Potential Protective Effect of Oleanolic Acid on the Components of Metabolic Syndrome: A Systematic Review

Ángel Fernández-Aparicio, Jacqueline Schmidt-RioValle, Javier S Perona, María Correa-Rodríguez, Jose M Castellano, Emilio González-Jiménez, Ángel Fernández-Aparicio, Jacqueline Schmidt-RioValle, Javier S Perona, María Correa-Rodríguez, Jose M Castellano, Emilio González-Jiménez

Abstract

The high prevalence of obesity is a serious public health problem in today's world. Both obesity and insulin resistance favor the development of metabolic syndrome (MetS), which is associated with a number of pathologies, especially type 2 diabetes mellitus, and cardiovascular diseases. This serious problem highlights the need to search for new natural compounds to be employed in therapeutic and preventive strategies, such as oleanolic acid (OA). This research aimed to systematically review the effects of OA on the main components of MetS as well as oxidative stress in clinical trials and experimental animal studies. Databases searched included PubMed, Medline, Web of Science, Scopus, EMBASE, Cochrane, and CINAHL from 2013 to 2019. Thus, both animal studies (n = 23) and human clinical trials (n = 1) were included in our review to assess the effects of OA formulations on parameters concerning insulin resistance and the MetS components. The methodological quality assessment was performed through using the SYRCLE's Risk of Bias for animal studies and the Jadad scale. According to the studies in our review, OA improves blood pressure levels, hypertriglyceridemia, hyperglycemia, oxidative stress, and insulin resistance. Although there is scientific evidence that OA has beneficial effects in the prevention and treatment of MetS and insulin resistance, more experimental studies and randomized clinical trials are needed to guarantee its effectiveness.

Keywords: hypertension; inflammation; insulin resistance; metabolic syndrome; obesity; triterpenes.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow diagram according to the PRISMA Checklist. Selection of studies. OA: oleanolic acid; IR: Insulin resistance; MetS: Metabolic syndrome.

References

    1. World Health Organization Obesity and Overweight. [(accessed on 20 June 2019)]; Available online: .
    1. Pan American Health Organization; World Health Organization PAHO/WHO|Obesity as a Precursor to Diabetes. [(accessed on 20 June 2019)]; Available online: .
    1. International Diabetes Federation IDF Consensus Worldwide Definition of the Metabolic Syndromeand Tools. [(accessed on 20 June 2019)]; Available online: .
    1. Lira Neto J.C.G., de Almeida Xavier M., Borges J.W.P., de Araújo M.F.M., Damasceno M.M.C., de Freitas R.W.J.F. Prevalence of Metabolic Syndrome in individuals with Type 2 Diabetes Mellitus. Rev. Bras. Enferm. 2017;70:265–270. doi: 10.1590/0034-7167-2016-0145.
    1. McCullough A.J. Epidemiology of the metabolic syndrome in the USA. J. Dig. Dis. 2011;12:333–340. doi: 10.1111/j.1751-2980.2010.00469.x.
    1. Weiss R., Bremer A.A., Lustig R.H. What is metabolic syndrome, and why are children getting it? Ann. N. Y. Acad. Sci. 2013;1281:123–140. doi: 10.1111/nyas.12030.
    1. Czech M.P. Insulin action and resistance in obesity and type 2 diabetes. Nat. Med. 2017;23:804–814. doi: 10.1038/nm.4350.
    1. Pérez M.R., Medina-Gomez G. Obesidad, adipogénesis y resistencia a la insulina. Endocrinol. y Nutr. 2011;58:360–369. doi: 10.1016/j.endonu.2011.05.008.
    1. Wu K.C., Cui J.Y., Klaassen C.D. Beneficial Role of Nrf2 in Regulating NADPH Generation and Consumption. Toxicol. Sci. 2011;123:590–600. doi: 10.1093/toxsci/kfr183.
    1. Castellano J.M., Guinda A., Delgado T., Rada M., Cayuela J.A. Biochemical Basis of the Antidiabetic Activity of Oleanolic Acid and Related Pentacyclic Triterpenes. Diabetes. 2013;62:1791–1799. doi: 10.2337/db12-1215.
    1. Larsen J.R., Dima L., Correll C.U., Manu P. The pharmacological management of metabolic syndrome. Expert Rev. Clin. Pharmacol. 2018;11:397–410. doi: 10.1080/17512433.2018.1429910.
