Effects of L-Citrulline Supplementation on Endothelial Function and Blood Pressure in Hypertensive Postmenopausal Women

Arun Maharaj, Stephen M Fischer, Katherine N Dillon, Yejin Kang, Mauricio A Martinez, Arturo Figueroa, Arun Maharaj, Stephen M Fischer, Katherine N Dillon, Yejin Kang, Mauricio A Martinez, Arturo Figueroa

Abstract

Aging and menopause are associated with decreased nitric oxide bioavailability due to reduced L-arginine (L-ARG) levels contributing to endothelial dysfunction (ED). ED precedes arterial stiffness and hypertension development, a major risk factor for cardiovascular disease. This study investigated the effects of L-citrulline (L-CIT) on endothelial function, aortic stiffness, and resting brachial and aortic blood pressures (BP) in hypertensive postmenopausal women. Twenty-five postmenopausal women were randomized to 4 weeks of L-CIT (10 g) or placebo (PL). Serum L-ARG, brachial artery flow-mediated dilation (FMD), aortic stiffness (carotid-femoral pulse wave velocity, cfPWV), and resting brachial and aortic BP were assessed at 0 and 4 weeks. L-CIT supplementation increased L-ARG levels (Δ13 ± 2 vs. Δ−2 ± 2 µmol/L, p < 0.01) and FMD (Δ1.4 ± 2.0% vs. Δ−0.5 ± 1.7%, p = 0.03) compared to PL. Resting aortic diastolic BP (Δ−2 ± 4 vs. Δ2 ± 5 mmHg, p = 0.01) and mean arterial pressure (Δ−2 ± 4 vs. Δ2 ± 6 mmHg, p = 0.04) were significantly decreased after 4 weeks of L-CIT compared to PL. Although not statistically significant (p = 0.07), cfPWV decreased after L-CIT supplementation by ~0.66 m/s. These findings suggest that L-CIT supplementation improves endothelial function and aortic BP via increased L-ARG availability.

Keywords: aortic blood pressure; arterial stiffness; citrulline; endothelial function; hypertension; postmenopausal women.

Conflict of interest statement

The authors declare no conflict of interest with respect to this manuscript.

Figures

Figure 1
Figure 1
Study flow chart.
Figure 2
Figure 2
Individual data and group mean changes (Δ) in serum L−Arginine concentrations from 0 to 4 weeks of L-citrulline (L−CIT) and placebo (PL) supplementation in hypertensive postmenopausal women. *p < 0.01 vs. PL. For both groups, n = 9.
Figure 3
Figure 3
Individual data and group mean changes (Δ) in brachial artery flow−mediated dilation (FMD) from 0 weeks to 4 weeks of L-citrulline (L−CIT) and placebo (PL) in hypertensive postmenopausal women. * p < 0.05 vs. PL.
Figure 4
Figure 4
Individual data and group mean changes (Δ) in resting aortic systolic blood pressure (SBP, (A)), diastolic BP (DBP, (B)) and mean arterial pressure (MAP, (C)) from 0 weeks to 4 weeks of L−citrulline (L−CIT) and placebo (PL) in hypertensive postmenopausal women. * p ≤ 0.05 vs. PL.

