Lower tidal volume strategy (≈3 ml/kg) combined with extracorporeal CO2 removal versus 'conventional' protective ventilation (6 ml/kg) in severe ARDS: the prospective randomized Xtravent-study

Thomas Bein, Steffen Weber-Carstens, Anton Goldmann, Thomas Müller, Thomas Staudinger, Jörg Brederlau, Ralf Muellenbach, Rolf Dembinski, Bernhard M Graf, Marlene Wewalka, Alois Philipp, Klaus-Dieter Wernecke, Matthias Lubnow, Arthur S Slutsky, Thomas Bein, Steffen Weber-Carstens, Anton Goldmann, Thomas Müller, Thomas Staudinger, Jörg Brederlau, Ralf Muellenbach, Rolf Dembinski, Bernhard M Graf, Marlene Wewalka, Alois Philipp, Klaus-Dieter Wernecke, Matthias Lubnow, Arthur S Slutsky

Abstract

Background: Acute respiratory distress syndrome is characterized by damage to the lung caused by various insults, including ventilation itself, and tidal hyperinflation can lead to ventilator induced lung injury (VILI). We investigated the effects of a low tidal volume (V(T)) strategy (V(T) ≈ 3 ml/kg/predicted body weight [PBW]) using pumpless extracorporeal lung assist in established ARDS.

Methods: Seventy-nine patients were enrolled after a 'stabilization period' (24 h with optimized therapy and high PEEP). They were randomly assigned to receive a low V(T) ventilation (≈3 ml/kg) combined with extracorporeal CO2 elimination, or to a ARDSNet strategy (≈6 ml/kg) without the extracorporeal device. The primary outcome was the 28-days and 60-days ventilator-free days (VFD). Secondary outcome parameters were respiratory mechanics, gas exchange, analgesic/sedation use, complications and hospital mortality.

Results: Ventilation with very low V(T)'s was easy to implement with extracorporeal CO2-removal. VFD's within 60 days were not different between the study group (33.2 ± 20) and the control group (29.2 ± 21, p = 0.469), but in more hypoxemic patients (PaO2/FIO2 ≤150) a post hoc analysis demonstrated significant improved VFD-60 in study patients (40.9 ± 12.8) compared to control (28.2 ± 16.4, p = 0.033). The mortality rate was low (16.5%) and did not differ between groups.

Conclusions: The use of very low V(T) combined with extracorporeal CO2 removal has the potential to further reduce VILI compared with a 'normal' lung protective management. Whether this strategy will improve survival in ARDS patients remains to be determined (Clinical trials NCT 00538928).

Trial registration: ClinicalTrials.gov NCT00538928.

Figures

Fig. 1
Fig. 1
Screening, randomization and follow-up according to study protocol. VT tidal volume, CVP central venous pressure, MAP mean arterial pressure, vvECMO veno-venous ECMO
Fig. 2
Fig. 2
Post-hoc analysis: probability of successful weaning in patients presenting with PaO2/FIO2 ≤150 versus >150 (only surviving patients)
Fig. 3
Fig. 3
Mean tidal volumes (ml per kg predicted body weight), minute ventilation and difference of plateau pressure and PEEP (Pplat − PEEP), in the treatment and control groups during the study period
Fig. 4
Fig. 4
Percent of spontaneous ventilation on minute ventilation and oxygenation (PaO2/FIO2) in the treatment and control groups during the study period

