Compounds with anti-influenza activity: present and future of strategies for the optimal treatment and management of influenza. Part I: Influenza life-cycle and currently available drugs

R Gasparini, D Amicizia, P L Lai, N L Bragazzi, D Panatto, R Gasparini, D Amicizia, P L Lai, N L Bragazzi, D Panatto

Abstract

Influenza is a contagious respiratory acute viral disease characterized by a short incubation period, high fever and respiratory and systemic symptoms. The burden of influenza is very heavy. Indeed, the World Health Organization (WHO) estimates that annual epidemics affect 5-15% of the world's population, causing up to 4-5 million severe cases and from 250,000 to 500,000 deaths. In order to design anti-influenza molecules and compounds, it is important to understand the complex replication cycle of the influenza virus. Replication is achieved through various stages. First, the virus must engage the sialic acid receptors present on the free surface of the cells of the respiratory tract. The virus can then enter the cells by different routes (clathrin-mediated endocytosis or CME, caveolae-dependent endocytosis or CDE, clathrin-caveolae-independent endocytosis, or macropinocytosis). CME is the most usual pathway; the virus is internalized into an endosomal compartment, from which it must emerge in order to release its nucleic acid into the cytosol. The ribonucleoprotein must then reach the nucleus in order to begin the process of translation of its genes and to transcribe and replicate its nucleic acid. Subsequently, the RNA segments, surrounded by the nucleoproteins, must migrate to the cell membrane in order to enable viral assembly. Finally, the virus must be freed to invade other cells of the respiratory tract. All this is achieved through a synchronized action of molecules that perform multiple enzymatic and catalytic reactions, currently known only in part, and for which many inhibitory or competitive molecules have been studied. Some of these studies have led to the development of drugs that have been approved, such as Amantadine, Rimantadine, Oseltamivir, Zanamivir, Peramivir, Laninamivir, Ribavirin and Arbidol. This review focuses on the influenza life-cycle and on the currently available drugs, while potential antiviral compounds for the prevention and treatment of influenza are considered in the subsequent review.

Figures

Fig. 1.
Fig. 1.
Schematic representation of the replication cycle of the influenza: 1) attachment of the virion to target cells and receptor binding (virus adsorption); 2) internalization into cellular regions by means of clathrin-mediated endocytosis (CME), caveolae-dependent endocytosis (CDE), clathrin-caveolae-independent endocytosis, and macropinocytosis; 3) endosomal trafficking via endosomes / caveosome / macropinosome / lysosomes to the perinuclear compartment; 4) pH-dependent fusion of viral and endosomal / organellar membranes; 5) uncoating; 6) nuclear importation; 7) transcription and replication; 8) nuclear exportation; 9) protein synthesis; 10) post-translational processing and trafficking; 11) viral progeny assembly and packaging; 12) budding; and 13) release. For further details, the reader is referred to the text.
Fig. 2.
Fig. 2.
Chemical structure of the available licensed anti-influenza drugs: M2 blockers (Amantadine, Rimantadine), Neuraminidase inhibitors (NAIs; Oseltamivir, Zanamivir, Peramivir, Laninamivir), Ribavirin and Arbidol.
Fig. 3.
Fig. 3.
Schematic representation of the sites of action of anti-influenza licensed drugs. The steps of the replication cycle of the influenza virus are the following: 1) attachment of the virion to target cells and receptor binding (virus adsorption); 2) internalization into cellular regions by means of clathrin-mediated endocytosis (CME), caveolae-dependent endocytosis (CDE), clathrin-caveolae-independent endocytosis, and macropinocytosis; 3) endosomal trafficking via endosomes / caveosome / macropinosome / lysosomes to the perinuclear compartment; 4) pH-dependent fusion of viral and endosomal / organellar membranes; 5) uncoating; 6) nuclear importation; 7) transcription and replication; 8) nuclear exportation; 9) protein synthesis; 10) post-translational processing and trafficking; 11) viral progeny assembly and packaging; 12) budding; and 13) release. Abbreviations: NAIs (neuraminidase inhibitors).

References

    1. Schutten M, Baalen C, Zoeteweij P, et al. The influenza virus: disease, diagnostics, and treatment. MLO Med Lab Obs. 2013;45:38–40.
    1. CDC , author. Seasonal Influenza: Flu Basics. Document available at: . Accessed on 01 August 2014.
    1. Toovey S. Influenza-associated central nervous system dysfunction: a literature review. Travel Med Infect Dis. 2008;6:114–124.
    1. Davis LE, Koster F, Cawthon A. Neurologic aspects of influenza viruses. Handb Clin Neurol. 2014;123:619–645.
    1. Short KR, Habets MN, Hermans PW, et al. Interactions between streptococcus pneumoniae and influenza virus: a mutually beneficial relationship? Future Microbiol. 2012;7:609–624.
    1. McCullers JA. The co-pathogenesis of influenza viruses with bacteria in the lung. Nat Rev Microbiol. 2014;12:252–262.
    1. Cauldwell AV, Long JS, Moncorgé O, et al. Viral determinants of influenza a virus host range. J Gen Virol. 2014;95:1193–1210.
    1. WHO , author. Influenza (seasonal). Fact sheet N°211 March 2014. Available at: . Accessed on 1st August 2014.
    1. ECDC , author. Seasonal Influenza. Document available at: . Accessed on 10th June 2014.
    1. , author. Seasonal Flu. Document available at: . Accessed on 1st August 2014.
    1. Bouvier NM, Palese P. The biology of influenza viruses. Vaccine. 2008;26(Suppl 4):D49–D53.
    1. Chen J, Deng YM. Influenza virus antigenic variation, host antibody production and new approach to control epidemics. Virol J. 2009;6:30–30.
    1. Labella AM, Merel SE. Influenza. Med Clin North Am. 2013;97:621–645.
    1. Taubenberger JK. The origin and virulence of the 1918 "spanish" influenza virus. Proc Am Philos Soc. 2006;150:86–112.
    1. Patterson KD, Pyle GF. The geography and mortality of the 1918 influenza pandemic. Bull Hist Med. 1991;65:4–21.
    1. Stanford University , author. The medical and scientific conceptions of influenza. Document available at: . Accessed on 14th June 2014.
