.H., Park S.H. Severity of Sacroiliitis and Erythrocyte Sedimentation Rate are Associated with a Low Trabecular Bone Score in Young Male Patients with Ankylosing Spondylitis. J. Rheumatol. 2018;45:349–356. doi: 10.3899/jrheum.170079.
    1. Dong Y., Guo J., Bi L. Baseline Interleukin-6 and Erythrocyte Sedimentation Rate Can Predict Clinical Response of TNF Inhibitor Treatment in Patients with Ankylosing Spondylitis. Ann. Clin. Lab. Sci. 2019;49:611–618.
    1. Fan X., Qi B., Ma L., Ma F. Screening of underlying genetic biomarkers for ankylosing spondylitis. Mol. Med. Rep. 2019;19:5263–5274. doi: 10.3892/mmr.2019.10188.
    1. Olofsson T., Lindqvist E., Mogard E., Andréasson K., Marsal J., Geijer M., Kristensen L.E., Wallman J.K. Elevated faecal calprotectin is linked to worse disease status in axial spondyloarthritis: Results from the SPARTAKUS cohort. Rheumatology. 2019;58:1176–1187. doi: 10.1093/rheumatology/key427.
    1. Liu M., Huang Y., Huang Z., Zhong Z., Deng W., Huang Z., Huang Q., Li T. The role of fibrinogen to albumin ratio in ankylosing spondylitis: Correlation with disease activity. Clin. Chim. Acta. 2020;505:136–140. doi: 10.1016/j.cca.2020.02.029.
    1. Cao M.Y., Wang J., Gao X.L., Hu Y.B. Serum galectin-3 concentrations in patients with ankylosing spondylitis. J. Clin. Lab. Anal. 2019;33:e22914. doi: 10.1002/jcla.22914.
    1. Ozkaramanli Gur D., Ozaltun D.N., Guzel S., Sarifakioglu B., Akyuz A., Alpsoy S., Aycicek O., Baykiz D. Novel imaging modalities in detection of cardiovascular involvement in ankylosing spondylitis. Scand. Cardiovasc. J. 2018;52:320–327. doi: 10.1080/14017431.2018.1551564.
    1. Troldborg A., Thiel S., Mistegaard C.E., Hansen A., Korsholm T.L., Stengaard-Pedersen K., Loft A.G. Plasma levels of H- and L-ficolin are increased in axial spondyloarthritis: Improvement of disease identification. Clin. Exp. Immunol. 2020;199:79–87. doi: 10.1111/cei.13374.
    1. Deminger A., Klingberg E., Nurkkala M., Geijer M., Carlsten H., Jacobsson L.T.H., Forsblad-d’Elia H. Elevated serum level of hepatocyte growth factor predicts development of new syndesmophytes in men with ankylosing spondylitis. Rheumatology. 2021;60:1804–1813. doi: 10.1093/rheumatology/keaa460.
    1. Torres L., Klingberg E., Nurkkala M., Carlsten H., Forsblad-d’Elia H. Hepatocyte growth factor is a potential biomarker for osteoproliferation and osteoporosis in ankylosing spondylitis. Osteoporos. Int. 2019;30:441–449. doi: 10.1007/s00198-018-4721-4.
    1. Ziade N., Abi Karam G., Merheb G., Mallak I., Irani L., Alam E., Messaykeh J., Menassa J., Mroue’ K., Uthman I., et al. HLA-B27 prevalence in axial spondyloarthritis patients and in blood donors in a Lebanese population: Results from a nationwide study. Int. J. Rheum. Dis. 2019;22:708–714. doi: 10.1111/1756-185X.13487.
    1. Lim C.S.E., Sengupta R., Gaffney K. The clinical utility of human leucocyte antigen B27 in axial spondyloarthritis. Rheumatology. 2018;57:959–968. doi: 10.1093/rheumatology/kex345.
    1. de Jong H.M.Y., de Winter J.J.H., van der Horst-Bruinsma I.E., van Schaardenburg D.J., van Gaalen F.A., van Tubergen A.M., Weel A.E.A.M., Landewé R.B.M., Baeten D.L.P., van de Sande M.G.H. Progression from subclinical inflammation to overt SpA in first degree relatives of SpA patients is associated with HLA-B27: The Pre-SpA cohort. Arthritis Care Res. 2021;0:1–9.
    1. Rosine N., Etcheto A., Hendel-Chavez H., Seror R., Briot K., Molto A., Chanson P., Taoufik Y., Wendling D., Lories R., et al. Increase In Il-31 Serum Levels Is Associated With Reduced Structural Damage In Early Axial Spondyloarthritis. Sci. Rep. 2018;8:7731. doi: 10.1038/s41598-018-25722-z.
    1. Iwaszko M., Wielińska J., Świerkot J., Kolossa K., Sokolik R., Bugaj B., Chaszczewska-Markowska M., Jeka S., Bogunia-Kubik K. IL-33 Gene Polymorphisms as Potential Biomarkers of Disease Susceptibility and Response to TNF Inhibitors in Rheumatoid Arthritis, Ankylosing Spondylitis, and Psoriatic Arthritis Patients. Front. Immunol. 2021;12:631603. doi: 10.3389/fimmu.2021.631603.