    1. Molepo M., Ayeleso A., Nyakudya T., Erlwanger K., Mukwevho E. A Study on Neonatal Intake of Oleanolic Acid and Metformin in Rats (Rattus norvegicus) with Metabolic Dysfunction: Implications on Lipid Metabolism and Glucose Transport. Molecules. 2018;23:2528. doi: 10.3390/molecules23102528.
    1. Guinda A., Rada M., Delgado T., Gutiérrez-Adánez P., Castellano J.M. Pentacyclic Triterpenoids from Olive Fruit and Leaf. J. Agric. Food Chem. 2010;58:9685–9691. doi: 10.1021/jf102039t.
    1. Ayeleso T.B., Matumba M.G., Mukwevho E. Oleanolic Acid and Its Derivatives: Biological Activities and Therapeutic Potential in Chronic Diseases. Molecules. 2017;22:1915. doi: 10.3390/molecules22111915.
    1. Rodriguez-Rodriguez R. Oleanolic acid and related triterpenoids from olives on vascular function: Molecular mechanisms and therapeutic perspectives. Curr. Med. Chem. 2015;22:1414–1425. doi: 10.2174/0929867322666141212122921.
    1. Pols T.W.H., Noriega L.G., Nomura M., Auwerx J., Schoonjans K. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J. Hepatol. 2011;54:1263–1272. doi: 10.1016/j.jhep.2010.12.004.
    1. Li M., Han Z., Bei W., Rong X., Guo J., Hu X. Oleanolic Acid Attenuates Insulin Resistance via NF-κB to Regulate the IRS1-GLUT4 Pathway in HepG2 Cells. Evid. Based Complement. Altern. Med. 2015;2015:1–9. doi: 10.1155/2015/643102.
    1. Moher D., Liberati A., Tetzlaff J., Altman D.G., PRISMA Group Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009;6:e1000097. doi: 10.1371/journal.pmed.1000097.
    1. Hooijmans C.R., Rovers M.M., De Vries R.B., Leenaars M., Ritskes-Hoitinga M., Langendam M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014;14:43. doi: 10.1186/1471-2288-14-43.
    1. Jadad A.R., Moore R., Carroll D., Jenkinson C., Reynolds D.M., Gavaghan D.J., McQuay H.J. Assessing the quality of reports of randomized clinical trials: Is blinding necessary? Control. Clin. Trials. 1996;17:1–12. doi: 10.1016/0197-2456(95)00134-4.
    1. He W.-F., Liang L.-F., Cai Y.-S., Gao L.-X., Li Y.-F., Li J., Liu H.-L., Guo Y.-W. Brominated polyunsaturated lipids with protein tyrosine phosphatase-1B inhibitory activity from Chinese marine sponge Xestospongia testudinaria. J. Asian Nat. Prod. Res. 2015;17:1–6. doi: 10.1080/10286020.2015.1026334.
    1. He W.-F., Xue D.-Q., Yao L.-G., Li J., Liu H.-L., Guo Y.-W. A new bioactive steroidal ketone from the South China Sea sponge Xestospongia testudinaria. J. Asian Nat. Prod. Res. 2016;18:195–199. doi: 10.1080/10286020.2015.1056521.
    1. Liu Y.L.A.Y., Liu Y. Editorial: Vascular Protection of Herbal Medicine: Roles and Mechanisms. Curr. Vasc. Pharmacol. 2017;15:502. doi: 10.2174/157016111506170928164646.
    1. Jing X., Lin-hui Z., De-bin W., Xin H., Guang-Zhong Y. Effect of oleanolic acid derivatives on improving insulin resistance and its molecular mechanism. Chin. Pharmacol. Bull. 2014;30:1585–1589.
    1. Sanchez-Rodriguez E., Biel-Glesson S., Fernandez-Navarro J.R., Calleja M.A., Espejo-Calvo J.A., Gil-Extremera B., De La Torre R., Fito M., Covas M.-I., Vilchez P., et al. Effects of Virgin Olive Oils Differing in Their Bioactive Compound Contents on Biomarkers of Oxidative Stress and Inflammation in Healthy Adults: A Randomized Double-Blind Controlled Trial. Nutrients. 2019;11:561. doi: 10.3390/nu11030561.