    1. Davies WL, Grunert RR, Haff RF, et al. Antiviral activity of 1-adamantanamine (amantadine) Science. 1964;144:862–863.
    1. Dolin R, Reichman RC, Madore HP, et al. A controlled trial of amantadine and rimantadine in the prophylaxis of influenza A infection. N Engl J Med. 1982;307:580–584.
    1. Center for disease Control and Prevention (CDC) , author. Advisory Committee on Immunization Practice (ACIP). Prevention and control of influenza. MMWR Recommendations and Reports. 2000;49:1–38.
    1. Noda T, Sagara H, Yen A, et al. Architecture of ribonucleoprotein complexes in influenza a virus particles. Nature. 2006;439:490–492.
    1. Noda T. Native morphology of influenza virions. Front Microbiol. 2012;2:269–269.
    1. Elleman CJ, Barclay WS. The M1 matrix protein controls the filamentous phenotype of influenza A virus. Virology. 2004;321:144–153.
    1. Roberts PC, Lamb RA, Compans RW. The M1 and M2 proteins of influenza a virus are important determinants in filamentous particle formation. Virology. 1998;240:127–137.
    1. Rossman JS, Jing X, Leser GP, et al. Influenza virus m2 ion channel protein is necessary for filamentous virion formation. J Virol. 2010;84:5078–5088.
    1. Bialas KM, Bussey KA, Stone RL, et al. Specific nucleoprotein residues affect influenza virus morphology. J Virol. 2014;88:2227–2234.
    1. Roberts PC, Compans RW. Host cell dependence of viral morphology. Proc Natl Acad Sci U S A. 1998;95:5746–5751.
    1. Samji T. Influenza A: understanding the viral life cycle. Yale J Biol Med. 2009;82:153–159.
    1. Cross TA. Flu BM2 structure and function. Nat Struct Mol Biol. 2009;16:1207–1209.
    1. Pleschka S, Klenk HD, Herrler G. The catalytic triad of the influenza C virus glycoprotein HEF esterase: characterization by site-directed mutagenesis and functional analysis. J Gen Virol. 1995;76:2529–2537.
    1. Kollerova E, Betáková T. Influenza viruses and their ion channels. Acta Virol. 2006;50:7–16.
    1. Fischer WB, Sansom MS. Viral ion channels: structure and function. Biochim Biophys Acta. 2002;1561:27–45.
    1. Lamb RA, Choppin PW. The gene structure and replication of influenza virus. Annu Rev Biochem. 1983;52:467–506.
    1. Košík I, Hollý J, Russ G. PB1-F2 expedition from the whole protein through the domain to aa residue function. Acta Virol. 2013;57:138–148.
    1. Krumbholz A, Philipps A, Oehring H, et al. Current knowledge on PB1-F2 of influenza A viruses. Med Microbiol Immunol. 2011;200:69–75.
    1. Košík I, Krejnusová I, Práznovská M, et al. The multifaceted effect of PB1-F2 specific antibodies on influenza a virus infection. Virology. 2013;447:1–8.
    1. Lamb RA, Krug RM. Orthomyxoviridae: the viruses and their replication. In: Knipe DM, Howley PM, editors. Fundamental virology. Philadelphia: Williams & Williams; 2001. pp. 725–769.
    1. Skehel JJ. Polypeptide synthesis in influenza virus-infected cells. Virology. 1972;49:23–36.
    1. Skehel JJ. Early polypeptide synthesis in influenza virus-infected cells. Virology. 1973;56:394–399.
    1. Hayden FG, Aoki FY. Amantadine, rimatadine, and related agents. In: Barriere SL, editor. Antimicrobial therapy and vaccines. Baltimore: Williams & Williams; 1999. pp. 1344–1365.
    1. Wise HM, Barbezange C, Jagger BW, et al. Overlapping signals for translational regulation and packaging of influenza a virus segment 2. Nucleic Acids Res. 2011;39:7775–7790.
    1. Wise HM, Hutchinson EC, Jagger BW, et al. Identification of a novel splice variant form of the influenza a virus M2 ion channel with an antigenically distinct ectodomain. PLoS Pathog. 2012;8:e1002998–e1002998.
    1. Yewdell JW, Ince WL. Virology. Frameshifting to PA-X influenza. Science. 2012;337:164–165.
    1. Muramoto Y, Noda T, Kawakami E, et al. Identification of novel influenza a virus proteins translated from PA mRNA. J Virol. 2013;87:2455–2462.
    1. Vasin AV, Temkina OA, Egorov VV, et al. Molecular mechanisms enhancing the proteome of influenza A viruses: an overview of recently discovered proteins. Virus Res. 2014;185:53–63.
    1. Sabath N, Morris JS, Graur D. Is there a twelfth protein-coding gene in the genome of influenza A? A selection-based approach to the detection of overlapping genes in closely related sequences. J Mol Evol. 2011;73:305–315.
    1. Kummer S, Flöttmann M, Schwanhäusser B, et al. Alteration of protein levels during influenza virus H1N1 infection in host cells: a proteomic survey of host and virus reveals differential dynamics. PLoS One. 2014;9:e94257–e94257.
    1. Matsuoka Y, Matsumae H, Katoh M, et al. A comprehensive map of the influenza a virus replication cycle. BMC Syst Biol. 2013;7:97–97.
    1. Edinger TO, Pohl MO, Stertz S. Entry of influenza A virus: host factors and antiviral targets. J Gen Virol. 2014;95:263–277.
    1. Mao H, Tu W, Qin G, et al. Influenza virus directly infects human natural killer cells and induces cell apoptosis. J Virol. 2009;83:9215–9222.
    1. Sun X, Whittaker GR. Entry of influenza virus. Adv Exp Med Biol. 2013;790:72–82.
    1. Roberson EC, Tully JE, Guala AS, et al. Influenza induces endoplasmic reticulum stress, caspase-12-dependent apoptosis, and c-Jun N-terminal kinase-mediated transforming growth factor-β release in lung epithelial cells. Am J Respir Cell Mol Biol. 2012;46:573–581.
    1. Barbier D, Garcia-Verdugo I, Pothlichet J, et al. Influenza A induces the major secreted airway mucin MUC5AC in a protease- EGFR-extracellular regulated kinase-Sp1-dependent pathway. Am J Respir Cell Mol Biol. 2012;47:149–157.
    1. Ehrhardt C, Marjuki H, Wolff T, et al. Bivalent role of the phosphatidylinositol- 3-kinase (PI3K) during influenza virus infection and host cell defence. Cell Microbiol. 2006;8:1336–1348.