    1. Ruan W.F., Xie J.T., Jin Q., Wang W.D., Ping A.S. The Diagnostic and Prognostic Role of Interleukin 12B and Interleukin 6R Gene Polymorphism in Patients With Ankylosing Spondylitis. J. Clin. Rheumatol. 2018;24:18–24. doi: 10.1097/RHU.0000000000000610.
    1. Sagiv M., Adawi M., Awisat A., Shouval A., Peri R., Sabbah F., Rosner I., Kessel A., Slobodin G. The association between elevated serum interleukin-22 and the clinical diagnosis of axial spondyloarthritis: A retrospective study. Int. J. Rheum. Dis. 2022;25:56–60. doi: 10.1111/1756-185X.14246.
    1. Saif D.S., El Tabl M.A., Afifi N., Abdallah M.S., El Hefnawy S.M., Hassanein S.A. Interleukin-17A biomarker as a predictor for detection of early axial spondyloarthritis changes in patients with psoriasis. Int. J. Rheum. Dis. 2020;23:1664–1669. doi: 10.1111/1756-185X.13997.
    1. Sode J., Bank S., Vogel U., Andersen P.S., Sørensen S.B., Bojesen A.B., Andersen M.R., Brandslund I., Dessau R.B., Hoffmann H.J., et al. Genetically determined high activities of the TNF-alpha, IL23/IL17, and NFkB pathways were associated with increased risk of ankylosing spondylitis. BMC Med. Genet. 2018;19:165. doi: 10.1186/s12881-018-0680-z.
    1. Park J.H., Lee S.G., Jeon Y.K., Park E.K., Suh Y.S., Kim H.O. Relationship between serum adipokine levels and radiographic progression in patients with ankylosing spondylitis: A preliminary 2-year longitudinal study. Medicine. 2017;96:e7854. doi: 10.1097/MD.0000000000007854.
    1. Rademacher J., Tietz L.M. Added value of biomarkers compared with clinical parameters for the prediction of radiographic spinal progression in axial spondyloarthritis. Rheumatology. 2019;58:1556–1564. doi: 10.1093/rheumatology/kez025.
    1. Zhong H., Zhong M. LINC00311 is overexpressed in ankylosing spondylitis and predict treatment outcomes and recurrence. BMC Musculoskelet. Disord. 2019;20:278. doi: 10.1186/s12891-019-2647-4.
    1. Tsui F.W.L., Lin A., Sari I., Zhang Z., Tsui H.W., Inman R.D. Serial Lipocalin 2 and Oncostatin M levels reflect inflammation status and treatment response in axial spondyloarthritis. Arthritis Res. Ther. 2021;23:141. doi: 10.1186/s13075-021-02521-y.
    1. Hušáková M., Bay-Jensen A.C., Forejtová Š., Zegzulková K., Tomčík M., Gregová M., Bubová K., Hořínková J., Gatterová J., Pavelka K., et al. Metabolites of type I, II, III, and IV collagen may serve as markers of disease activity in axial spondyloarthritis. Sci. Rep. 2019;9:11218. doi: 10.1038/s41598-019-47502-z.
    1. Ruiz-Limon P., Ladehesa-Pineda M.L., Castro-Villegas M.D.C., Abalos-Aguilera M.D.C., Lopez-Medina C., Lopez-Pedrera C., Barbarroja N., Espejo-Peralbo D., Gonzalez-Reyes J.A., Villalba J.M., et al. Enhanced NETosis generation in radiographic axial spondyloarthritis: Utility as biomarker for disease activity and anti-TNF-α therapy effectiveness. J. Biomed. Sci. 2020;27:54. doi: 10.1186/s12929-020-00634-1.
    1. Genre F., Rueda-Gotor J., Remuzgo-Martínez S., Pulito-Cueto V., Corrales A., Mijares V., Lera-Gómez L., Portilla V., Expósito R., Mata C., et al. Omentin: A biomarker of cardiovascular risk in individuals with axial spondyloarthritis. Sci. Rep. 2020;10:9636. doi: 10.1038/s41598-020-66816-x.
    1. Genre F., Rueda-Gotor J., Remuzgo-Martínez S., Corrales A., Ubilla B., Mijares V., Fernández-Díaz C., Portilla V., Blanco R., Hernández J.L., et al. Implication of osteoprotegerin and sclerostin in axial spondyloarthritis cardiovascular disease: Study of 163 Spanish patients. Clin. Exp. Rheumatol. 2018;36:302–309.
    1. Nisihara R., Skare T.L., Zeni J.O., Rasera H., Lidani K., Messias-Reason I. Plasma levels of pentraxin 3 in patients with spondyloarthritis. Biomarkers. 2018;23:14–17. doi: 10.1080/1354750X.2016.1278265.
    1. Li X., Liang A., Chen Y., Lam N.S., Long X., Xu X., Zhong S. Procollagen I N-terminal peptide correlates with inflammation on sacroiliac joint magnetic resonance imaging in ankylosing spondylitis but not in non-radiographic axial spondyloarthritis: A cross-sectional study. Mod. Rheumatol. 2022;32:770–775. doi: 10.1093/mr/roab044.
