Postoperative circulating tumor DNA as markers of recurrence risk in stages II to III colorectal cancer

Gong Chen, Junjie Peng, Qian Xiao, Hao-Xiang Wu, Xiaojun Wu, Fulong Wang, Liren Li, Peirong Ding, Qi Zhao, Yaqi Li, Da Wang, Yang Shao, Hua Bao, Zhizhong Pan, Ke-Feng Ding, Sanjun Cai, Feng Wang, Rui-Hua Xu, Gong Chen, Junjie Peng, Qian Xiao, Hao-Xiang Wu, Xiaojun Wu, Fulong Wang, Liren Li, Peirong Ding, Qi Zhao, Yaqi Li, Da Wang, Yang Shao, Hua Bao, Zhizhong Pan, Ke-Feng Ding, Sanjun Cai, Feng Wang, Rui-Hua Xu

Abstract

Background: Precise methods for postoperative risk stratification to guide the administration of adjuvant chemotherapy (ACT) in localized colorectal cancer (CRC) are still lacking. Here, we conducted a prospective, observational, and multicenter study to investigate the utility of circulating tumor DNA (ctDNA) in predicting the recurrence risk.

Methods: From September 2017 to March 2020, 276 patients with stage II/III CRC were prospectively recruited in this study and 240 evaluable patients were retained for analysis, of which 1290 serial plasma samples were collected. Somatic variants in both the primary tumor and plasma were detected via a targeted sequencing panel of 425 cancer-related genes. Patients were treated and followed up per standard of care.

Results: Preoperatively, ctDNA was detectable in 154 of 240 patients (64.2%). At day 3-7 postoperation, ctDNA positivity was associated with remarkably high recurrence risk (hazard ratio [HR], 10.98; 95%CI, 5.31-22.72; P < 0.001). ctDNA clearance and recurrence-free status was achieved in 5 out of 17 ctDNA-positive patients who were subjected to ACT. Likewise, at the first sampling point after ACT, ctDNA-positive patients were 12 times more likely to experience recurrence (HR, 12.76; 95%CI, 5.39-30.19; P < 0.001). During surveillance after definitive therapy, ctDNA positivity was also associated with extremely high recurrence risk (HR, 32.02; 95%CI, 10.79-95.08; P < 0.001). In all multivariate analyses, ctDNA positivity remained the most significant and independent predictor of recurrence-free survival after adjusting for known clinicopathological risk factors. Serial ctDNA analyses identified recurrence with an overall accuracy of 92.0% and could detect disease recurrence ahead of radiological imaging with a mean lead time of 5.01 months.

Conclusions: Postoperative serial ctDNA detection predicted high relapse risk and identified disease recurrence ahead of radiological imaging in patients with stage II/III CRC. ctDNA may be used to guide the decision-making in postsurgical management.

Keywords: Adjuvant chemotherapy; Circulating tumor DNA; Minimal residual disease; Recurrence risk; Stage II/III colorectal cancer.

Conflict of interest statement

Y. Shao and H. Bao report to be employees of Nanjing Geneseeq Technology, Inc. China. The remaining authors declare that they have no conflict of interest.