    1. Air GM. Influenza virus-glycan interactions. Curr Opin Virol. 2014;7:128–133.
    1. Shinya K, Ebina M, Yamada S, et al. Avian flu: influenza virus receptors in the human airway. Nature. 2006;440:435–436.
    1. Russell RJ, Kerry PS, Stevens DJ, et al. Structure of influenza hemagglutinin in complex with an inhibitor of membrane fusion. Proc Natl Acad Sci U S A. 2008;105:17736–17741.
    1. Sączyńska V. Influenza virus hemagglutinin as a vaccine antigen produced in bacteria. Acta Biochim Pol. 2014;61:561–572.
    1. Smrt ST, Draney AW, Lorieau JL. The influenza hemagglutinin fusion domain is an amphipathic helical-hairpin that functions by inducing membrane curvature. J Biol Chem. 2014 Nov 14;pii:jbc.M114.611657–jbc.M114.611657.
    1. Burke DF, Smith DJ. A Recommended numbering scheme for influenza A HA subtypes. PLoS One. 2014;9:e112302–e112302.
    1. Tong S, Li Y, Rivailler P, et al. A distinct lineage of influenza a virus from bats. Proc Natl Acad Sci U S A. 2012;109:4269–4274.
    1. Tong S, Zhu X, Li Y, et al. New world bats harbor diverse influenza A viruses. PLoS Pathog. 2013;9:e1003657–e1003657.
    1. Vanderlinden E, Naesens L. Emerging antiviral strategies to interfere with influenza virus entry. Med Res Rev. 2014;34:301–339.
    1. Stray SJ, Cummings RD, Air GM. Influenza virus infection of desialylated cells. Glycobiology. 2000;10:649–658.
    1. Lakadamyali M, Rust MJ, Zhuang X. Endocytosis of influenza viruses. Microbes Infect. 2004;6:929–936.
    1. Vries E, Tscherne DM, Wienholts MJ, et al. Dissection of the influenza a virus endocytic routes reveals macropinocytosis as an alternative entry pathway. PLoS Pathog. 2011;7:e1001329–e1001329.
    1. Rossman JS, Leser GP, Lamb RA. Filamentous influenza virus enters cells via macropinocytosis. J Virol. 2012;86:10950–10960.
    1. Zhang Y, Whittaker GR. Influenza entry pathways in polarized MDCK cells. Biochem Biophys Res Commun. 2014;450:234–239.
    1. Nunes-Correia I, Eulálio A, Nir S, et al. Caveolae as an additional route for influenza virus endocytosis in MDCK cells. Cell Mol Biol Lett. 2004;9:47–60.
    1. Sieczkarski SB, Whittaker GR. Influenza virus can enter and infect cells in the absence of clathrin-mediated endocytosis. J Virol. 2002;76:10455–10464.
    1. Young A. Structural insights into the clathrin coat. Semin Cell Dev Biol. 2007;18:448–458.
    1. Wilbur JD, Hwang PK, Brodsky FM. New faces of the familiar clathrin lattice. Traffic. 2005;6:346–350.
    1. Heilker R, Manning-Krieg U, Zuber JF, et al. In vitro binding of clathrin adaptors to sorting signals correlates with endocytosis and basolateral sorting. EMBO J. 1996;15:2893–2899.
    1. Fire E, Brown CM, Roth MG, et al. Partitioning of proteins into plasma membrane microdomains. Clustering of mutant influenza virus hemagglutinins into coated pits depends on the strength of the internalization signal. J Biol Chem. 1997;272:29538–29545.
    1. Chen C, Zhuang X. Epsin 1 is a cargo-specific adaptor for the clathrin-mediated endocytosis of the influenza virus. Proc Natl Acad Sci U S A. 2008;105:11790–11795.
    1. Fujioka Y, Tsuda M, Hattori T, et al. The Ras-PI3K signaling pathway is involved in clathrin-independent endocytosis and the internalization of influenza viruses. PLoS One. 2011;6:e16324–e16324.
    1. Ayllon J, García-Sastre A, Hale BG. Influenza a viruses and PI3K: are there time, place and manner restrictions? Virulence. 2012;3:411–414.
    1. Marchant DJ, Bilawchuk L, Nish G, Hegele RG. Virus-induced signaling influences endosome trafficking, virus entry, and replication. Methods Enzymol. 2014;534:65–76.
    1. Pascua PN, Lee JH, Song MS, et al. Role of the p21-activated kinases (PAKs) in influenza a virus replication. Biochem Biophys Res Commun. 2011;414:569–574.
    1. Nanbo A, Imai M, Watanabe S, et al. Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoproteindependent manner. PLoS Pathog. 2010;6:e1001121–e1001121.
    1. Saeed MF, Kolokoltsov AA, Albrecht T, et al. Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes. PLoS Pathog. 2010;6:e1001110–e1001110.
    1. Iwasaki M, Ngo N, Torre JC. Sodium hydrogen exchangers contribute to arenavirus cell entry. J Virol. 2014;88:643–654.
    1. Amstutz B, Gastaldelli M, Kälin S, et al. Subversion of CtBP1- controlled macropinocytosis by human adenovirus serotype 3. EMBO J. 2008;27:956–969.
    1. Kälin S, Amstutz B, Gastaldelli M, et al. Macropinocytotic uptake and infection of human epithelial cells with species B2 adenovirus type 35. J Virol. 2010;84:5336–5350.
    1. Schelhaas M, Shah B, Holzer M, et al. Entry of human papillomavirus type 16 by actin-dependent, clathrin- and lipid raftindependent endocytosis. PLoS Pathog. 2012;8:e1002657–e1002657.
    1. Carter GC, Bernstone L, Baskaran D, et al. HIV-1 infects macrophages by exploiting an endocytic route dependent on dynamin, Rac1 and Pak1. Virology. 2011 Jan 20;409(2):234–250.
    1. Nagasawa S, Ogura K, Tsutsuki H, et al. Uptake of shigatoxigenic escherichia coli subAB by HeLa cells requires an actin – and lipid raft-dependent pathway. Cell Microbiol. 2014;16:1582–1601.
    1. Barrias ES, Reignault LC, Souza W, et al. Trypanosoma cruzi uses macropinocytosis as an additional entry pathway into mammalian host cell. Microbes Infect. 2012;14:1340–1351.