    1. Luchetti M.M., Ciccia F., Avellini C., Benfaremo D., Guggino G., Farinelli A., Ciferri M., Rossini M., Svegliati S., Spadoni T., et al. Sclerostin and Antisclerostin Antibody Serum Levels Predict the Presence of Axial Spondyloarthritis in Patients with Inflammatory Bowel Disease. J. Rheumatol. 2018;45:630–637. doi: 10.3899/jrheum.170833.
    1. Perrotta F.M., Ceccarelli F., Barbati C., Colasanti T., De Socio A., Scriffignano S., Alessandri C., Lubrano E. Serum Sclerostin as a Possible Biomarker in Ankylosing Spondylitis: A Case-Control Study. J. Immunol. Res. 2018;2018:9101964. doi: 10.1155/2018/9101964.
    1. Liao H.T., Lin Y.F., Chou C.T., Tsai C.Y. Semaphorin 3A in Ankylosing Spondylitis. J. Microbiol. Immunol. Infect. 2019;52:151–157. doi: 10.1016/j.jmii.2017.07.001.
    1. Perrotta F.M., Ceccarelli F., Barbati C., Colasanti T., Montepaone M., Alessandri C., Valesini G., Lubrano E. Assessment of semaphorin 3A and its role in bone remodelling in a group of ankylosing spondylitis patients. Clin. Exp. Rheumatol. 2017;35:313–316.
    1. Liu S., Ji W., Lu J., Tang X., Guo Y., Ji M., Xu T., Gu W., Kong D., Shen Q. Discovery of Potential Serum Protein Biomarkers in Ankylosing Spondylitis Using Tandem Mass Tag-Based Quantitative Proteomics. J. Proteome Res. 2020;19:864–872. doi: 10.1021/acs.jproteome.9b00676.
    1. Jarlborg M., Courvoisier D.S., Lamacchia C., Martinez Prat L., Mahler M., Bentow C., Finckh A., Gabay C., Nissen M.J. Serum calprotectin: A promising biomarker in rheumatoid arthritis and axial spondyloarthritis. Arthritis Res. Ther. 2020;22:105. doi: 10.1186/s13075-020-02190-3.
    1. Hu H., Du F., Zhang S., Zhang W. Serum calprotectin correlates with risk and disease severity of ankylosing spondylitis and its change during first month might predict favorable response to treatment. Mod. Rheumatol. 2019;29:836–842. doi: 10.1080/14397595.2018.1519103.
    1. Genre F., Rueda-Gotor J., Remuzgo-Martínez S., Corrales A., Mijares V., Expósito R., Mata C., Portilla V., Blanco R., Hernández J.L., et al. Association of circulating calprotectin with lipid profile in axial spondyloarthritis. Sci. Rep. 2018;8:13728. doi: 10.1038/s41598-018-32199-3.
    1. Rademacher J., Siderius M., Gellert L., Wink F.R., Verba M., Maas F., Tietz L.M., Poddubnyy D., Spoorenberg A., Arends S. Baseline serum biomarkers of inflammation, bone turnover and adipokines predict spinal radiographic progression in ankylosing spondylitis patients on TNF inhibitor therapy. Semin. Arthritis Rheum. 2022;53:151974. doi: 10.1016/j.semarthrit.2022.151974.
    1. Kook H.Y., Jin S.H., Park P.R., Lee S.J., Shin H.J., Kim T.J. Serum miR-214 as a novel biomarker for ankylosing spondylitis. Int. J. Rheum. Dis. 2019;22:1196–1201. doi: 10.1111/1756-185X.13475.
    1. Bubová K., Prajzlerová K., Hulejová H., Gregová M., Mintálová K., Hušáková M., Forejtová Š., Filková M., Tomčík M., Vencovský J., et al. Elevated Tenascin-C Serum Levels in Patients with Axial Spondyloarthritis. Physiol. Res. 2020;69:653–660. doi: 10.33549/physiolres.934414.
    1. Gupta L., Bhattacharya S., Aggarwal A. Tenascin-C, a biomarker of disease activity in early ankylosing spondylitis. Clin. Rheumatol. 2018;37:1401–1405. doi: 10.1007/s10067-017-3938-5.
    1. Rueda-Gotor J., López-Mejías R., Remuzgo-Martínez S., Pulito-Cueto V., Corrales A., Lera-Gómez L., Portilla V., González-Mazón Í., Blanco R., Expósito R., et al. Vaspin in atherosclerotic disease and cardiovascular risk in axial spondyloarthritis: A genetic and serological study. Arthritis Res. Ther. 2021;23:111. doi: 10.1186/s13075-021-02499-7.
    1. Siebuhr A.S., Hušaková M., Forejtová S., Zegzulková K., Tomčik M., Urbanová M., Grobelná K., Gatterová J., Bay-Jensen A.C., Pavelka K. Metabolites of C-reactive protein and vimentin are associated with disease activity of axial spondyloarthritis. Clin. Exp. Rheumatol. 2019;37:358–366.
    1. Baykara A.R., Küçük A., Tuzcu A., Tuzcu G., Cüre E., Uslu A.U., Omma A. The relationship of serum visfatin levels with clinical parameters, flow-mediated dilation, and carotid intima-media thickness in patients with ankylosing spondylitis. Turk. J. Med. Sci. 2021;51:1865–1874. doi: 10.3906/sag-2012-351.
