Dual-energy CT in sacral fragility fractures: defining a cut-off Hounsfield unit value for the presence of traumatic bone marrow edema in patients with osteoporosis

Jan-Peter Grunz, Lukas Sailer, Patricia Lang, Simone Schüle, Andreas Steven Kunz, Meinrad Beer, Carsten Hackenbroch, Jan-Peter Grunz, Lukas Sailer, Patricia Lang, Simone Schüle, Andreas Steven Kunz, Meinrad Beer, Carsten Hackenbroch

Abstract

Background: Demographic change entails an increasing incidence of fragility fractures. Dual-energy CT (DECT) with virtual non-calcium (VNCa) reconstructions has been introduced as a promising diagnostic method for evaluating bone microarchitecture and marrow simultaneously. This study aims to define the most accurate cut-off value in Hounsfield units (HU) for discriminating the presence and absence of bone marrow edema (BME) in sacral fragility fractures.

Methods: Forty-six patients (40 women, 6 men; 79.7 ± 9.2 years) with suspected fragility fractures of the sacrum underwent both DECT (90 kVp / 150 kVp with tin prefiltration) and MRI. Nine regions-of-interest were placed in each sacrum on DECT-VNCa images. The resulting 414 HU measurements were stratified into "edema" (n = 80) and "no edema" groups (n = 334) based on reference BME detection in T2-weighted MRI sequences. Area under the receiver operating characteristic curve was calculated to determine the desired cut-off value and an associated conspicuity range for edema detection.

Results: The mean density within the "edema" group of measurements (+ 3.1 ± 8.3 HU) was substantially higher compared to the "no edema" group (-51.7 ± 21.8 HU; p < 0.010). Analysis in DECT-VNCa images suggested a cut-off value of -12.9 HU that enabled sensitivity and specificity of 100% for BME detection compared to MRI. A range of HU values between -14.0 and + 20.0 is considered indicative of BME in the sacrum.

Conclusions: Quantitative analysis of DECT-VNCa with a cut-off of -12.9 HU allows for excellent diagnostic accuracy in the assessment of sacral fragility fractures with associated BME. A diagnostic "one-stop-shop" approach without additional MRI is feasible.

Keywords: Bone bruise; Bone marrow edema; Dual-energy computed tomography; Fragility fracture; Virtual non-calcium imaging.

Conflict of interest statement

JPG serves as a research consultant for Siemens Healthcare GmbH and receives speaker honoraria outside of the presented work. The other authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Virtual non-calcium (VNCa) image of the sacrum (coronal view). The red circles represent the nine locations where Hounsfield units (HU) were measured within regions of interest
Fig. 2
Fig. 2
a Axial CT image that fails to demonstrate a discrete fracture line in the sacrum. b Color-coded coronal DECT reconstruction image with region-of-interest measurement in the right inferior region of the sacrum. Blue represents lower HU values of approximately -50 HU, whereas yellow/light green indicates higher HU values around + 10 HU. c Coronal T2-weighted STIR sequence demonstrates edema in the same locations
Fig. 3
Fig. 3
Dotplots showing the distribution of Hounsfield unit (HU) measurements using dual-energy CT. The red dotted line indicates the calculated cut-off value of -12.9 Hounsfield units (HU), which allowed for the most accurate discrimination between the presence or absence of bone marrow edema (left). Employing the cut-off value to calculate classification functions of diagnostic accuracy results in the highest possible sensitivity and specificity (right)
Fig. 4
Fig. 4
Box-and-whisker plot showing the distribution of Hounsfield unit (HU) measurements at the fourth or fifth lumbar vertebra in patients with osteoporosis (“fracture and osteoporosis”), patients without osteoporosis but with osteoporotic fractures (“fracture and suspected osteoporosis”) and patients without osteoporosis and without osteoporotic fractures (“no fracture”)
Fig. 5
Fig. 5
a Coronal VNCa reformatting of dual-energy CT suggested the absence of edema at the upper measurement sites (-47.1 HU and -57.7 HU), whereas the presence of edema was indicated for the lower measurement sites (+ 7.3 HU and + 7.4 HU). b Corresponding sagittal T2( STIR image (at 1.5 Tesla) of the same patient with marked edema in the lower sacrum (red circle). In contrast, no edema was ascertained in the upper sacrum (white arrow). c Axial T2 STIR image (at 1.5 Tesla) confirmed the presence of edema in both sides of the lower sacrum (red circle)