    1. Mercer J, Helenius A. Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science. 2008;320:531–535.
    1. Sánchez EG, Quintas A, Pérez-Núñez D, et al. African swine fever virus uses macropinocytosis to enter host cells. PLoS Pathog. 2012;8:e1002754–e1002754.
    1. Krzyzaniak MA, Zumstein MT, Gerez JA, et al. Host cell entry of respiratory syncytial virus involves macropinocytosis followed by proteolytic activation of the F protein. PLoS Pathog. 2013;9:e1003309–e1003309.
    1. Matsuda M, Suzuki R, Kataoka C, et al. Alternative endocytosis pathway for productive entry of hepatitis C virus. J Gen Virol. 2014;95:2658–2667.
    1. Conto F, Covan S, Arcangeletti MC, et al. Differential infectious entry of human influenza A/NWS/33 virus (H1N1) in mammalian kidney cells. Virus Res. 2011;155:221–230.
    1. Liu SL, Wu QM, Zhang LJ, et al. Three-dimensional tracking of rab5- and rab7 – associated infection process of influenza virus. Small. 2014 Jun 27; doi: 10.1002/smll.201400944.
    1. Huotari J, Helenius A. Endosome maturation. EMBO J. 2011;30:3481–3500.
    1. Sieczkarski SB, Whittaker GR. Differential requirements of Rab5 and Rab7 for endocytosis of influenza and other enveloped viruses. Traffic. 2003;4:333–343.
    1. Costello DA, Whittaker GR, Daniel S. Variation of pH sensitivity, acid stability, and fusogenicity of three influenza H3 subtypes. J Virol. 2014 Oct 15;pii:JVI.01927-14–JVI.01927-14.
    1. Khor R, McElroy LJ, Whittaker GR. The ubiquitin-vacuolar protein sorting system is selectively required during entry of influenza virus into host cells. Traffic. 2003;4:857–868.
    1. Zhou Z, Xue Q, Wan Y, et al. Lysosome-associated membrane glycoprotein 3 is involved in influenza a virus replication in human lung epithelial (A549) cells. Virol J. 2011;8:384–384.
    1. Davenport EE, Antrobus RD, Lillie PJ, et al. Transcriptomic profiling facilitates classification of response to influenza challenge. J Mol Med (Berl) 2014 Oct 28;
    1. Hubner M, Peter M. Cullin-3 and the endocytic system: new functions of ubiquitination for endosome maturation. Cell Logist. 2012;2:166–168.
    1. Huotari J, Meyer-Schaller N, Hubner M, et al. Cullin-3 regulates late endosome maturation. Proc Natl Acad Sci U S A. 2012;109:823–828.
    1. Li S, Sieben C, Ludwig K, et al. pH-Controlled two-step uncoating of influenza virus. Biophys J. 2014;106:1447–1456.
    1. Pinto LH, Lamb RA. The M2 Proton Channels of Influenza A and B Viruses. J Biol Chem. 2006;281:8997–8997.
    1. Martyna A, Rossman Alterations of membrane curvature during influenza virus budding. J Biochem Soc Trans. 2014;42:1425–1428.
    1. Fuhrmans M, Marrink SJ. Molecular view of the role of fusion peptides in promoting positive membrane curvature. J Am Chem Soc. 2012;134:1543–1552.
    1. Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem. 2000;69:531–569.
    1. Bentz J, Mittal A. Architecture of the influenza hemagglutinin membrane fusion site. Biochim Biophys Acta. 2003;1614:24–35.
    1. Kido H, Okumura Y, Takahashi E, et al. Role of host cellular proteases in the pathogenesis of influenza and influenza- induced multiple organ failure. Biochim Biophys Acta. 2012;1824:186–194.
    1. Zhirnov PO, Matrosovich TY, Matrosovich MN, et al. Aprotinin, a protease inhibitor, suppresses proteolytic activation of pandemic H1N1v influenza virus. Antivir Chem Chemoth. 2011;21:169–174.
    1. Seki M, Kohno S, Newstead MW, et al. Critical role of IL-1 receptor-associated kinase-M in regulating chemokine-dependent deleterious inflammation in murine influenza pneumonia. J Immunol. 2010;184:1410–1418.
    1. Banerjee I, Miyake Y, Nobs SP, et al. Influenza a virus uses the aggresome processing machinery for host cell entry. Science. 2014;346:473–477.
    1. Sakaguchi T, Leser GP, Lamb RA. The ion channel activity of the influenza virus M2 protein affects transport through the Golgi apparatus. J Cell Biol. 1996;133:733–747.
    1. Ciampor F, Cmarko D, Cmarková J, et al. Influenza virus M2 protein and haemagglutinin conformation changes during intracellular transport. Acta Virol. 1995;39:171–181.
    1. Zhirnov OP, Klenk HD. Influenza a virus proteins NS1 and hemagglutinin along with M2 are involved in stimulation of autophagy in infected cells. J Virol. 2013;87:13107–13114.
    1. Gu RX, Liu LA, Wei DQ. Structural and energetic analysis of drug inhibition of the influenza A M2 proton channel. Trends Pharmacol Sci. 2013;34:571–580.
    1. Tawaratsumida K, Phan V, Hrincius ER, et al. Quantitative proteomic analysis of the influenza a virus nonstructural proteins NS1 and NS2 during natural cell infection identifies PACT as an NS1 target protein and antiviral host factor. J Virol. 2014;88:9038–9048.
    1. Li S, Min JY, Krug RM, et al. Binding of the influenza a virus NS1 protein to PKR mediates the inhibition of its activation by either PACT or double-stranded RNA. Virology. 2006;349:13–21.
    1. Khaperskyy DA, Emara MM, Johnston BP, et al. Influenza a virus host shutoff disables antiviral stress-induced translation arrest. PLoS Pathog. 2014;10:e1004217–e1004217.
    1. Ludwig S, Wolff T. Influenza a virus TRIMs the type I interferon response. Cell Host Microbe. 2009;5:420–421.
    1. Gack MU, Albrecht RA, Urano T, et al. Influenza a virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe. 2009;5:439–449.
    1. Ngamurulert S, Limjindaporn T, Auewaraku P. Identification of cellular partners of Influenza a virus (H5N1) nonstructural protein NS1 by yeast two-hybrid system. Acta Virol. 2009;53:153–159.