    1. Proft F., Muche B., Schmidt M., Spiller L., Rodriguez V.R., Rademacher J., Weber A.-K., Lüders S., Protopopov M., Spiller I., et al. FRI0194 Ankylosing spondylitis disease activity score (ASDAS) based on a quick quantitative crp assay performs similarly well to asdas based on conventional crp in patients with axial spondyloarthritis. Ann. Rheum. Dis. 2018;77:637–638.
    1. Smoldovskaya O.V., Voloshin S.A., Novikov A.A., Aleksandrova E.N., Feyzkhanova G.U., Rubina A.Y. Adaptation of Microarray Assay for Serum Amyloid A Analysis in Human Serum. Mol. Biol. 2022;56:336–342. doi: 10.1134/S0026893322020145.
    1. Sorić Hosman I., Kos I., Lamot L. Serum Amyloid A in Inflammatory Rheumatic Diseases: A Compendious Review of a Renowned Biomarker. Front. Immunol. 2021;11:631299. doi: 10.3389/fimmu.2020.631299.
    1. Lorenzin M., Ometto F., Ortolan A., Felicetti M., Favero M., Doria A., Ramonda R. An update on serum biomarkers to assess axial spondyloarthritis and to guide treatment decision. Ther. Adv. Musculoskelet. Dis. 2020;12:1759720X20934277. doi: 10.1177/1759720X20934277.
    1. Inoue K., Kodama T., Daida H. Pentraxin 3: A novel biomarker for inflammatory cardiovascular disease. Int. J. Vasc. Med. 2012;2012:657025. doi: 10.1155/2012/657025.
    1. Özdemirel A.E., Güven S.C., Sunar İ., Sari Sürmeli Z., Doğanci A., Tutkak H., Yalçin Sayin A.P., Ataman Ş. The Relationship between Plasma Pentraxin 3 and Serum Amyloid P Levels and Disease Activity in Ankylosing Spondylitis. Int. J. Clin. Pract. 2022;2022:7243399. doi: 10.1155/2022/7243399.
    1. Qi Q., Geng Y., Sun M., Chen H., Wang P., Chen Z. Hyperfibrinogen Is Associated with the Systemic Inflammatory Response and Predicts Poor Prognosis in Advanced Pancreatic Cancer. Pancreas. 2015;44:977–982. doi: 10.1097/MPA.0000000000000353.
    1. Keller U. Nutritional Laboratory Markers in Malnutrition. J. Clin. Med. 2019;8:775. doi: 10.3390/jcm8060775.
    1. Singh V., Yeoh B.S., Chassaing B., Zhang B., Saha P., Xiao X., Awasthi D., Shashidharamurthy R., Dikshit M., Gewirtz A., et al. Microbiota-inducible Innate Immune, Siderophore Binding Protein Lipocalin 2 is Critical for Intestinal Homeostasis. Cell. Mol. Gastroenterol. Hepatol. 2016;2:482–498. doi: 10.1016/j.jcmgh.2016.03.007.
    1. West N.R., Hegazy A.N., Owens B.M.J., Bullers S.J., Linggi B., Buonocore S., Coccia M., Görtz D., This S., Stockenhuber K., et al. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease. Nat. Med. 2017;23:579–589. doi: 10.1038/nm.4307.
    1. Moschen A.R., Adolph T.E., Gerner R.R., Wieser V., Tilg H. Lipocalin-2: A Master Mediator of Intestinal and Metabolic Inflammation. Trends Endocrinol. Metab. 2017;28:388–397. doi: 10.1016/j.tem.2017.01.003.
    1. Mancuso P. The role of adipokines in chronic inflammation. Immunotargets Ther. 2016;5:47–56. doi: 10.2147/ITT.S73223.
    1. Saddi-Rosa P., Oliveira C.S., Giuffrida F.M., Reis A.F. Visfatin, glucose metabolism and vascular disease: A review of evidence. Diabetol. Metab. Syndr. 2010;2:21. doi: 10.1186/1758-5996-2-21.
    1. Watanabe T., Watanabe-Kominato K., Takahashi Y., Kojima M., Watanabe R. Adipose Tissue-Derived Omentin-1 Function and Regulation. Compr. Physiol. 2017;7:765–781.
    1. Rao S.S., Hu Y., Xie P.L., Cao J., Wang Z.X., Liu J.H., Yin H., Huang J., Tan Y.J., Luo J., et al. Omentin-1 prevents inflammation-induced osteoporosis by downregulating the pro-inflammatory cytokines. Bone Res. 2018;6:9. doi: 10.1038/s41413-018-0012-0.
    1. Zhang J.M., An J. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin. 2007;45:27–37. doi: 10.1097/AIA.0b013e318034194e.
    1. Furst D.E., Louie J.S. Targeting inflammatory pathways in axial spondyloarthritis. Arthritis Res. Ther. 2019;21:135. doi: 10.1186/s13075-019-1885-z.