    1. Sánchez-Rodriguez E., Lima-Cabello E., Biel-Glesson S., Fernandez-Navarro J.R., Calleja M.A., Roca M., Espejo-Calvo J.A., Gil-Extremera B., Soria-Florido M., De La Torre R., et al. Effects of Virgin Olive Oils Differing in Their Bioactive Compound Contents on Metabolic Syndrome and Endothelial Functional Risk Biomarkers in Healthy Adults: A Randomized Double-Blind Controlled Trial. Nutrients. 2018;10:626. doi: 10.3390/nu10050626.
    1. Ahn Y.M., Choi Y.H., Yoon J.J., Lee Y.J., Cho K.W., Kang D.G., Lee H.S. Oleanolic acid modulates the renin-angiotensin system and cardiac natriuretic hormone concomitantly with volume and pressure balance in rats. Eur. J. Pharmacol. 2017;809:231–241. doi: 10.1016/j.ejphar.2017.05.030.
    1. Bachhav S.S., Bhutada M.S., Patil S.P., Sharma K.S., Patil S.D. Oleanolic Acid Prevents Increase in Blood Pressure and Nephrotoxicity in Nitric Oxide Dependent Type of Hypertension in Rats. Pharmacogn. Res. 2015;7:385–392.
    1. Madlala H.P., Van Heerden F.R., Mubagwa K., Musabayane C.T. Changes in Renal Function and Oxidative Status Associated with the Hypotensive Effects of Oleanolic Acid and Related Synthetic Derivatives in Experimental Animals. PLoS ONE. 2015;10:e0128192. doi: 10.1371/journal.pone.0128192.
    1. Gamede M., Mabuza L., Ngubane P., Khathi A. Plant-Derived Oleanolic Acid (OA) Ameliorates Risk Factors of Cardiovascular Diseases in a Diet-Induced Pre-Diabetic Rat Model: Effects on Selected Cardiovascular Risk Factors. Molecules. 2019;24:340. doi: 10.3390/molecules24020340.
    1. Chen S., Wen X., Zhang W., Wang C., Liu J., Liu C. Hypolipidemic effect of oleanolic acid is mediated by the miR-98-5p/PGC-1β axis in high-fat diet–induced hyperlipidemic mice. FASEB J. 2017;31:1085–1096. doi: 10.1096/fj.201601022R.
    1. Jiang Q., Wang D., Han Y., Han Z., Zhong W., Wang C. Modulation of oxidized-LDL receptor-1 (LOX1) contributes to the antiatherosclerosis effect of oleanolic acid. Int. J. Biochem. Cell Boil. 2015;69:142–152. doi: 10.1016/j.biocel.2015.10.023.
    1. Luo H., Liu J., Ouyang Q., Xuan C., Wang L., Li T., Liu J. The effects of oleanolic acid on atherosclerosis in different animal models. Acta Biochim. Biophys. Sin. (Shanghai) 2017;49:349–354. doi: 10.1093/abbs/gmx013.
    1. Pan Y., Zhou F., Song Z., Huang H., Chen Y., Shen Y., Jia Y., Chen J. Oleanolic acid protects against pathogenesis of atherosclerosis, possibly via FXR-mediated angiotensin (Ang)-(1–7) upregulation. Biomed. Pharmacother. 2018;97:1694–1700. doi: 10.1016/j.biopha.2017.11.151.
    1. Wang X., Liu R., Zhang W., Zhang X., Liao N., Wang Z., Li W., Qin X., Hai C. Oleanolic acid improves hepatic insulin resistance via antioxidant, hypolipidemic and anti-inflammatory effects. Mol. Cell. Endocrinol. 2013;376:70–80. doi: 10.1016/j.mce.2013.06.014.
    1. Li Y., Wang J., Gu T., Yamahara J., Li Y. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats. Toxicol. Appl. Pharmacol. 2014;277:155–163. doi: 10.1016/j.taap.2014.03.016.
    1. Lee E.S., Kim H.M., Kang J.S., Lee E.Y., Yadav D., Kwon M.-H., Kim Y.M., Kim H.S., Chung C.H. Oleanolic acid and N -acetylcysteine ameliorate diabetic nephropathy through reduction of oxidative stress and endoplasmic reticulum stress in a type 2 diabetic rat model. Nephrol. Dial. Transplant. 2016;31:391–400. doi: 10.1093/ndt/gfv377.
    1. Wang X., Chen Y., Abdelkader D., Hassan W., Sun H., Liu J. Combination Therapy with Oleanolic Acid and Metformin as a Synergistic Treatment for Diabetes. J. Diabetes Res. 2015;2015:1–12. doi: 10.1155/2015/973287.