References

    1. Chomistek A.K., Manson J.E., Stefanick M.L., Lu B., Sands-Lincoln M., Going S.B., Garcia L., Allison M.A., Sims S.T., LaMonte M.J. Relationship of sedentary behavior and physical activity to incident cardiovascular disease: Results from the Women’s Health Initiative. J. Am. Coll. Cardiol. 2013;61:2346–2354. doi: 10.1016/j.jacc.2013.03.031.
    1. Benjamin E.J., Blaha M.J., Chiuve S.E., Cushman M., Das S.R., Deo R., De Ferranti S.D., Floyd J., Fornage M., Gillespie C., et al. Heart disease and stroke statistics—2017 update: A report from the American Heart Association. Circulation. 2017;135:e146–e603. doi: 10.1161/CIR.0000000000000485.
    1. Whelton P.K., Carey R.M., Aronow W.S., Casey D.E., Collins K.J., Dennison Himmelfarb C., DePalma S.M., Gidding S., Jamerson K.A., Jones D.W., et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2018;71:e127–e248.
    1. Ong K.L., Tso A.W., Lam K.S., Cheung B.M. Gender difference in blood pressure control and cardiovascular risk factors in Americans with diagnosed hypertension. Hypertension. 2008;51:1142–1148. doi: 10.1161/HYPERTENSIONAHA.107.105205.
    1. Coutinho T., Borlaug B.A., Pellikka P.A., Turner S.T., Kullo I.J. Sex differences in arterial stiffness and ventricular-arterial interactions. J. Am. Coll. Cardiol. 2013;61:96–103. doi: 10.1016/j.jacc.2012.08.997.
    1. Vallance P., Chan N. Endothelial function and nitric oxide: Clinical relevance. Heart. 2001;85:342–350. doi: 10.1136/heart.85.3.342.
    1. Faulx M.D., Wright A.T., Hoit B.D. Detection of endothelial dysfunction with brachial artery ultrasound scanning. Am. Heart J. 2003;145:943–951. doi: 10.1016/S0002-8703(03)00097-8.
    1. Moreau K.L., Hildreth K.L., Meditz A.L., Deane K.D., Kohrt W.M. Endothelial function is impaired across the stages of the menopause transition in healthy women. J. Clin. Endocrinol. Metab. 2012;97:4692–4700. doi: 10.1210/jc.2012-2244.
    1. Celermajer D.S., Sorensen K.E., Spiegelhalter D.J., Georgakopoulos D., Robinson J., Deanfield J.E. Aging is associated with endothelial dysfunction in healthy men years before the age-related decline in women. J. Am. Coll. Cardiol. 1994;24:471–476. doi: 10.1016/0735-1097(94)90305-0.
    1. Klawitter J., Hildreth K.L., Christians U., Kohrt W.M., Moreau K.L. A relative L-arginine deficiency contributes to endothelial dysfunction across the stages of the menopausal transition. Physiol. Rep. 2017;5:e13409. doi: 10.14814/phy2.13409.
    1. Taddei S., Virdis A., Ghiadoni L., Mattei P., Sudano I., Bernini G., Pinto S., Salvetti A. Menopause is associated with endothelial dysfunction in women. Hypertension. 1996;28:576–582. doi: 10.1161/01.HYP.28.4.576.
    1. Lima R., Wofford M., Reckelhoff J.F. Hypertension in postmenopausal women. Curr. Hypertens. Rep. 2012;14:254–260. doi: 10.1007/s11906-012-0260-0.
    1. Walsh T., Donnelly T., Lyons D. Impaired endothelial nitric oxide bioavailability: A common link between aging, hypertension, and atherogenesis? J. Am. Geriatr. Soc. 2009;57:140–145. doi: 10.1111/j.1532-5415.2008.02051.x.
    1. Safar M.E. A reappraisal of clinical research on arterial stiffness in hypertension in France. J. Am. Soc. Hypertens. 2016;10:482–488. doi: 10.1016/j.jash.2016.04.004.
    1. Sun Z. Aging, arterial stiffness, and hypertension. Hypertension. 2015;65:252–256. doi: 10.1161/HYPERTENSIONAHA.114.03617.
    1. de Oliveira G.V., Volino-Souza M., Leitão R., Pinheiro V., Alvares T.S. Is flow-mediated dilatation associated with near-infrared spectroscopy-derived magnitude of muscle O2 desaturation in healthy young and individuals at risk for cardiovascular disease? Microvasc. Res. 2020;129:103967. doi: 10.1016/j.mvr.2019.103967.