    1. Jethwa H., Bowness P. The interleukin (IL)-23/IL-17 axis in ankylosing spondylitis: New advances and potentials for treatment. Clin. Exp. Immunol. 2016;183:30–36. doi: 10.1111/cei.12670.
    1. Walsham N.E., Sherwood R.A. Fecal calprotectin in inflammatory bowel disease. Clin. Exp. Gastroenterol. 2016;9:21–29.
    1. Romand X., Bernardy C., Nguyen M.V.C., Courtier A., Trocme C., Clapasson M., Paclet M.H., Toussaint B., Gaudin P. Systemic calprotectin and chronic inflammatory rheumatic diseases. Jt. Bone Spine. 2019;86:691–698. doi: 10.1016/j.jbspin.2019.01.003.
    1. Turina M.C., Sieper J., Yeremenko N., Conrad K., Haibel H., Rudwaleit M., Baeten D., Poddubnyy D. Calprotectin serum level is an independent marker for radiographic spinal progression in axial spondyloarthritis. Ann. Rheum. Dis. 2014;73:1746–1748. doi: 10.1136/annrheumdis-2014-205506.
    1. Duran A., Kobak S., Sen N., Aktakka S., Atabay T., Orman M. Fecal calprotectin is associated with disease activity in patients with ankylosing spondylitis. Bosn. J. Basic Med. Sci. 2016;16:71–74. doi: 10.17305/bjbms.2016.752.
    1. Li T., Zhang Z., Li X., Dong G., Zhang M., Xu Z., Yang J. Neutrophil Extracellular Traps: Signaling Properties and Disease Relevance. Mediat. Inflamm. 2020;2020:9254087. doi: 10.1155/2020/9254087.
    1. Dong R., Zhang M., Hu Q., Zheng S., Soh A., Zheng Y., Yuan H. Galectin-3 as a novel biomarker for disease diagnosis and a target for therapy (Review) Int. J. Mol. Med. 2018;41:599–614. doi: 10.3892/ijmm.2017.3311.
    1. Omran A., Atanasova D., Landgren F., Magnusson P. Sclerostin: From Molecule to Clinical Biomarker. Int. J. Mol. Sci. 2022;23:4751. doi: 10.3390/ijms23094751.
    1. Baron R., Rawadi G. Targeting the Wnt/beta-catenin pathway to regulate bone formation in the adult skeleton. Endocrinology. 2007;148:2635–2643. doi: 10.1210/en.2007-0270.
    1. Ito N., Prideaux M., Wijenayaka A.R., Yang D., Ormsby R.T., Bonewald L.F., Atkins G.J. Sclerostin Directly Stimulates Osteocyte Synthesis of Fibroblast Growth Factor-23. Calcif. Tissue Int. 2021;109:66–76. doi: 10.1007/s00223-021-00823-6.
    1. Appel H., Ruiz-Heiland G., Listing J., Zwerina J., Herrmann M., Mueller R., Haibel H., Baraliakos X., Hempfing A., Rudwaleit M., et al. Altered skeletal expression of sclerostin and its link to radiographic progression in ankylosing spondylitis. Arthritis Rheum. 2009;60:3257–3262. doi: 10.1002/art.24888.
    1. Mihara A., Yukata K., Seki T., Iwanaga R., Nishida N., Fujii K., Nagao Y., Sakai T. Effects of sclerostin antibody on bone healing. World J. Orthop. 2021;12:651–659. doi: 10.5312/wjo.v12.i9.651.
    1. Aluganti Narasimhulu C., Singla D.K. The Role of Bone Morphogenetic Protein 7 (BMP-7) in Inflammation in Heart Diseases. Cells. 2020;9:280. doi: 10.3390/cells9020280.
    1. Mattey D.L., Packham J.C., Nixon N.B., Coates L., Creamer P., Hailwood S., Taylor G.J., Bhalla A.K. Association of cytokine and matrix metalloproteinase profiles with disease activity and function in ankylosing spondylitis. Arthritis Res. Ther. 2012;14:R127. doi: 10.1186/ar3857.
    1. Siebuhr A.S., van der Heijde D., Bay-Jensen A.C., Karsdal M.A., Landewé R., van Tubergen A., Ramiro S. Is radiographic progression in radiographic axial spondyloarthritis related to matrix metalloproteinase degradation of extracellular matrix? RMD Open. 2018;4:000648. doi: 10.1136/rmdopen-2018-000648.
    1. Kučukalić-Selimović E., Valjevac A., Hadžović-Džuvo A. The utility of procollagen type 1 N-terminal propeptide for the bone status assessment in postmenopausal women. Bosn. J. Basic Med. Sci. 2013;13:259–265. doi: 10.17305/bjbms.2013.2337.
    1. Koivula M.K., Risteli L., Risteli J. Measurement of aminoterminal propeptide of type I procollagen (PINP) in serum. Clin. Biochem. 2012;45:920–927. doi: 10.1016/j.clinbiochem.2012.03.023.
    1. Ivaska J., Pallari H.M., Nevo J., Eriksson J.E. Novel functions of vimentin in cell adhesion, migration, and signaling. Exp. Cell Res. 2007;313:2050–2062. doi: 10.1016/j.yexcr.2007.03.040.