References

    1. Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. 2000;342:1334–1337. doi: 10.1056/NEJM200005043421806.
    1. Terragni PP, Rosboch G, Tealdi A, Corno E, Menaldo E, Davini O, Gandini G, Herrmann P, Mascia L, Quintel M, Slutsky AS, Gattinoni L, Ranieri VM. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2007;175:160–166. doi: 10.1164/rccm.200607-915OC.
    1. Grasso S, Stripoli T, Sacchi M, Sacchi M, Trerotoli P, Staffieri F, Franchini D, De Monte V, Valentini V, Pugliese P, Crovace A, Driessen B, Fiore T. Inhomogeneity of lung parenchyma during the open lung strategy: a computed tomography scan study. Am J Respir Crit Care Med. 2009;180:415–423. doi: 10.1164/rccm.200901-0156OC.
    1. The Acute Respiratory Distress Syndrome Network Ventilation with lower tidal volume as compared with traditional tidal volume for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–1308. doi: 10.1056/NEJM200005043421801.
    1. Hager DN, Krishnan JA, Hayden DL, Hayden DL, Brower RG, ARDS Clinical Trials Network Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med. 2005;172:1241–1245. doi: 10.1164/rccm.200501-048CP.
    1. Grasso S, Stripoli T, De Michele M, Bruno F, Moschetta M, Angelelli G, Munno I, Ruggiero V, Anaclerio R, Cafarelli A, Driessen B, Fiore T. ARDSNet ventilatory protocol and alveolar hyperinflation: role of positive end-expiratory pressure. Am J Respir Crit Care Med. 2007;176:761–767. doi: 10.1164/rccm.200702-193OC.
    1. Azzam ZS, Sharabi K, Guetta J, Bank EM, Gruenbaum Y. The physiological and molecular effects of elevated CO2 levels. Cell Cycle. 2010;15:1528–1532. doi: 10.4161/cc.9.8.11196.
    1. Peltekova V, Engelberts D, Otulakowski G, Otulakowski G, Uematsu S, Post M, Kavanagh BP. Hypercapnic acidosis in ventilator-induced lung injury. Intensive Care Med. 2010;36:869–878. doi: 10.1007/s00134-010-1787-7.
    1. Rubenfeld GD, Cooper C, Greg Carter RT, Thompson BT, Hudson LD. Barriers to providing lung-protective ventilation to patients with acute lung injury. Crit Care Med. 2004;32:1289–1293. doi: 10.1097/01.CCM.0000127266.39560.96.
    1. Bein Th, Weber F, Philipp A, Prasser C, Pfeifer M, Schmid FX, Butz B, Birnbaum D, Taeger K, Schlitt HJ. A new pumpless extracorporeal interventional lung assist in critical hypoxemia/hypercapnia. Crit Care Med. 2006;34:1372–1379. doi: 10.1097/.
    1. Terragni PP, Del Sorbo L, Mascia L, Urbino R, Martin EL, Birocco A, Faggiano C, Quintel M, Gattinoni L, Ranieri VM. Tidal volume lower than 6 ml/kg enhances lung protection: role of extracorporeal carbon dioxide removal. Anesthesiology. 2009;111:826–835. doi: 10.1097/ALN.0b013e3181b764d2.
    1. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, LeGall JR, Morris A, Spragg R. American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149:818–824. doi: 10.1164/ajrccm.149.3.7509706.
    1. Villar J, Pérez-Méndez L, López J, Belda J, Blanco J, Saralegui I, Suárez-Sipmann F, López J, Lubillo S, Kacmarek RM, HELP Network An early PEEP/FIO2 trial identifies different degrees of lung injury in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2007;176:795–804. doi: 10.1164/rccm.200610-1534OC.
    1. ESICM Systematic Review Group (Ed.) (2011) Clinical evidence in intensive care. Medizinisch Wissenschaftliche Verlagsgesellschaft, Berlin, Germany
    1. Zimmermann M, Bein T, Arlt M, Philipp A, Rupprecht L, Mueller T, Lubnow M, Graf BM, Schlitt HJ. Pumpless extracorporeal interventional lung assist in patients with acute respiratory distress syndrome: a prospective pilot study. Crit Care. 2009;13:R10. doi: 10.1186/cc7703.
    1. Brower RG, Lanken PN, Macintyre N, Matthay MA, Morris A, Ancukiewicz M, Schoenfeld D, Thompson BT, National Heart, Lung, and Blood Institute ARDS Clinical Trials Network Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351:327–336. doi: 10.1056/NEJMoa032193.