    1. Mackey R.H., Sutton-Tyrrell K., Vaitkevicius P.V., Sakkinen P.A., Lyles M.F., Spurgeon H.A., Lakatta E.G., Kuller L.H. Correlates of aortic stiffness in elderly individuals: A subgroup of the Cardiovascular Health Study. Am. J. Hypertens. 2002;15:16–23. doi: 10.1016/S0895-7061(01)02228-2.
    1. Mitchell G.F., Parise H., Benjamin E.J., Larson M.G., Keyes M.J., Vita J.A., Vasan R.S., Levy D. Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: The Framingham Heart Study. Hypertension. 2004;43:1239–1245. doi: 10.1161/01.HYP.0000128420.01881.aa.
    1. Mitchell G.F., Vita J.A., Larson M.G., Parise H., Keyes M.J., Warner E., Vasan R.S., Levy D., Benjamin E.J. Cross-sectional relations of peripheral microvascular function, cardiovascular disease risk factors, and aortic stiffness: The Framingham Heart Study. Circulation. 2005;112:3722–3728. doi: 10.1161/CIRCULATIONAHA.105.551168.
    1. Brandes R.P. Endothelial dysfunction and hypertension. Hypertension. 2014;64:924–928. doi: 10.1161/HYPERTENSIONAHA.114.03575.
    1. Dernellis J., Panaretou M. Aortic stiffness is an independent predictor of progression to hypertension in nonhypertensive subjects. Hypertension. 2005;45:426–431. doi: 10.1161/01.HYP.0000157818.58878.93.
    1. Kaess B.M., Rong J., Larson M.G., Hamburg N.M., Vita J.A., Levy D., Benjamin E.J., Vasan R.S., Mitchell G.F. Aortic stiffness, blood pressure progression, and incident hypertension. JAMA. 2012;308:875–881. doi: 10.1001/2012.jama.10503.
    1. Laurent S.p., Boutouyrie P. Recent advances in arterial stiffness and wave reflection in human hypertension. Hypertension. 2007;49:1202–1206. doi: 10.1161/HYPERTENSIONAHA.106.076166.
    1. Quyyumi A.A., Patel R.S. Endothelial dysfunction and hypertension: Cause or effect? Hypertension. 2010;55:1092–1094. doi: 10.1161/HYPERTENSIONAHA.109.148957.
    1. Yannoutsos A., Levy B.I., Safar M.E., Slama G., Blacher J. Pathophysiology of hypertension: Interactions between macro and microvascular alterations through endothelial dysfunction. J. Hypertens. 2014;32:216–224. doi: 10.1097/HJH.0000000000000021.
    1. Bai Y., Sun L., Yang T., Sun K., Chen J., Hui R. Increase in fasting vascular endothelial function after short-term oral L-arginine is effective when baseline flow-mediated dilation is low: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2009;89:77–84. doi: 10.3945/ajcn.2008.26544.
    1. Lekakis J.P., Papathanassiou S., Papaioannou T.G., Papamichael C.M., Zakopoulos N., Kotsis V., Dagre A.G., Stamatelopoulos K., Protogerou A., Stamatelopoulos S.F. Oral L-arginine improves endothelial dysfunction in patients with essential hypertension. Int. J. Cardiol. 2002;86:317–323. doi: 10.1016/S0167-5273(02)00413-8.
    1. Blum A., Hathaway L., Mincemoyer R., Schenke W.H., Kirby M., Csako G., Waclawiw M.A., Panza J.A., Cannon R.O. Effects of oral L-arginine on endothelium-dependent vasodilation and markers of inflammation in healthy postmenopausal women. J. Am. Coll. Cardiol. 2000;35:271–276. doi: 10.1016/S0735-1097(99)00553-7.
    1. Böger R.H., Bode-Böger S.M., Mügge A., Kienke S., Brandes R., Dwenger A., Frölich J.C. Supplementation of hypercholesterolaemic rabbits with L-arginine reduces the vascular release of superoxide anions and restores NO production. Atherosclerosis. 1995;117:273–284. doi: 10.1016/0021-9150(95)05582-H.
    1. Bode-Böger S.M., Muke J., Surdacki A., Brabant G., Böger R.H., Frölich J.C. Oral L-arginine improves endothelial function in healthy individuals older than 70 years. Vasc. Med. 2003;8:77–81. doi: 10.1191/1358863x03vm474oa.