    1. Kolocouris A, Spearpoint P, Martin SR, et al. Comparisons of the influenza virus A M2 channel binding affinities, antiinfluenza virus potencies and NMDA antagonistic activities of 2-alkyl-2-aminoadamantanes and analogues. Bioorg Med Chem Lett. 2008;18:6156–6160.
    1. Kozakov D, Chuang GY, Beglov D, et al. Where does amantadine bind to the influenza virus M2 proton channel? Trends Biochem Sci. 2010;35:471–475.
    1. Laohpongspaisan C, Rungrotmongkol T, Loisruangsin A, et al. How amantadine and rimantadine inhibit proton transport in the M2 protein channel. J Mol Graph Model. 2008;27:342–348.
    1. Schnell JR, Chou JJ. Structure and mechanism of the M2 proton channel of influenza A virus. Nature. 2008;451:591–595.
    1. Liang R, Li H, Swanson JM, et al. Multiscale simulation reveals a multifaceted mechanism of proton permeation through the influenza A M2 proton channel. Proc Natl Acad Sci U S A. 2014;111:9396–1401.
    1. Babcock HP, Chen C, Zhuang X. Using single-particle tracking to study nuclear trafficking of viral genes. Biophys J. 2004;87:2749–2758.
    1. Influenza life cycle pathway map. FluMap interactive view. Flu- Map: a comprehensive influenza life cycle map. Available at: . Accessed on 1st August 2014.
    1. Pumroy RA, Nardozzi JD, Hart DJ, et al. Nucleoporin Nup50 stabilizes closed conformation of armadillo repeat 10 in importin α5. J Biol Chem. 2012;287:2022–2031.
    1. Tafforeau L, Chantier T, Pradezynski F, et al. Generation and comprehensive analysis of an influenza virus polymerase cellular interaction network. J Virol. 2011;85:13010–13018.
    1. Munier S, Rolland T, Diot C, et al. Exploration of binary virushost interactions using an infectious protein complementation assay. Mol Cell Proteomics. 2013;12:2845–2855.
    1. Martin K, Helenius A. Transport of incoming influenza virus nucleocapsids into the nucleus. J Virol. 1991;65:232–244.
    1. Satterly N, Tsai PL, Deursen J, et al. Influenza virus targets the mRNA export machinery and the nuclear pore complex. Proc Natl Acad Sci U S A. 2007;104:1853–1858.
    1. Read EK, Digard P. Individual influenza a virus mRNAs show differential dependence on cellular NXF1/TAP for their nuclear export. J Gen Virol. 2010;91:1290–1301.
    1. Chen J, Huang S, Chen Z. Human cellular protein nucleoporin hNup98 interacts with influenza a virus NS2/nuclear export protein and overexpression of its GLFG repeat domain can inhibit virus propagation. J Gen Virol. 2010;91:2474–2484.
    1. Beck M, Glavy JS. Toward understanding the structure of the vertebrate nuclear pore complex. Nucleus. 2014;5:119–123.
    1. Shi F, Xie Y, Shi L, et al. Viral RNA polymerase: a promising antiviral target for influenza A virus. Curr Med Chem. 2013;20:3923–3934.
    1. Hudjetz B, Gabriel G. Human-like PB2 627K influenza virus polymerase activity is regulated by importin-alpha1 and -alpha7. PLoS Pathog. 2012;8:e1002488–e1002488.
    1. Chou YY, Heaton NS, Gao Q, et al. Colocalization of different influenza viral RNA segments in the cytoplasm before viral budding as shown by single-molecule sensitivity FISH analysis. PLoS Pathog. 2013;9:e1003358–e1003358.
    1. Resa-Infante P, Gabriel G. The nuclear import machinery is a determinant of influenza virus host adaptation. ResaBioessays. 2013;35:23–27.
    1. Gabriel G, Herwig A, Klenk HD. Interaction of polymerase subunit PB2 and NP with importin alpha1 is a determinant of host range of influenza a virus. PLoS Pathog. 2008;4:e11–e11.
    1. Manzoor R, Kuroda K, Yoshida R, et al. Heat shock protein 70 modulates influenza a virus polymerase activity. J Biol Chem. 2014;289:7599–7614.
    1. Zhang C, Yang Y, Zhou X, et al. The NS1 protein of influenza a virus interacts with heat shock protein Hsp90 in human alveolar basal epithelial cells: implication for virus-induced apoptosis. Virol J. 2011;8:181–181.
    1. Naito T, Momose F, Kawaguchi A, et al. Involvement of Hsp90 in assembly and nuclear import of influenza virus RNA polymerase subunits. J Virol. 2007;81:1339–1349.
    1. Cao M, Wei C, Zhao L, et al. DnaJA1/Hsp40 is co-opted by influenza a virus to enhance its viral RNA polymerase activity. J Virol. 2014 Sep 24;pii:JVI.02475-14–JVI.02475-14.
    1. Pérez-González A, Rodriguez A, Huarte M, et al. hCLE/CGI- 99, a human protein that interacts with the influenza virus polymerase, is a mRNA transcription modulator. J Mol Biol. 2006;362:887–900.
    1. Kawaguchi A, Nagata K. De novo replication of the influenza virus RNA genome is regulated by DNA replicative helicase, MCM. EMBO J. 2007;26:4566–4575.
    1. Bier K, York A, Fodor E. Cellular cap-binding proteins associate with influenza virus mRNAs. J Gen Virol. 2011;92:1627–1634.
    1. Reich S, Guilligay D, Pflug A, et al. Structural insight into capsnatching and RNA synthesis by influenza polymerase. Nature. 2014 Nov 19; doi: 10.1038/nature14009.
    1. Hatakeyama D, Shoji M, Yamayoshi S, et al. A novel functional site in the PB2 subunit of influenza a virus essential for acetyl- CoA interaction, RNA polymerase activity, and viral replication. J Biol Chem. 2014;289:24980–24994.
    1. Hutchinson EC, Fodor E. Transport of the Influenza Virus Genome from Nucleus to Nucleus. Viruses. 2013;5:2424–2446.
    1. York A, Fodor E. Biogenesis, assembly, and export of viral messenger ribonucleoproteins in the influenza a virus infected cell. RNA Biol. 2013;10:1274–1282.
    1. Fodor E. The RNA polymerase of influenza A virus: mechanisms of viral transcription and replication. Acta Virol. 2013;57:113–122.