References

    1. Brown C. Staying strong. Nature. 2017;550(7674):S15–S17. doi: 10.1038/550S15a.
    1. Stuby FM, Schäffler A, Haas T, König B, Stöckle U, Freude T. Insufficiency fractures of the pelvic ring. Unfallchirurg. 2013;116(4):351–366. doi: 10.1007/s00113-012-2349-y.
    1. Oberkircher L, Ruchholtz S, Rommens PM, Hofmann A, Bücking B, Krüger A. Osteoporotic pelvic fractures. Dtsch Arztebl Int. 2018;115(5):70-80. 10.3238/arztebl.2018.0070.
    1. Hackenbroch C, Riesner HJ, Lang P, Stuby F, Danz B, Friemert B, et al. Dual Energy CT – a Novel Technique for Diagnostic Testing of Fragility Fractures of the Pelvis. Z Orthop Unfall. 2017;155(01):27–34. doi: 10.1055/s-0042-110208.
    1. Rommens P, Wagner D, Hofmann A. Osteoporotic fractures of the pelvic ring. Z Orthop Unfall. 2012;150(03):e107–e120. doi: 10.1055/s-0032-1314948.
    1. Bencardino JT, Stone TJ, Roberts CC, Appel M, Baccei SJ, Cassidy RC, et al. ACR Appropriateness Criteria ® Stress (Fatigue/Insufficiency) Fracture, Including Sacrum, Excluding Other Vertebrae. J Am Coll Radiol. 2017;14(5):S293–306. doi: 10.1016/j.jacr.2017.02.035.
    1. Cabarrus MC, Ambekar A, Lu Y, Link TM. MRI and CT of Insufficiency Fractures of the Pelvis and the Proximal Femur. Am J Roentgenol. 2008;191(4):995–1001. doi: 10.2214/AJR.07.3714.
    1. Soles GLS, Ferguson TA. Fragility fractures of the pelvis. Curr Rev Musculoskelet Med. 2012;5(3):222–228. doi: 10.1007/s12178-012-9128-9.
    1. Henes FO, Nüchtern JV, Groth M, Habermann CR, Regier M, Rueger JM, et al. Comparison of diagnostic accuracy of Magnetic Resonance Imaging and Multidetector Computed Tomography in the detection of pelvic fractures. Eur J Radiol. 2012;81(9):2337–2342. doi: 10.1016/j.ejrad.2011.07.012.
    1. Grangier C, Garcia J, Howarth NR, May M, Rossier P. Role of MRI in the diagnosis of insufficiency fractures of the sacrum and acetabular roof. Skeletal Radiol. 1997;26(9):517–524. doi: 10.1007/s002560050278.
    1. Hackenbroch C, Riesner HJ, Lang P, Stuby F, Beer M, Friemert B, et al. Dual Energy Computed Tomography in Musculoskeletal Imaging, with Focus on Fragility Fractures of the Pelvis. Z Orthop Unfall. 2017;155(06):708–715. doi: 10.1055/s-0043-117738.
    1. Wang CK, Tsai JM, Chuang MT, Wang MT, Huang KY, Lin RM. Bone Marrow Edema in Vertebral Compression Fractures: Detection with Dual-Energy CT. Radiology. 2013;269(2):525–533. doi: 10.1148/radiol.13122577.
    1. Reddy T, McLaughlin PD, Mallinson PI, Reagan AC, Munk PL, Nicolaou S, et al. Detection of occult, undisplaced hip fractures with a dual-energy CT algorithm targeted to detection of bone marrow edema. Emerg Radiol. 2015;22(1):25–29. doi: 10.1007/s10140-014-1249-6.
    1. Pache G, Krauss B, Strohm P, Saueressig U, Blanke P, Bulla S, et al. Dual-Energy CT Virtual Noncalcium Technique: Detecting Posttraumatic Bone Marrow Lesions—Feasibility Study. Radiology. 2010;256(2):617–624. doi: 10.1148/radiol.10091230.
    1. Guggenberger R, Gnannt R, Hodler J, Krauss B, Wanner GA, Csuka E, et al. Diagnostic Performance of Dual-Energy CT for the Detection of Traumatic Bone Marrow Lesions in the Ankle: Comparison with MR Imaging. Radiology. 2012;264(1):164–173. doi: 10.1148/radiol.12112217.