    1. Shiraseb F., Asbaghi O., Bagheri R., Wong A., Figueroa A., Mirzaei K. Effect of l-Arginine Supplementation on Blood Pressure in Adults: A Systematic Review and Dose–Response Meta-analysis of Randomized Clinical Trials. Adv. Nutr. 2022;13:1226–1242. doi: 10.1093/advances/nmab155.
    1. Breuillard C., Cynober L., Moinard C. Citrulline and nitrogen homeostasis: An overview. Amino Acids. 2015;47:685–691. doi: 10.1007/s00726-015-1932-2.
    1. Castillo L., Chapman T.E., Yu Y.-M., Ajami A., Burke J.F., Young V.R. Dietary arginine uptake by the splanchnic region in adult humans. Am. J. Physiol.-Endocrinol. Metab. 1993;265:E532–E539. doi: 10.1152/ajpendo.1993.265.4.E532.
    1. Moinard C., Maccario J., Walrand S., Lasserre V., Marc J., Boirie Y., Cynober L. Arginine behaviour after arginine or citrulline administration in older subjects. Br. J. Nutr. 2016;115:399–404. doi: 10.1017/S0007114515004638.
    1. Schwedhelm E., Maas R., Freese R., Jung D., Lukacs Z., Jambrecina A., Spickler W., Schulze F., Böger R.H. Pharmacokinetic and pharmacodynamic properties of oral L-citrulline and L-arginine: Impact on nitric oxide metabolism. Br. J. Clin. Pharmacol. 2008;65:51–59. doi: 10.1111/j.1365-2125.2007.02990.x.
    1. Shatanawi A., Momani M.S., Al-Aqtash R., Hamdan M.H., Gharaibeh M.N. L-Citrulline supplementation increases plasma nitric oxide levels and reduces arginase activity in patients with Type 2 Diabetes. Front. Pharmacol. 2020;11:584669. doi: 10.3389/fphar.2020.584669.
    1. Xuan C., Lun L.-M., Zhao J.-X., Wang H.-W., Wang J., Ning C.-P., Liu Z., Zhang B.-B., He G.-W. L-citrulline for protection of endothelial function from ADMA–induced injury in porcine coronary artery. Sci. Rep. 2015;5:1–10. doi: 10.1038/srep10987.
    1. Morita M., Sakurada M., Watanabe F., Yamasaki T., Ezaki H., Morishita K., Miyake T. Effects of oral L-citrulline supplementation on lipoprotein oxidation and endothelial dysfunction in humans with vasospastic angina. Immunol. Endocr. Metab. Agents Med. Chem. 2013;13:214–220. doi: 10.2174/18715222113139990008.
    1. Figueroa A., Sanchez-Gonzalez M.A., Perkins-Veazie P.M., Arjmandi B.H. Effects of watermelon supplementation on aortic blood pressure and wave reflection in individuals with prehypertension: A pilot study. Am. J. Hypertens. 2011;24:40–44. doi: 10.1038/ajh.2010.142.
    1. Figueroa A., Sanchez-Gonzalez M.A., Wong A., Arjmandi B.H. Watermelon extract supplementation reduces ankle blood pressure and carotid augmentation index in obese adults with prehypertension or hypertension. Am. J. Hypertens. 2012;25:640–643. doi: 10.1038/ajh.2012.20.
    1. Figueroa A., Wong A., Hooshmand S., Sanchez-Gonzalez M.A. Effects of watermelon supplementation on arterial stiffness and wave reflection amplitude in postmenopausal women. Menopause. 2013;20:573–577. doi: 10.1097/gme.0b013e3182733794.
    1. Wong A., Alvarez-Alvarado S., Jaime S.J., Kinsey A.W., Spicer M.T., Madzima T.A., Figueroa A. Combined whole-body vibration training and l-citrulline supplementation improves pressure wave reflection in obese postmenopausal women. Appl. Physiol. Nutr. Metab. 2016;41:292–297. doi: 10.1139/apnm-2015-0465.
    1. Figueroa A., Alvarez-Alvarado S., Ormsbee M.J., Madzima T.A., Campbell J.C., Wong A. Impact of L-citrulline supplementation and whole-body vibration training on arterial stiffness and leg muscle function in obese postmenopausal women with high blood pressure. Exp. Gerontol. 2015;63:35–40. doi: 10.1016/j.exger.2015.01.046.
    1. Cifu A.S., Davis A.M. Prevention, detection, evaluation, and management of high blood pressure in adults. JAMA. 2017;318:2132–2134. doi: 10.1001/jama.2017.18706.
    1. Luiking Y.C., Ten Have G.A., Wolfe R.R., Deutz N.E. Arginine de novo and nitric oxide production in disease states. Am. J. Physiol.-Endocrinol. Metab. 2012;303:E1177–E1189. doi: 10.1152/ajpendo.00284.2012.