    1. Bay-Jensen A.C., Karsdal M.A., Vassiliadis E., Wichuk S., Marcher-Mikkelsen K., Lories R., Christiansen C., Maksymowych W.P. Circulating citrullinated vimentin fragments reflect disease burden in ankylosing spondylitis and have prognostic capacity for radiographic progression. Arthritis Rheum. 2013;65:972–980. doi: 10.1002/art.37843.
    1. Klingberg E., Nurkkala M., Carlsten H., Forsblad-d’Elia H. Biomarkers of bone metabolism in ankylosing spondylitis in relation to osteoproliferation and osteoporosis. J. Rheumatol. 2014;41:1349–1356. doi: 10.3899/jrheum.131199.
    1. Yilmaz Y., Kurt R., Eren F., Imeryuz N. Serum osteocalcin levels in patients with nonalcoholic fatty liver disease: Association with ballooning degeneration. Scand. J. Clin. Lab. Investig. 2011;71:631–636. doi: 10.3109/00365513.2011.604427.
    1. Kwon S.R., Lim M.J., Suh C.H., Park S.G., Hong Y.S., Yoon B.Y., Kim H.A., Choi H.J., Park W. Dickkopf-1 level is lower in patients with ankylosing spondylitis than in healthy people and is not influenced by anti-tumor necrosis factor therapy. Rheumatol. Int. 2012;32:2523–2527. doi: 10.1007/s00296-011-1981-0.
    1. Pavliuk O., Shevchuk S. Levels of osteocalcin and procollagen i n-terminal propeptide (pinp) in men suffering from ankylosing spondylitis. Wiad. Lek. 2021;74:2384–2391. doi: 10.36740/WLek202110105.
    1. Wu M., Chen M., Ma Y., Yang J., Han R., Yuan Y., Hu X., Wang M., Zhang X., Xu S., et al. Dickkopf-1 in ankylosing spondylitis: Review and meta-analysis. Clin. Chim. Acta. 2018;481:177–183. doi: 10.1016/j.cca.2018.03.010.
    1. Garcia S. Role of Semaphorins in Immunopathologies and Rheumatic Diseases. Int. J. Mol. Sci. 2019;20:374. doi: 10.3390/ijms20020374.
    1. McGovern K.E., Wilson E.H. Role of Chemokines and Trafficking of Immune Cells in Parasitic Infections. Curr. Immunol. Rev. 2013;9:157–168. doi: 10.2174/1573395509666131217000000.
    1. Ivanovska M., Abdi Z., Murdjeva M., Macedo D., Maes A., Maes M. CCL-11 or Eotaxin-1: An Immune Marker for Ageing and Accelerated Ageing in Neuro-Psychiatric Disorders. Pharmaceuticals. 2020;13:230. doi: 10.3390/ph13090230.
    1. Kindstedt E., Holm C.K., Sulniute R., Martinez-Carrasco I., Lundmark R., Lundberg P. CCL11, a novel mediator of inflammatory bone resorption. Sci. Rep. 2017;7:5334. doi: 10.1038/s41598-017-05654-w.
    1. Kalayci M., Gul E. Eotaxin-1 Levels in Patients with Myocardial Infarction. Clin. Lab. 2022;68:3. doi: 10.7754/Clin.Lab.2021.210806.
    1. Komsalova L.Y., Martínez Salinas M.P., Jiménez J.F.G. Predictive values of inflammatory back pain, positive HLA B27 antigen and acute and chronic magnetic resonance changes in early diagnosis of Spondyloarthritis. A study of 133 patients. PLoS ONE. 2020;15:e0244184. doi: 10.1371/journal.pone.0244184.
    1. Rudwaleit M., Claudepierre P., Wordsworth P., Cortina E.L., Sieper J., Kron M., Carcereri-De-Prati R., Kupper H., Kary S. Effectiveness, safety, and predictors of good clinical response in 1250 patients treated with adalimumab for active ankylosing spondylitis. J. Rheumatol. 2009;36:801–808. doi: 10.3899/jrheum.081048.
    1. Robinson P.C., Claushuis T.A., Cortes A., Martin T.M., Evans D.M., Leo P., Mukhopadhyay P., Bradbury L.A., Cremin K., Harris J., et al. Genetic dissection of acute anterior uveitis reveals similarities and differences in associations observed with ankylosing spondylitis. Arthritis Rheumatol. 2015;67:140–151. doi: 10.1002/art.38873.
    1. Lin H., Gong Y.Z. Reply to “Association of HLA-B27 and its subtypes with ankylosing spondylitis and clinical manifestations of ankylosing spondylitis in different HLA-B27 subtypes: Comment on the article by Lin et al.”. Rheumatol. Int. 2017;37:1685. doi: 10.1007/s00296-017-3789-z.
    1. Li M.Y., Yao Z.Q., Liu X.Y. Advance of research on HLA-B27 and the immunological mechanism of ankylosing spondylitis. Sheng Li Ke Xue Jin Zhan. 2011;42:16–20.
    1. Caba L., Florea L., Gug C., Dimitriu D.C., Gorduza E.V. Circular RNA-Is the Circle Perfect? Biomolecules. 2021;11:1755. doi: 10.3390/biom11121755.