    1. Schoenfeld DA, Bernard GR, ARDS Network Statistical evaluation of ventilator-free days as an efficacy measure in clinical trials of treatments for acute respiratory distress syndrome. Crit Care Med. 2002;30:1772–1777. doi: 10.1097/00003246-200208000-00016.
    1. Brunner E, Domhof S, Langer F, editors. Nonparametric analysis of longitudinal data in factorial experiments. New York: Wiley; 2002.
    1. Aurigemma NM, Feldman NT, Gottlieb M, Ingram RH, Jr, Lazarus JM, Lowrie EG. Arterial oxygenation during hemodialysis. N Engl J Med. 1977;297:871–873. doi: 10.1056/NEJM197710202971607.
    1. Gattinoni L, Kolobow T, Tomlinson T, Iapichino G, Samaja M, White D, Pierce J. Low-frequency positive pressure ventilation with extracorporeal carbon dioxide removal (LFPPV-ECCO2R): an experimental study. Anesth Analg. 1978;57:470–477. doi: 10.1213/00000539-197807000-00018.
    1. Frank JA, Gutierrez JA, Jones KD, Allen L, Dobbs L, Matthay MA. Low tidal volume reduces epithelial and endothelial injury in acid-injured rat lungs. Am J Respir Crit Care Med. 2002;165:242–249. doi: 10.1164/ajrccm.165.2.2108087.
    1. Chiumello D, Carlesso E, Cadringher P, Caironi P, Valenza F, Polli F, Tallarini F, Cozzi P, Cressoni M, Colombo A, Marini JJ, Gattinoni L. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2008;178:346–355. doi: 10.1164/rccm.200710-1589OC.
    1. Bruhn A, Bugedo D, Riquelme F, Varas J, Retamal J, Besa C, Cabrera C, Bugedo G. Tidal volume is a major determinant of cyclic recruitment-derecruitment in acute respiratory distress syndrome. Minerva Anestesiol. 2011;77:418–426.
    1. Caironi P, Cressoni M, Chiumello D, Ranieri M, Quintel M, Russo SG, Cornejo R, Bugedo G, Carlesso E, Russo R, Caspani L, Gattinoni L. Lung opening and closing during ventilation of acute respiratory distress syndrome. Am J Respir Crit Care Med. 2010;181:578–586. doi: 10.1164/rccm.200905-0787OC.
    1. Plataki M, Hubmayr RD. The physical basis of ventilator-induced lung injury. Expert Rev Respir Med. 2010;4:373–385. doi: 10.1586/ers.10.28.
    1. Putensen C, Muders T, Kreyer S, Wrigge H. Lung protective ventilation—protective effect of adequate supported spontaneous breathing [article in German] Anaesthesiol Intensivmed Notfallmed Schmerzther. 2008;43:456–462. doi: 10.1055/s-2008-1081393.
    1. Weber-Carstens S, Bercker S, Hommel M, Deja M, MacGuill M, Dreykluft C, Kaisers U. Hypercapnia in late-phase ALI/ADS: providing spontaneous breathing using pumpless extracorporeal lung assist. Intensive Care Med. 2009;35:1100–1105. doi: 10.1007/s00134-009-1426-3.
    1. Karagiannidis C, Lubnow M, Philipp A, Riegger GA, Schmid C, Pfeifer M, Mueller T. Autoregulation of ventilation with neurally adjusted ventilatory assist on extracorporeal lung support. Intensive Care Med. 2010;36:2038–2044. doi: 10.1007/s00134-010-1982-6.
    1. Dembinski R, Hochhausen N, Terbeck S, Uhlig S, Dassow C, Schneider M, Schachtrupp A, Henzler D, Rossaint R, Kuhlen R. Pumpless extracorporeal lung assist for protective mechanical ventilation in experimental lung injury. Crit Care Med. 2007;35:2359–2366. doi: 10.1097/01.CCM.0000281857.87354.A5.
    1. Nierhaus A, Frings DP, Braune S, Baumann HJ, Schneider C, Wittenburg B, Kluge S. Interventional lung assist enables lung protective mechanical ventilation in acute respiratory distress syndrome. Minerva Anestesiol. 2011;77:797–801.
    1. Gattinoni L, Carlesso E, Langer T. Towards ultraprotective mechanical ventilation. Curr Opin Anesthesiol. 2012;25:141–147. doi: 10.1097/ACO.0b013e3283503125.
    1. Müller T, Philipp A, Luchner A, Karagiannidis C, Bein T, Hilker M, Rupprecht L, Langgartner J, Zimmermann M, Arlt M, Wenger J, Schmid C, Riegger GA, Pfeifer M, Lubnow M. A new miniaturized system for extracorporeal membrane oxygenation in adult respiratory failure. Crit Care. 2009;13:R205. doi: 10.1186/cc8213.

Source: PubMed

3
Se inscrever