    1. Masi S., Colucci R., Duranti E., Nannipieri M., Anselmino M., Ippolito C., Tirotta E., Georgiopoulos G., Garelli F., Nericcio A. Aging modulates the influence of arginase on endothelial dysfunction in obesity. Arterioscler. Thromb. Vasc. Biol. 2018;38:2474–2483. doi: 10.1161/ATVBAHA.118.311074.
    1. Wierzchowska-McNew R., Engelen M., Thaden J., Have G.T., Deutz N. Obesity-and Sex-Related Disturbances in Arginine and Nitric Oxide Kinetics. Curr. Dev. Nutr. 2022;6:1091. doi: 10.1093/cdn/nzac070.050.
    1. Förstermann U., Sessa W.C. Nitric oxide synthases: Regulation and function. Eur. Heart J. 2012;33:829–837. doi: 10.1093/eurheartj/ehr304.
    1. Bode-Böger S.M., Böger R.H., Galland A., Tsikas D., Frölich J.C. L-arginine-induced vasodilation in healthy humans: Pharmacokinetic-pharmacodynamic relationship. Br. J. Clin. Pharmacol. 1998;46:489–497. doi: 10.1046/j.1365-2125.1998.00803.x.
    1. Khalaf D., Krüger M., Wehland M., Infanger M., Grimm D. The effects of oral l-arginine and l-citrulline supplementation on blood pressure. Nutrients. 2019;11:1679. doi: 10.3390/nu11071679.
    1. Ochiai M., Hayashi T., Morita M., Ina K., Maeda M., Watanabe F., Morishita K. Short-term effects of L-citrulline supplementation on arterial stiffness in middle-aged men. Int. J. Cardiol. 2012;155:257–261. doi: 10.1016/j.ijcard.2010.10.004.
    1. Grimble G.K. Adverse gastrointestinal effects of arginine and related amino acids. J. Nutr. 2007;137:1693S–1701S. doi: 10.1093/jn/137.6.1693S.
    1. Churchward-Venne T.A., Cotie L.M., MacDonald M.J., Mitchell C.J., Prior T., Baker S.K., Phillips S.M. Citrulline does not enhance blood flow, microvascular circulation, or myofibrillar protein synthesis in elderly men at rest or following exercise. Am. J. Physiol.-Endocrinol. Metab. 2014;307:E71–E83. doi: 10.1152/ajpendo.00096.2014.
    1. Kim I.-Y., Schutzler S.E., Schrader A., Spencer H.J., Azhar G., Deutz N.E., Wolfe R.R. Acute ingestion of citrulline stimulates nitric oxide synthesis but does not increase blood flow in healthy young and older adults with heart failure. Am. J. Physiol.-Endocrinol. Metab. 2015;309:E915–E924. doi: 10.1152/ajpendo.00339.2015.
    1. Maharaj A., Fischer S.M., Dillon K.N., Kang Y., Martinez M.A., Figueroa A. Acute Citrulline Blunts Aortic Systolic Pressure during Exercise and Sympathoactivation in Hypertensive Postmenopausal Women. Med. Sci. Sport. Exerc. 2021;54:761–768. doi: 10.1249/MSS.0000000000002848.
    1. Gallo G., Volpe M., Savoia C. Endothelial dysfunction in hypertension: Current concepts and clinical implications. Front. Med. 2021;8:798958. doi: 10.3389/fmed.2021.798958.
    1. Lu Y., Pechlaner R., Cai J., Yuan H., Huang Z., Yang G., Wang J., Chen Z., Kiechl S., Xu Q. Trajectories of age-related arterial stiffness in Chinese men and women. J. Am. Coll. Cardiol. 2020;75:870–880. doi: 10.1016/j.jacc.2019.12.039.
    1. Roman M.J., Devereux R.B., Kizer J.R., Lee E.T., Galloway J.M., Ali T., Umans J.G., Howard B.V. Central pressure more strongly relates to vascular disease and outcome than does brachial pressure: The Strong Heart Study. Hypertension. 2007;50:197–203. doi: 10.1161/HYPERTENSIONAHA.107.089078.
    1. Dunlay S.M., Roger V.L., Redfield M.M. Epidemiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 2017;14:591–602. doi: 10.1038/nrcardio.2017.65.
    1. Yang J.H., Obokata M., Reddy Y.N., Redfield M.M., Lerman A., Borlaug B.A. Endothelium-dependent and independent coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction. Eur. J. Heart Fail. 2020;22:432–441. doi: 10.1002/ejhf.1671.