    1. Kumar L., Shamsuzzama , Jadiya P., Haque R., Shukla S., Nazir A. Functional Characterization of Novel Circular RNA Molecule, circzip-2 and Its Synthesizing Gene zip-2 in C. elegans Model of Parkinson’s Disease. Mol. Neurobiol. 2018;55:6914–6926. doi: 10.1007/s12035-018-0903-5.
    1. Qu S., Yang X., Li X., Wang J., Gao Y., Shang R., Sun W., Dou K., Li H. Circular RNA: A new star of noncoding RNAs. Cancer Lett. 2015;365:141–148. doi: 10.1016/j.canlet.2015.06.003.
    1. Wang L., Long H., Zheng Q., Bo X., Xiao X., Li B. Circular RNA circRHOT1 promotes hepatocellular carcinoma progression by initiation of NR2F6 expression. Mol. Cancer. 2019;18:119. doi: 10.1186/s12943-019-1046-7.
    1. Ouyang Q., Wu J., Jiang Z., Zhao J., Wang R., Lou A., Zhu D., Shi G.P., Yang M. Microarray Expression Profile of Circular RNAs in Peripheral Blood Mononuclear Cells from Rheumatoid Arthritis Patients. Cell. Physiol. Biochem. 2017;42:651–659. doi: 10.1159/000477883.
    1. Luo Q., Zhang L., Li X., Fu B., Deng Z., Qing C., Su R., Xu J., Guo Y., Huang Z., et al. Identification of circular RNAs hsa_circ_0044235 in peripheral blood as novel biomarkers for rheumatoid arthritis. Clin. Exp. Immunol. 2018;194:118–124. doi: 10.1111/cei.13181.
    1. Luo Q., Li X., Fu B., Zhang L., Fang L., Qing C., Guo Y., Huang Z., Li J. Expression profile and diagnostic value of circRNAs in peripheral blood from patients with systemic lupus erythematosus. Mol. Med. Rep. 2021;23:1. doi: 10.3892/mmr.2020.11639.
    1. Zhang Y., Li Q., Liu C., Gao S., Ping H., Wang J., Wang P. MiR-214-3p attenuates cognition defects via the inhibition of autophagy in SAMP8 mouse model of sporadic Alzheimer’s disease. Neurotoxicology. 2016;56:139–149. doi: 10.1016/j.neuro.2016.07.004.
    1. Li D., Liu J., Guo B., Liang C., Dang L., Lu C., He X., Cheung H.Y., Xu L., Lu C. Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation. Nat. Commun. 2016;7:10872. doi: 10.1038/ncomms10872.
    1. Yan J., Parekh V.V., Mendez-Fernandez Y., Olivares-Villagómez D., Dragovic S., Hill T., Roopenian D.C., Joyce S., Van Kaer L. In vivo role of ER-associated peptidase activity in tailoring peptides for presentation by MHC class Ia and class Ib molecules. J. Exp. Med. 2006;203:647–659. doi: 10.1084/jem.20052271.
    1. Haroon N., Tsui F.W., Chiu B., Tsui H.W., Inman R.D. Serum cytokine receptors in ankylosing spondylitis: Relationship to inflammatory markers and endoplasmic reticulum aminopeptidase polymorphisms. J. Rheumatol. 2010;37:1907–1910. doi: 10.3899/jrheum.100019.
    1. Li L., Batliwala M., Bouvier M. ERAP1 enzyme-mediated trimming and structural analyses of MHC I-bound precursor peptides yield novel insights into antigen processing and presentation. J. Biol. Chem. 2019;294:18534–18544. doi: 10.1074/jbc.RA119.010102.
    1. Martín-Esteban A., Guasp P., Barnea E., Admon A., López de Castro J.A. Functional Interaction of the Ankylosing Spondylitis-Associated Endoplasmic Reticulum Aminopeptidase 2 With the HLA-B*27 Peptidome in Human Cells. Arthritis Rheumatol. 2016;68:2466–2475. doi: 10.1002/art.39734.
    1. Lalevée S., Feil R. Long noncoding RNAs in human disease: Emerging mechanisms and therapeutic strategies. Epigenomics. 2015;7:877–879. doi: 10.2217/epi.15.55.
    1. Wang Y., Luo T.B., Liu L., Cui Z.Q. LncRNA LINC00311 Promotes the Proliferation and Differentiation of Osteoclasts in Osteoporotic Rats Through the Notch Signaling Pathway by Targeting DLL3. Cell. Physiol. Biochem. 2018;47:2291–2306. doi: 10.1159/000491539.
    1. Hassan M.K., Kumar D., Naik M., Dixit M. The expression profile and prognostic significance of eukaryotic translation elongation factors in different cancers. PLoS ONE. 2018;13:e0191377. doi: 10.1371/journal.pone.0191377.
    1. Yu X., Zheng H., Chan M.T., Wu W.K. HULC: An oncogenic long non-coding RNA in human cancer. J. Cell. Mol. Med. 2017;21:410–417. doi: 10.1111/jcmm.12956.
    1. Ozgocmen S., Godekmerdan A., Ozkurt-Zengin F. Acute-phase response, clinical measures and disease activity in ankylosing spondylitis. Jt. Bone Spine. 2007;74:249–253. doi: 10.1016/j.jbspin.2006.07.005.