Figures

Fig. 1
Fig. 1
Flowchart depicting the patient enrollment, sample collections and evaluable population. ACT, adjuvant chemotherapy; CEA, carcinoembryonic antigen; CRC, colorectal cancer; CT, computed tomography; ctDNA, circulating tumor DNA; pre-op, pre-operation; post-op, postoperation
Fig. 2
Fig. 2
Association of postoperative and post-adjuvant chemotherapy ctDNA status with recurrence risk. a Kaplan–Meier estimates of recurrence-free survival (RFS) according to ctDNA status at day 3–7 postoperatively. b The nomogram constructed by selected clinicopathological factors, recurrent-mutated genes, and ctDNA status at day 3–7 postoperatively for predicting 1-year and 2-year RFS. Mut, mutant; Wt, wild-type. c The clinical courses together with ctDNA statuses of 17 out of 20 ctDNA-positive (at day 3–7 postoperation) patients who received adjuvant chemotherapy (ACT). d Kaplan–Meier curves of RFS of the 137 patients who had plasma samples drawn after ACT, stratified by ctDNA status at first sampling point post-ACT
Fig. 3
Fig. 3
Association of ctDNA analyses with early detection of recurrence. a Kaplan–Meier curves of recurrence-free survival of the 125 patients who were included in the serial post-definitive treatment analysis, stratified by serial ctDNA status. b ctDNA profiling results and the corresponding clinical courses of the 23 relapsed patients included in the serial post-definitive treatment analysis. c Comparison of time from surgery to disease recurrence by ctDNA and computed tomography (CT) scanning, dashed lines indicate mean time of recurrence based on CT (13.70 months) and ctDNA (8.69 months). (N = 19, Student’s t test)