    1. Taqueti V.R., Solomon S.D., Shah A.M., Desai A.S., Groarke J.D., Osborne M.T., Hainer J., Bibbo C.F., Dorbala S., Blankstein R. Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. Eur. Heart J. 2018;39:840–849. doi: 10.1093/eurheartj/ehx721.
    1. Rush C.J., Berry C., Oldroyd K.G., Rocchiccioli J.P., Lindsay M.M., Touyz R.M., Murphy C.L., Ford T.J., Sidik N., McEntegart M.B. Prevalence of coronary artery disease and coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction. JAMA Cardiol. 2021;6:1130–1143. doi: 10.1001/jamacardio.2021.1825.
    1. Sandesara P.B., O’Neal W.T., Kelli H.M., Topel M., Samman-Tahhan A., Sperling L.S. Diastolic blood pressure and adverse outcomes in the TOPCAT (Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist) trial. J. Am. Heart Assoc. 2018;7:e007475. doi: 10.1161/JAHA.117.007475.
    1. Cook N.R., Cohen J., Hebert P.R., Taylor J.O., Hennekens C.H. Implications of small reductions in diastolic blood pressure for primary prevention. Arch. Intern. Med. 1995;155:701–709. doi: 10.1001/archinte.1995.00430070053006.
    1. Tschakovsky M.E., Hughson R.L. Rapid blunting of sympathetic vasoconstriction in the human forearm at the onset of exercise. J. Appl. Physiol. 2003;94:1785–1792. doi: 10.1152/japplphysiol.00680.2002.
    1. Grassi G., Seravalle G., Bertinieri G., Turri C., Dell’Oro R., Stella M.L., Mancia G. Sympathetic and reflex alterations in systo-diastolic and systolic hypertension of the elderly. J. Hypertens. 2000;18:587–593. doi: 10.1097/00004872-200018050-00012.
    1. Figueroa A., Wong A., Kalfon R. Effects of watermelon supplementation on aortic hemodynamic responses to the cold pressor test in obese hypertensive adults. Am. J. Hypertens. 2014;27:899–906. doi: 10.1093/ajh/hpt295.
    1. Ramchandra R., Barrett C.J., Malpas S.C. Chronic blockade of nitric oxide does not produce hypertension in baroreceptor denervated rabbits. Hypertension. 2003;42:974–977. doi: 10.1161/01.HYP.0000094556.83257.8C.
    1. Ramchandra R., Barrett C.J., Malpas S.C. Nitric oxide and sympathetic nerve activity in the control of blood pressure. Clin. Exp. Pharmacol. Physiol. 2005;32:440–446. doi: 10.1111/j.1440-1681.2005.04208.x.
    1. Vlachopoulos C., Aznaouridis K., Terentes-Printzios D., Ioakeimidis N., Stefanadis C. Prediction of cardiovascular events and all-cause mortality with brachial-ankle elasticity index: A systematic review and meta-analysis. Hypertension. 2012;60:556–562. doi: 10.1161/HYPERTENSIONAHA.112.194779.
    1. Dong J.-Y., Qin L.-Q., Zhang Z., Zhao Y., Wang J., Arigoni F., Zhang W. Effect of oral L-arginine supplementation on blood pressure: A meta-analysis of randomized, double-blind, placebo-controlled trials. Am. Heart J. 2011;162:959–965. doi: 10.1016/j.ahj.2011.09.012.
    1. O’Rourke M.F., Safar M.E. Relationship between aortic stiffening and microvascular disease in brain and kidney: Cause and logic of therapy. Hypertension. 2005;46:200–204. doi: 10.1161/01.HYP.0000168052.00426.65.
    1. Collaboration P.S. Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–1913.
    1. Melgarejo J.D., Yang W.-Y., Thijs L., Li Y., Asayama K., Hansen T.W., Wei F.-F., Kikuya M., Ohkubo T., Dolan E. Association of fatal and nonfatal cardiovascular outcomes with 24-hour mean arterial pressure. Hypertension. 2021;77:39–48. doi: 10.1161/HYPERTENSIONAHA.120.14929.
    1. Kajikawa M., Higashi Y. Obesity and Endothelial Function. Biomedicines. 2022;10:1745. doi: 10.3390/biomedicines10071745.
    1. Maruhashi T., Higashi Y. Pathophysiological association between diabetes mellitus and endothelial dysfunction. Antioxidants. 2021;10:1306. doi: 10.3390/antiox10081306.

Source: PubMed

3
Se inscrever