    1. Aimo A., Vergaro G., Passino C., Ripoli A., Ky B., Miller W.L., Bayes-Genis A., Anand I., Januzzi J.L., Emdin M. Prognostic Value of Soluble Suppression of Tumorigenicity-2 in Chronic Heart Failure: A Meta-Analysis. JACC Heart Fail. 2017;5:280–286. doi: 10.1016/j.jchf.2016.09.010.
    1. Demyanets S., Kaun C., Kaider A., Speidl W., Prager M., Oravec S., Hohensinner P., Wojta J., Rega-Kaun G. The pro-inflammatory marker soluble suppression of tumorigenicity-2 (ST2) is reduced especially in diabetic morbidly obese patients undergoing bariatric surgery. Cardiovasc. Diabetol. 2020;19:26. doi: 10.1186/s12933-020-01001-y.
    1. De Boer R.A., Daniels L.B., Maisel A.S., Januzzi J.L., Jr. State of the Art: Newer biomarkers in heart failure. Eur. J. Heart Fail. 2015;17:559–569. doi: 10.1002/ejhf.273.
    1. Roldan C.A. Valvular and coronary heart disease in systemic inflammatory diseases: Systemic Disorders in heart disease. Heart. 2008;94:1089–1101. doi: 10.1136/hrt.2007.132787.
    1. Noer H.R. An “experimental” epidemic of Reiter’s syndrome. JAMA. 1966;198:693–698. doi: 10.1001/jama.1966.03110200049016.
    1. Gill T., Asquith M., Rosenbaum J.T., Colbert R.A. The intestinal microbiome in spondyloarthritis. Curr. Opin. Rheumatol. 2015;27:319–325. doi: 10.1097/BOR.0000000000000187.
    1. Tiffany C.R., Bäumler A.J. Dysbiosis: From fiction to function. Am. J. Physiol. Gastrointest. Liver Physiol. 2019;317:602–608. doi: 10.1152/ajpgi.00230.2019.
    1. Ciccia F., Ferrante A., Triolo G. Intestinal dysbiosis and innate immune responses in axial spondyloarthritis. Curr. Opin. Rheumatol. 2016;28:352–358. doi: 10.1097/BOR.0000000000000296.
    1. Sagard J., Olofsson T., Mogard E., Marsal J., Andréasson K., Geijer M., Kristensen L.E., Lindqvist E., Wallman J.K. Gut dysbiosis associated with worse disease activity and physical function in axial spondyloarthritis. Arthritis Res. Ther. 2022;24:42. doi: 10.1186/s13075-022-02733-w.
    1. Gill T., Brooks S.R., Rosenbaum J.T., Asquith M., Colbert R.A. Novel Inter-omic Analysis Reveals Relationships Between Diverse Gut Microbiota and Host Immune Dysregulation in HLA-B27-Induced Experimental Spondyloarthritis. Arthritis Rheumatol. 2019;71:1849–1857. doi: 10.1002/art.41018.
    1. Oikonomopoulou K., Ricklin D., Ward P.A., Lambris J.D. Interactions between coagulation and complement--their role in inflammation. Semin. Immunopathol. 2012;34:151–165. doi: 10.1007/s00281-011-0280-x.
    1. Phillips C.M., Kesse-Guyot E., Ahluwalia N., McManus R., Hercberg S., Lairon D., Planells R., Roche H.M. Dietary fat, abdominal obesity and smoking modulate the relationship between plasma complement component 3 concentrations and metabolic syndrome risk. Atherosclerosis. 2012;220:513–519. doi: 10.1016/j.atherosclerosis.2011.11.007.
    1. Barbu A., Hamad O.A., Lind L., Ekdahl K.N., Nilsson B. The role of complement factor C3 in lipid metabolism. Mol. Immunol. 2015;67:101–107.
    1. Midwood K.S., Orend G. The role of tenascin-C in tissue injury and tumorigenesis. J. Cell Commun. Signal. 2009;3:287–310. doi: 10.1007/s12079-009-0075-1.
    1. Petrini I. Biology of MET: A double life between normal tissue repair and tumor progression. Ann. Transl. Med. 2015;3:82.
    1. Nakamura T., Sakai K., Nakamura T., Matsumoto K. Hepatocyte growth factor twenty years on: Much more than a growth factor. J. Gastroenterol. Hepatol. 2011;26:188–202. doi: 10.1111/j.1440-1746.2010.06549.x.
    1. Grano M., Galimi F., Zambonin G., Colucci S., Cottone E., Zallone A.Z., Comoglio P.M. Hepatocyte growth factor is a coupling factor for osteoclasts and osteoblasts in vitro. Proc. Natl. Acad. Sci. USA. 1996;93:7644–7648. doi: 10.1073/pnas.93.15.7644.
    1. Kuraya M., Ming Z., Liu X., Matsushita M., Fujita T. Specific binding of L-ficolin and H-ficolin to apoptotic cells leads to complement activation. Immunobiology. 2005;209:689–697. doi: 10.1016/j.imbio.2004.11.001.

Source: PubMed

3
Se inscrever