References

    1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021 doi: 10.3322/caac.21660.
    1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30. doi: 10.3322/caac.21590.
    1. Feng RM, Zong YN, Cao SM, Xu RH. Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics? Cancer Commun (Lond) 2019;39(1):22. doi: 10.1186/s40880-019-0368-6.
    1. Wang ZX, Yao YC, Mai ZJ, Lin WH, Huang YS, Jin Y, et al. Temporal change in treatment patterns of metastatic colorectal cancer and its association with patient survival: a retrospective cohort study based on an intelligent big-data platform. Engineering 2021.
    1. Wild N, Andres H, Rollinger W, Krause F, Dilba P, Tacke M, et al. A combination of serum markers for the early detection of colorectal cancer. Clin Cancer Res. 2010;16(24):6111–6121. doi: 10.1158/1078-0432.CCR-10-0119.
    1. San Miguel Y, Demb J, Martinez ME, Gupta S, May FP. Time to colonoscopy after abnormal stool-based screening and risk for colorectal cancer incidence and mortality. Gastroenterology. 2021 doi: 10.1053/j.gastro.2021.01.219.
    1. Pantel K, Alix-Panabières C. Tumour microenvironment: informing on minimal residual disease in solid tumours. Nat Rev Clin Oncol. 2017;14(6):325–326. doi: 10.1038/nrclinonc.2017.53.
    1. André T, Boni C, Navarro M, Tabernero J, Hickish T, Topham C, et al. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J Clin Oncol. 2009;27(19):3109–3116. doi: 10.1200/JCO.2008.20.6771.
    1. National Comprehensive Cancer Network. Colon Cancer (Version 2.2021). .
    1. Osterman E, Glimelius B. Recurrence risk after up-to-date colon cancer staging, surgery, and pathology: analysis of the entire Swedish population. Dis Colon Rectum. 2018;61(9):1016–1025. doi: 10.1097/DCR.0000000000001158.
    1. Grothey A, Sobrero AF, Shields AF, Yoshino T, Paul J, Taieb J, et al. Duration of adjuvant chemotherapy for stage III colon cancer. N Engl J Med. 2018;378(13):1177–1188. doi: 10.1056/NEJMoa1713709.
    1. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra24. doi: 10.1126/scitranslmed.3007094.
    1. Abbosh C, Birkbak NJ, Swanton C. Early stage NSCLC—challenges to implementing ctDNA-based screening and MRD detection. Nat Rev Clin Oncol. 2018;15(9):577–586. doi: 10.1038/s41571-018-0058-3.
    1. Tie J, Wang Y, Tomasetti C, Li L, Springer S, Kinde I, et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med. 2016;8(346):346ra92. doi: 10.1126/scitranslmed.aaf6219.
    1. Tie J, Cohen JD, Wang Y, Christie M, Simons K, Lee M, et al. Circulating tumor DNA analyses as markers of recurrence risk and benefit of adjuvant therapy for stage III colon cancer. JAMA Oncol. 2019;5(12):1710–1717. doi: 10.1001/jamaoncol.2019.3616.
    1. Wang Y, Li L, Cohen JD, Kinde I, Ptak J, Popoli M, et al. Prognostic potential of circulating tumor DNA measurement in postoperative surveillance of nonmetastatic colorectal cancer. JAMA Oncol. 2019;5(8):1118–1123. doi: 10.1001/jamaoncol.2019.0512.
    1. Reinert T, Henriksen TV, Christensen E, Sharma S, Salari R, Sethi H, et al. Analysis of plasma cell-free DNA by ultradeep sequencing in patients with stages I to III colorectal cancer. JAMA Oncol. 2019;5(8):1124–1131. doi: 10.1001/jamaoncol.2019.0528.
    1. Diagnosis, Treatment Guidelines For Colorectal Cancer Working Group C. Chinese Society of Clinical Oncology (CSCO) diagnosis and treatment guidelines for colorectal cancer 2018 (English version). Chin J Cancer Res. 2019;31(1):117–34.
    1. Cheng ML, Pectasides E, Hanna GJ, Parsons HA, Choudhury AD, Oxnard GR. Circulating tumor DNA in advanced solid tumors: clinical relevance and future directions. CA Cancer J Clin. 2021;71(2):176–190. doi: 10.3322/caac.21650.
    1. Wille-Jørgensen P, Syk I, Smedh K, Laurberg S, Nielsen DT, Petersen SH, et al. Effect of more vs less frequent follow-up testing on overall and colorectal cancer-specific mortality in patients with stage II or III colorectal cancer: the COLOFOL randomized clinical trial. JAMA. 2018;319(20):2095–2103. doi: 10.1001/jama.2018.5623.
    1. Påhlman LA, Hohenberger WM, Matzel K, Sugihara K, Quirke P, Glimelius B. Should the benefit of adjuvant chemotherapy in colon cancer be re-evaluated? J Clin Oncol. 2016;34(12):1297–1299. doi: 10.1200/JCO.2015.65.3048.
    1. . Circulating tumour DNA (ctDNA) analysis informing adjuvant chemotherapy in Stage II Colon Cancer. ACTRN12615000381583. .
    1. . Circulating Tumour DNA Analysis Informing Adjuvant Chemotherapy in Stage III Colon Cancer: A Multicentre Phase II/III Randomised Controlled Study (DYNAMIC-III). ACTRN12617001566325. .
    1. . Circulating Tumour DNA Based Decision for Adjuvant Treatment in Colon Cancer Stage II Evaluation (CIRCULATE) AIO-KRK-0217. NCT04089631. .
    1. . Phase II/III Study of Circulating Tumor DNA as a Predictive Biomarker in Adjuvant Chemotherapy in Patients With Stage IIA Colon Cancer (COBRA). NCT04068103. .
    1. Corcoran RB, Chabner BA. Application of cell-free DNA analysis to cancer treatment. N Engl J Med. 2018;379(18):1754–1765. doi: 10.1056/NEJMra1706174.
    1. Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol. 2013;10(8):472–484. doi: 10.1038/nrclinonc.2013.110.
    1. Siravegna G, Mussolin B, Buscarino M, Corti G. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat Med. 2015;21(7):795–801. doi: 10.1038/nm.3870.
    1. Killock D. Personalized MRD assays and therapy? Nat Rev Clin Oncol. 2019;16(10):593.
    1. Tie J, Cohen JD, Wang Y, Li L, Christie M, Simons K, et al. Serial circulating tumour DNA analysis during multimodality treatment of locally advanced rectal cancer: a prospective biomarker study. Gut. 2019;68(4):663–671. doi: 10.1136/gutjnl-2017-315852.
    1. Phallen J, Sausen M, Adleff V, Leal A. Direct detection of early-stage cancers using circulating tumor DNA. Sci Transl Med. 2017;9(403):eaan2415. doi: 10.1126/scitranslmed.aan2415.

Source: PubMed

3
Se inscrever