    1. Momose F, Basler CF, O'Neill RE, et al. Cellular splicing factor RAF-2p48/NPI-5/BAT1/UAP56 interacts with the influenza virus nucleoprotein and enhances viral RNA synthesis. J Virol. 2001;75:1899–1908.
    1. Naito T, Momose F, Kawaguchi A, et al. Involvement of Hsp90 in assembly and nuclear import of influenza virus RNA polymerase subunits. J Virol. 2007;81:1339–1349.
    1. Vreede FT, Brownlee GG. Influenza virion-derived viral ribonucleoproteins synthesize both mRNA and cRNA in vitro. J Virol. 2007;81:2196–2204.
    1. Perez JT, Varble A, Sachidanandam R, et al. Influenza a virusgenerated small RNAs regulate the switch from transcription to replication. Proc Natl Acad Sci U S A. 2010;107:11525–11530.
    1. Hutchinson EC, Fodor E. Nuclear import of the influenza a virus transcriptional machinery. Vaccine. 2012;30:7353–7358.
    1. Loucaides EM, Kirchbach JC, Foeglein A, et al. Nuclear dynamics of influenza a virus ribonucleoproteins revealed by live-cell imaging studies. Virology. 2009;394:154–163.
    1. Resa-Infante P, Jorba N, Zamarreno N, et al. The host-dependent interaction of alpha-importins with influenza PB2 polymerase subunit is required for virus RNA replication. PLoS One. 2008;3:e3904–e3904.
    1. Portela A, Digard P. The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus replication. J Gen Virol. 2002;83:723–734.
    1. Amorim MJ, Read EK, Dalton RM, et al. Nuclear export of influenza a virus mRNAs requires ongoing RNA polymerase II activity. Traffic. 2007;8:1–11.
    1. Moeller A, Kirchdoerfer RN, Potter CS, et al. Organization of the influenza virus replication machinery. Science. 2012;338:1631–1634.
    1. Zheng W, Tao YJ. Structure and assembly of the influenza a virus ribonucleoprotein complex. FEBS Lett. 2013;587:1206–1214.
    1. Su CY, Cheng TJ, Lin MI, et al. High-throughput identification of compounds targeting in2l6enza RNA-dependent RNA polymerase activity. Proc Natl Acad Sci U S A. 2010;107:19151–19156.
    1. Landeras-Bueno S, Jorba N, Pérez-Cidoncha M, et al. The splicing factor proline-glutamine rich (SFPQ/PSF) is involved in influenza virus transcription. PLoS Pathog. 2011;7:e1002397–e1002397.
    1. Tsai PL, Chiou NT, Kuss S, et al. Cellular RNA binding proteins NS1-BP and hnRNP K regulate influenza a virus RNA splicing. PLoS Pathog. 2013;9:e1003460–e1003460.
    1. Dubois J, Terrier O, Rosa-Calatrava M. Influenza viruses and mRNA splicing: doing more with less. MBio. 2014;5:e00070–e00114.
    1. Perwitasari O, Johnson S, Yan X, et al. Verdinexor, a novel selective inhibitor of nuclear export, reduces influenza a virus replication in vitro and in vivo. J Virol. 2014;88:10228–10243.
    1. Simon JP, Ivanov IE, Shopsin B, et al. The in vitro generation of post-Golgi vesicles carrying viral envelope glycoproteins requires an ARF-like GTP-binding protein and a protein kinase C associated with the Golgi apparatus. J Biol Chem. 1996;271:16952–16961.
    1. Predicala R, Zhou Y. The role of Ran-binding protein 3 during influenza a virus replication. J Gen Virol. 2013;94:977–984.
    1. Akarsu H, Burmeister WP, Petosa C, et al. Crystal structure of the M1 protein-binding domain of the influenza a virus nuclear export protein (NEP/NS2) EMBO J. 2003;22:4646–4655.
    1. Watanabe K, Takizawa N, Noda S, et al. Hsc70 regulates the nuclear export but not the import of influenza viral RNP: a possible target for the development of anti-influenza virus drugs. Drug Discov Ther. 2008;2:77–84.
    1. Hutten S, Kehlenbach RH. CRM1-mediated nuclear export: to the pore and beyond. Trends Cell Biol. 2007;17:193–201.
    1. Ma K, Roy AM, Whittaker GR. Nuclear export of influenza virus ribonucleoproteins: identification of an export intermediate at the nuclear periphery. Virology. 2001;282:215–220.
    1. Santos A, Pal S, Chacón J, et al. SUMOylation affects the interferon blocking activity of the influenza A nonstructural protein NS1 without affecting its stability or cellular localization. J Virol. 2013;87:5602–5620.
    1. Wurzer WJ, Planz O, Ehrhardt C, et al. Caspase 3 activation is essential for efficient influenza virus propagation. EMBO J. 2003;22:2717–2728.
    1. Marjuki H, Alam MI, Ehrhardt C, et al. Membrane accumulation of influenza a virus hemagglutinin triggers nuclear export of the viral genome via protein kinase Calpha-mediated activation of ERK signaling. J Biol Chem. 2006;281:16707–16715.
    1. Galli C, Bernasconi R, Soldà T, et al. Malectin participates in a backup glycoprotein quality control pathway in the mammalian ER. PLoS One. 2011;6:e16304–e16304.
    1. Wang N, Glidden EJ, Murphy SR, et al. The cotranslational maturation program for the type II membrane glycoprotein influenza neuraminidase. J Biol Chem. 2008;283:33826–33837.
    1. Pearse BR, Gabriel L, Wang N, et al. A cell-based reglucosylation assay demonstrates the role of GT1 in the quality control of a maturing glycoprotein. J Cell Biol. 2008;181:309–320.
    1. Hebert DN, Foellmer B, Helenius A. Calnexin and calreticulin promote folding, delay oligomerization and suppress degradation of influenza hemagglutinin in microsomes. EMBO J. 1996;15:2961–2968.
    1. Daniels R, Kurowski B, Johnson AE, et al. N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin. Mol Cell. 2003;11:79–90.
    1. Pleschka S, Wolff T, Ehrhardt C, et al. Influenza virus propagation is impaired by inhibition of the Raf/MEK/ERK signalling cascade. Nat Cell Biol. 2001;3:301–305.
    1. Iwai A, Shiozaki T, Miyazaki T. Relevance of signaling molecules for apoptosis induction on influenza a virus replication. Biochem Biophys Res Commun. 2013;441:531–537.