    1. Gamede M., Mabuza L., Ngubane P., Khathi A. The Effects of Plant-Derived Oleanolic Acid on Selected Parameters of Glucose Homeostasis in a Diet-Induced Pre-Diabetic Rat Model. Molecules. 2018;23:794. doi: 10.3390/molecules23040794.
    1. Djeziri F.Z., Belarbi M., Murtaza B., Hichami A., Benammar C., Khan N.A. Oleanolic acid improves diet-induced obesity by modulating fat preference and inflammation in mice. Biochimie. 2018;152:110–120. doi: 10.1016/j.biochi.2018.06.025.
    1. Nakajima K., Maeda N., Oiso S., Kariyazono H. Decreased Plasma Octanoylated Ghrelin Levels in Mice by Oleanolic Acid. J. Oleo Sci. 2019;68:103–109. doi: 10.5650/jos.ess18148.
    1. Su S., Wu G., Cheng X., Fan J., Peng J., Su H., Xu Z., Cao M., Long Z., Hao Y., et al. Oleanolic acid attenuates PCBs-induced adiposity and insulin resistance via HNF1b-mediated regulation of redox and PPARγ signaling. Free Radic. Boil. Med. 2018;124:122–134. doi: 10.1016/j.freeradbiomed.2018.06.003.
    1. Wang S., Du L.-B., Jin L., Wang Z., Peng J., Liao N., Zhao Y.-Y., Zhang J.-L., Pauluhn J., Hai C.-X., et al. Nano-oleanolic acid alleviates metabolic dysfunctions in rats with high fat and fructose diet. Biomed. Pharmacother. 2018;108:1181–1187. doi: 10.1016/j.biopha.2018.09.150.
    1. An Q., Hu Q., Wang B., Cui W., Wu F., Ding Y. Oleanolic acid alleviates diabetic rat carotid artery injury through the inhibition of NLRP3 inflammasome signaling pathways. Mol. Med. Rep. 2017;16:8413–8419. doi: 10.3892/mmr.2017.7594.
    1. Matumba M.G., Ayeleso A.O., Nyakudya T., Erlwanger K., Chegou N.N., Mukwevho E. Long-Term Impact of Neonatal Intake of Oleanolic Acid on the Expression of AMP-Activated Protein Kinase, Adiponectin and Inflammatory Cytokines in Rats Fed with a High Fructose Diet. Nutrients. 2019;11:226. doi: 10.3390/nu11020226.
    1. Nyakudya T.T., Mukwevho E., Erlwanger K.H. The protective effect of neonatal oral administration of oleanolic acid against the subsequent development of fructose-induced metabolic dysfunction in male and female rats. Nutr. Metab. 2018;15:82. doi: 10.1186/s12986-018-0314-7.
    1. Nyakudya T.T., Mukwevho E., Nkomozepi P., Erlwanger K.H. Neonatal intake of oleanolic acid attenuates the subsequent development of high fructose diet-induced non-alcoholic fatty liver disease in rats. J. Dev. Orig. Heal. Dis. 2018;9:500–510. doi: 10.1017/S2040174418000259.
    1. Nyakudya T.T., Isaiah S., Ayeleso A., Ndhlala A.R., Mukwevho E., Erlwanger K.H. Short-Term Neonatal Oral Administration of Oleanolic Acid Protects against Fructose-Induced Oxidative Stress in the Skeletal Muscles of Suckling Rats. Molecules. 2019;24:661. doi: 10.3390/molecules24040661.
    1. Luo H.-Q., Shen J., Chen C.-P., Ma X., Lin C., Ouyang Q., Xuan C.-X., Liu J., Sun H.-B., Liu J. Lipid-lowering effects of oleanolic acid in hyperlipidemic patients. Chin. J. Nat. Med. 2018;16:339–346. doi: 10.1016/S1875-5364(18)30065-7.
    1. Kim H.Y., Cho K.W., Kang D.G., Lee H.S. Oleanolic acid increases plasma ANP levels via an accentuation of cardiac ANP synthesis and secretion in rats. Eur. J. Pharmacol. 2013;710:73–79. doi: 10.1016/j.ejphar.2013.04.005.
    1. Tappy L., Lê K.-A. Metabolic Effects of Fructose and the Worldwide Increase in Obesity. Physiol. Rev. 2010;90:23–46. doi: 10.1152/physrev.00019.2009.