    1. Gosangi B, Mandell JC, Weaver MJ, Uyeda JW, Smith SE, Sodickson AD, et al. Bone Marrow Edema at Dual-Energy CT: A Game Changer in the Emergency Department. Radiographics. 2020;40(3):859–874. doi: 10.1148/rg.2020190173.
    1. Palm HG, Lang P, Hackenbroch C, Sailer L, Friemert B. Dual-energy CT as an innovative method for diagnosing fragility fractures of the pelvic ring: a retrospective comparison with MRI as the gold standard. Arch Orthop Trauma Surg. 2020;140(4):473–480. doi: 10.1007/s00402-019-03283-8.
    1. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312(7041):1254–1259. doi: 10.1136/bmj.312.7041.1254.
    1. Glüer CC, Reiser UJ, Davis CA, Rutt BK, Genant HK. Vertebral Mineral Determination by Quantitative Computed Tomography (QCT) J Comput Assist Tomogr. 1988;12(2):242–258. doi: 10.1097/00004728-198803000-00013.
    1. Jang S, Graffy PM, Ziemlewicz TJ, Lee SJ, Summers RM, Pickhardt PJ. Opportunistic Osteoporosis Screening at Routine Abdominal and Thoracic CT: Normative L1 Trabecular Attenuation Values in More than 20 000 Adults. Radiology. 2019;291(2):360–367. doi: 10.1148/radiol.2019181648.
    1. Vetter JR, Perman WH, Kalender WA, Mazess RB, Holden JE. Evaluation of a prototype dual-energy computed tomographic apparatus II Determination of vertebral bone mineral content. Medical Physics May. 1986;13(3):340–3. doi: 10.1118/1.595951.
    1. Nickoloff EL, Feldman F, Atherton J v. Bone mineral assessment new dual-energy CT approach. Radiology. 1988;168(1):223–8. doi: 10.1148/radiology.168.1.3380964.
    1. Schreiber JJ, Anderson PA, Hsu WK. Use of computed tomography for assessing bone mineral density. Neurosurg Focus. 2014;37(1):E4. doi: 10.3171/2014.5.FOCUS1483.
    1. Pickhardt PJ, Pooler BD, Lauder T, del Rio AM, Bruce RJ, Binkley N. Opportunistic Screening for Osteoporosis Using Abdominal Computed Tomography Scans Obtained for Other Indications. Ann Intern Med. 2013;158(8):588. doi: 10.7326/0003-4819-158-8-201304160-00003.
    1. Henes FO, Groth M, Bley TA, Regier M, Nüchtern J v, Ittrich H, et al. Quantitative assessment of bone marrow attenuation values at MDCT: An objective tool for the detection of bone bruise related to occult sacral insufficiency fractures. European Radiology. 2012;22(10):2229–36. doi: 10.1007/s00330-012-2472-8.
    1. Bierry G, Venkatasamy A, Kremer S, Dosch JC, Dietemann JL. Dual-energy CT in vertebral compression fractures: performance of visual and quantitative analysis for bone marrow edema demonstration with comparison to MRI. Skeletal Radiol. 2014;43(4):485–492. doi: 10.1007/s00256-013-1812-3.
    1. Petritsch B, Kosmala A, Weng AM, Krauss B, Heidemeier A, Wagner R, et al. Vertebral compression fractures: Third-generation dual-energy CT for detection of bone marrow edema at visual and quantitative analyses. Radiology. 2017;284(1):161–168. doi: 10.1148/radiol.2017162165.
    1. Booz C, Nöske J, Albrecht MH, Lenga L, Martin SS, Bucher AM, et al. Diagnostic accuracy of color-coded virtual noncalcium dual-energy CT for the assessment of bone marrow edema in sacral insufficiency fracture in comparison to MRI. Eur J Radiol. 2020;129:109046. doi: 10.1016/j.ejrad.2020.109046.

Source: PubMed

3
Se inscrever