    1. Eisfeld AJ, Kawakami E, Watanabe T, et al. RAB11A is essential for transport of the influenza virus genome to the plasma membrane. J Virol. 2011;85:6117–6126.
    1. Kawaguchi A, Matsumoto K, Nagata K. YB-1 functions as a porter to lead influenza virus ribonucleoprotein complexes to microtubules. J Virol. 2012;86:11086–11095.
    1. Momose F, Sekimoto T, Ohkura T, et al. Apical transport of influenza a virus ribonucleoprotein requires Rab11-positive recycling endosome. PLoS One. 2011;6:e21123–e21123.
    1. Jo S, Kawaguchi A, Takizawa N, et al. Involvement of vesicular trafficking system in membrane targeting of the progeny influenza virus genome. Microbes Infect. 2010;12:1079–1084.
    1. Marjuki H, Alam MI, Ehrhardt C, et al. Membrane accumulation of influenza a virus hemagglutinin triggers nuclear export of the viral genome via protein kinase Calpha-mediated activation of ERK signaling. J Biol Chem. 2006;281:16707–16715.
    1. Hutchinson EC, Kirchbach JC, Gog JR, et al. Genome packaging ininfluenza a virus. J Gen Virol. 2010;91:313–328.
    1. Rossman JS, Lamb RA. Influenza virus assembly and budding. Virology. 2011;411:229–236.
    1. Calder LJ, Wasilewski S, Berriman JA, et al. Structural organization of a filamentous influenza a virus. Proc Natl Acad Sci U S A. 2010;107:10685–10690.
    1. Fournier E, Moules V, Essere B, et al. A supramolecular assembly formed by influenza a virus genomic RNA segments. Nucleic Acids Res. 2012;40:2197–2209.
    1. Rossman JS, Jing X, Leser GP, et al. Influenza virus M2 protein mediates ESCRT-independent membrane scission. Cell. 2010;142:902–913.
    1. Eisfeld AJ, Kawakami E, Watanabe T, et al. RAB11A is essential for transport of the influenza virus genome to the plasma membrane. J Virol. 2011;85:6117–6126.
    1. Eisfeld AJ, Neumann G, Kawaoka Y. Human immunodeficiency virus rev-binding protein is essential for influenza a virus replication and promotes genome trafficking in late-stage infection. J Virol. 2011;85:9588–9598.
    1. Taylor G. Sialidases: structures, biological significance and therapeutic potential. Curr Opin Struct Biol. 1996;6:830–837.
    1. Air GM, Laver WG. The neuraminidase of influenza virus. Proteins. 1989;6:341–356.
    1. Greenway KT, LeGresley EB, Pinto BM. The influence of 150-cavity binders on the dynamics of influenza a neuraminidases as revealed by molecular dynamics simulations and combined clustering. PLoS One. 2013;8:e59873–e59873.
    1. Watanabe R, Lamb RA. Influenza virus budding does not require a functional AAA+ ATPase, VPS4. Virus Res. 2010;153:58–63.
    1. Bruce EA, Medcalf L, Crump CM, et al. Budding of filamentous and non-filamentous influenza a virus occurs via a VPS4 and VPS28-independent pathway. Virology. 2009;390:268–278.
    1. Hayden FG, Aoki FY. Amantadine, rimatadine, and related agents. In: Barriere SL, editor. Antimicrobial Therapy and Vaccines. Baltimore: Williams & Williams; 1999. pp. 1344–1365.
    1. Wang C, Takeuchi K, Pinto LH, et al. Ion channel activity of influenza a virus M2 protein: characterization of the amantadine block. J Virol. 1993:675585–675594.
    1. Connolly BS, Lang AE. Pharmacological treatment of Parkinson disease: a review. JAMA. 2014;311:1670–1683.
    1. Stryjer R, Budnik D, Ebert T, et al. Amantadine augmentation therapy for obsessive compulsive patients resistant to SSRIs-an open-label study. Clin Neuropharmacol. 2014;37:79–81.
    1. Videnovic A. Treatment of Huntington disease. Curr Treat Options Neurol. 2013;15:424–438.
    1. Hosenbocus S, Chahal R. Amantadine: a review of use in child and adolescent psychiatry. J Can Acad Child Adolesc Psychiatry. 2013;22:55–60.
    1. Soares BG, Lima MS, Reisser AA, et al. Dopamine agonists for cocaine dependence. Cochrane Database Syst Rev. 2001;(4):CD003352–CD003352.
    1. Smith JP, Riley TR, Bingaman S, et al. Amantadine therapy for chronic hepatitis C: a dose escalation study. Am J Gastroenterol. 2004;99:1099–1104.
    1. Braham J. Amantadine in the treatment of Creutzfeldt-Jakob disease. Arch Neurol. 1984;41:585–586.
    1. Ohlmeier MD, Zhang Y, Bode L, et al. Amantadine reduces mania in borna disease virus-infected non-psychotic bipolar patients. Pharmacopsychiatry. 2008;41:202–203.
    1. Colgan R, Michocki R, Greisman L, et al. Antiviral drugs in the immunocompetent host: part I. Treatment of hepatitis, cytomegalovirus, and herpes infections. Am Fam Physician. 2003;67:757–762.
    1. Ruigrok RW, Hirst EM, Hay AJ. The specific inhibition of influenza a virus maturation by amantadine: an electron microscopic examination. J Gen Virol. 1991;72:191–194.
    1. Gu RX, Liu LA, Wei DQ. Structural and energetic analysis of drug inhibition of the influenza A M2 proton channel. Trends Pharmacol Sci. 2013;34:571–580.
    1. Ison MG, Hayden FG. Therapeutic options for the management of influenza. Curr Opin Pharmacol. 2001;1:482–490.
    1. Allen UD, Aoki FY, Stiver HG. The use of antiviral drugs for influenza: recommended guidelines for practitioners. Can J Infect Dis Med Microbiol. 2006;17:273–284.
    1. Cattoni J, Parekh R. Acute respiratory distress syndrome: a rare presentation of amantadine toxicity. Am J Case Rep. 2014;15:1–3.
    1. Alves Galvão MG, Rocha Crispino Santos MA, Alves da Cunha AJ. Amantadine and rimantadine for influenza A in children and the elderly. Cochrane Database Syst Rev. 2014;(11):CD002745–CD002745.