    1. Morelli N.R., Scavuzzi B.M., Miglioranza L.H.D.S., Lozovoy M.A.B., Simão A.N.C., Dichi I. Metabolic syndrome components are associated with oxidative stress in overweight and obese patients. Arch. Endocrinol. Metab. 2018;62:309–318. doi: 10.20945/2359-3997000000036.
    1. Mineo C., Deguchi H., Griffin J.H., Shaul P.W. Endothelial and Antithrombotic Actions of HDL. Circ. Res. 2006;98:1352–1364. doi: 10.1161/01.RES.0000225982.01988.93.
    1. Manna P., Jain S.K. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metab. Syndr. Relat. Disord. 2015;13:423–444. doi: 10.1089/met.2015.0095.
    1. Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J. Diabetes. 2015;6:456–480. doi: 10.4239/wjd.v6.i3.456.
    1. Von Frankenberg A.D., Reis A.F., Gerchman F. Relationships between adiponectin levels, the metabolic syndrome, and type 2 diabetes: A literature review. Arch. Endocrinol. Metab. 2017;61:614–622. doi: 10.1590/2359-3997000000316.
    1. Awazawa M., Ueki K., Inabe K., Yamauchi T., Kubota N., Kaneko K., Kobayashi M., Iwane A., Sasako T., Okazaki Y., et al. Adiponectin Enhances Insulin Sensitivity by Increasing Hepatic IRS-2 Expression via a Macrophage-Derived IL-6-Dependent Pathway. Cell Metab. 2011;13:401–412. doi: 10.1016/j.cmet.2011.02.010.
    1. De Melo C.L., Queiroz M.G.R., Fonseca S.G., Bizerra A.M., Lemos T.L., Melo T.S., Santos F.A., Rao V.S. Oleanolic acid, a natural triterpenoid improves blood glucose tolerance in normal mice and ameliorates visceral obesity in mice fed a high-fat diet. Chem. Interact. 2010;185:59–65. doi: 10.1016/j.cbi.2010.02.028.
    1. Nakajima K., Oiso S., Uto T., Morinaga O., Syoyama Y., Kariyazono H. Triterpenes suppress octanoylated ghrelin production in ghrelin-expressing human gastric carcinoma cells. Biomed. Res. 2016;37:343–349. doi: 10.2220/biomedres.37.343.
    1. Hurrle S., Hsu W.H. The etiology of oxidative stress in insulin resistance. Biomed. J. 2017;40:257–262. doi: 10.1016/j.bj.2017.06.007.
    1. Mukundwa A., Mukaratirwa S., Masola B. Effects of oleanolic acid on the insulin signaling pathway in skeletal muscle of streptozotocin-induced diabetic male Sprague-Dawley rats. J. Diabetes. 2016;8:98–108. doi: 10.1111/1753-0407.12260.
    1. Li W., Wang P., Li H., Li T.-Y., Feng M., Chen S. Oleanolic acid protects against diabetic cardiomyopathy via modulation of the nuclear factor erythroid 2 and insulin signaling pathways. Exp. Ther. Med. 2017;14:848–854. doi: 10.3892/etm.2017.4527.
    1. Xue S., Yin J., Shao J., Yu Y., Yang L., Wang Y., Xie M., Fussenegger M., Ye H. A Synthetic-Biology-Inspired Therapeutic Strategy for Targeting and Treating Hepatogenous Diabetes. Mol. Ther. 2017;25:443–455. doi: 10.1016/j.ymthe.2016.11.008.
    1. De Vries R.B.M., Hooijmans C.R., Langendam M.W., Van Luijk J., Leenaars M., Ritskes-Hoitinga M., Wever K.E., Ritskes-Hoitinga M. A protocol format for the preparation, registration and publication of systematic reviews of animal intervention studies. Evid. Based Preclin. Med. 2015;2:1–9. doi: 10.1002/ebm2.7.
    1. Buscemi N., Hartling L., VanderMeer B., Tjosvold L., Klassen T.P. Single data extraction generated more errors than double data extraction in systematic reviews. J. Clin. Epidemiol. 2006;59:697–703. doi: 10.1016/j.jclinepi.2005.11.010.
    1. Beltrán Ó.A. Revisiones sistemáticas de la literatura. Rev. Colomb. Gastroenterol. 2005;20:60–69.

Source: PubMed

3
Se inscrever