    1. Keyser LA, Karl M, Nafziger AN, et al. Comparison of central nervous system adverse effects of amantadine and rimantadine used as sequential prophylaxis of influenza A in elderly nursing home patients. Arch Intern Med. 2000;160:1485–1488.
    1. Hsieh HP, Hsu JT. Strategies of development of antiviral agents directed against influenza virus replication. Curr Pharm Des. 2007;13:3531–3542.
    1. Sheu TG, Fry AM, Garten RJ, et al. Dual resistance to adamantanes and oseltamivir among seasonal influenza A(H1N1) viruses: 2008-2010. J Infect Dis. 2011;203:13–17.
    1. Ison MG. Clinical use of approved influenza antivirals: therapy and prophylaxis. Influenza Other Respir Viruses. 2013;7(Suppl 1):7–13.
    1. Burnet FM, McCrea JF, Stone JD. Modification of Human Red Cells by Virus Action. I. The Receptor Gradient for Virus Action in Human Red Cells. Br J Exp Pathol. 1946;27:228–236.
    1. Itzstein M, Wu WY, Kok GB, et al. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature. 1993;363:418–423.
    1. Tullu MS. Oseltamivir. J Postgrad Med. 2009;55:225–230.
    1. Burch J, Paulden M, Conti S, et al. Antiviral drugs for the treatment of influenza: a systematic review and economic evaluation. Health Technol Assess. 2009;13:1–265.
    1. Jackson RJ, Cooper KL, Tappenden P, et al. Oseltamivir, zanamivir and amantadine in the prevention of influenza: a systematic review. J Infect. 2011;62:14–25.
    1. Jefferson T, Jones MA, Doshi P, et al. Neuraminidase inhibitors for preventing and treating influenza in healthy adults and children. Cochrane Database Syst Rev. 2014;(4):CD008965–CD008965.
    1. Beigi RH, Venkataramanan R, Caritis SN. Oseltamivir for influenza in pregnancy. Semin Perinatol. 2014 Sep 30;pii:S0146- 0005(14)00103–S0146- 0005(14)00107.
    1. CDC , author. Influenza antiviral medications: summary for clinicians (current for the 2013-14 influenza season) Document available at: . accessed on 24th July 2014.
    1. WHO , author. Global alert and Response (GAR) Antiviral drugs for pandemic (H1N1) 2009: definitions and use. Document available at: accessed on 24th July 2014).
    1. Barroso L, Treanor J, Gubareva L, et al. Efficacy and tolerability of the oral neuraminidase inhibitor peramivir in experimental human influenza: randomized, controlled trials for prophylaxis and treatment. Antivir Ther. 2005;10:901–910.
    1. Birnkrant D, Cox E. The emergency use authorization of peramivir for treatment of 2009 h1n1 influenza. N Engl J Med. 2009;361:2204–2207.
    1. Koyama K, Ogura Y, Nakai D, et al. Identification of bioactivating enzymes involved in the hydrolysis of laninamivir octanoate, a long-acting neuraminidase inhibitor, in human pulmonary tissue. Drug Metab Dispos. 2014;42:1031–1038.
    1. Kashiwagi S, Yoshida S, Yamaguchi H, et al. Safety of the long-acting neuraminidase inhibitor laninamivir octanoate hydrate in post-marketing surveillance. Int J Antimicrob Agents. 2012;40:381–388.
    1. Katsumi Y, Otabe O, Matsui F, et al. Effect of a single inhalation of laninamivir octanoate in children with influenza. Pediatrics. 2012;129:e1431–e1436.
    1. Yoshiba S, Okabe H, Ishizuka H. Pharmacokinetics of laninamivir after a single administration of its prodrug, laninamivir octanoate, a long-acting neuraminidase inhibitor, using an easy-to-use inhaler in healthy volunteers. J Bioequiv Availab. 2011;3:001–004.
    1. Streeter DG, Witkowski JT, Khare GP, et al. Mechanism of action of 1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (Virazole), a new broad-spectrum antiviral agent. Proc Natl Acad Sci U S A. 1973;70:1174–1178.
    1. Crotty S, Cameron C, Andino R. Ribavirin's antiviral mechanism of action: lethal mutagenesis? J Mol Med (Berl) 2002;80:86–95.
    1. Chan-Tack KM, Murray JS, Birnkrant DB. Use of ribavirin to treat influenza. N Engl J Med. 2009;361:1713–1714.
    1. Uchide N, Ohyama K, Toyoda H. Current and future anti-influenza virus drugs. The Open Antimicrobial Agents Journal. 2010;2:34–48.
    1. Deng P, Zhong D, Yu K, et al. Pharmacokinetics, metabolism, and excretion of the antiviral drug arbidol in humans. Antimicrob Agents Chemother. 2013;57:1743–1755.
    1. Shi L, Xiong H, He J, et al. Antiviral activity of arbidol against influenza A virus, respiratory syncytial virus, rhinovirus, coxsackie virus and adenovirus in vitro and in vivo. Arch Virol. 2007;152:1447–1455.
    1. Mola A, Peduto A, Gatta A, et al. Structure-activity relationship study of arbidol derivatives as inhibitors of chikungunya virus replication. Bioorg Med Chem. 2014 Sep 16;pii:S0968-0896(14)00649-X–S0968-0896(14)00649-X.
    1. Brooks MJ, Sasadeusz JJ, Tannock GA. Antiviral chemotherapeutic agents against respiratory viruses: where are we now and what's in the pipeline? Curr Opin Pulm Med. 2004;10:197–203.
    1. Blaising J, Lévy PL, Polyak SJ, et al. Arbidol inhibits viral entry by interfering with clathrin-dependent trafficking. Antiviral Res. 2013;100:215–219.
    1. Wei F, Li JL, Ling JX, et al. Establishment of SYBR greenbased qPCR assay for rapid evaluation and quantification for anti-Hantaan virus compounds in vitro and in suckling mice. Virus Genes. 2013;46:54–62.
    1. Santesso N, Hsu J, Mustafa R, et al. Antivirals for influenza: a summary of a systematic review and meta-analysis of observational studies. Influenza Other Respir Viruses. 2013;7(Suppl 2):76–81.
    1. He G, Qiao J, Dong C, et al. Amantadine-resistance among H5N1 avian influenza viruses isolated in Northern China. Antiviral Res. 2008;77:72–76.

Source: PubMed

3
Se inscrever