Immunonutrients involved in the regulation of the inflammatory and oxidative processes: implication for gamete competence

Laura Di Renzo, Antonino De Lorenzo, Marco Fontanari, Paola Gualtieri, Diego Monsignore, Giulia Schifano, Valentina Alfano, Marco Marchetti, SIERR, Laura Di Renzo, Antonino De Lorenzo, Marco Fontanari, Paola Gualtieri, Diego Monsignore, Giulia Schifano, Valentina Alfano, Marco Marchetti, SIERR

Abstract

Purpose: The purpose of this umbrella review is to bring together the most recent reviews concerning the role of immunonutrients for male and female infertility.

Methods: Regarding immunonutrients and fertility, the authors have analyzed reviews, systematic reviews, and meta-analyses published between 2011 and June 2021. All reviews on animal or in vitro studies were excluded. Relevant keywords to term micronutrients were analyzed alone or in association with other terms such as "gamete competence," "male OR female fertility," "male OR female infertility," "fertile, "folliculogenesis," "spermatogenesis," "immunomodulation," "immune system," "oxidative stress."

Results: The primary research has included 108 results, and after screening by title, abstract. and not topic-related, 41 studies have been included by full texts. The results show the molecular mechanisms and the immunonutrients related impact on gamete formation, development. and competence. In particular, this review focused on arginine, glutamine, vitamin C, vitamin D, vitamin E, omega-3, selenium, and zinc.

Conclusions: Inflammation and oxidative stress significantly impact human reproduction. For this reason, immunonutrients may play an important role in the treatment of infertile patients. However, due to the lack of consistent clinical trials, their application is limited. Therefore, the development of clinical trials is necessary to define the correct supplementation, in case of deficiency.

Keywords: Antioxidant system; Gamete competence; Immunonutrients; Infertility; Inflammation; Oxidative stress; Supplementation.

Conflict of interest statement

The authors declare no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Flowchart of selection of reviews, systematic reviews, and metanalysis published
Fig. 2
Fig. 2
Main signaling pathways in male and female gametes. Omega-3 (ω-3) fatty acids (EPA, DHA) can promote the heterodimer peroxisome proliferator-activated receptor-γ/retinoid X receptor (PPAR-γ/RXR) activation and migration through the nuclear membrane to enhance DNA transcription, blocking Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) related inflammation processes. Vitamin D (VD) can lead RXR related DNA transcription via vitamin D responsive elements (VDREs) binding, essential for correct spermatogenesis and oocytes formation/development. In addition, VD can increase intracellular calcium (Ca2+) necessary for spermatozoa motility or oocytes maturation. Selenium (Se), as an essential cofactor for Glutathione peroxidase (GPx) enzymes and vitamin E, can lock reactive oxygen species (ROS) storm from lipid peroxidation. Zinc (Zn) binding to superoxide dismutase 2 (SOD2) can block intracellular ROS production, assisted by L-Arginine activity through inhibition of nitric oxide (NO) production. Activation of mammalian target of rapamycin (mTOR) by L-glutamine can inhibit autophagy and promote protein synthesis

References

    1. Mora-Esteves C, Shin D. Nutrient supplementation: improving male fertility fourfold. Semin Reprod Med. 2013;31:293–300. doi: 10.1055/s-0033-1345277.
    1. Di Renzo L, Gualtieri P, Romano L, Marrone G, Noce A, Pujia A, et al. Role of personalized nutrition in chronic-degenerative diseases. Nutrients. 2019;11:1707. doi: 10.3390/nu11081707.
    1. Ronis MJJ, Pedersen KB, Watt J. Adverse effects of nutraceuticals and dietary supplements. Annu Rev Pharmacol Toxicol. 2018;58:583–601. doi: 10.1146/annurev-pharmtox-010617-052844.
    1. Castro-Quezada I, Román-Viñas B, Serra-Majem L. The Mediterranean diet and nutritional adequacy: a review. Nutrients. 2014;6:231–248. doi: 10.3390/nu6010231.
    1. Durairajanayagam D. Lifestyle causes of male infertility. Arab J Urol. 2018;16:10–20. doi: 10.1016/j.aju.2017.12.004.
    1. Broughton DE, Moley KH. Obesity and female infertility: potential mediators of obesity’s impact. Fertil Steril. 2017;107:840–847. doi: 10.1016/j.fertnstert.2017.01.017.
    1. Noh S, Go A, Kim DB, Park M, Jeon HW, Kim B. Role of antioxidant natural products in management of infertility: a review of their medicinal potential. Antioxid Basel Switz. 2020;9:E957. doi: 10.3390/antiox9100957.
    1. Sallusto F, Lanzavecchia A. Heterogeneity of CD4+ memory T cells: functional modules for tailored immunity. Eur J Immunol. 2009;39:2076–2082. doi: 10.1002/eji.200939722.
    1. Babayev E, Seli E. Oocyte mitochondrial function and reproduction. Curr Opin Obstet Gynecol. 2015;27:175–181. doi: 10.1097/GCO.0000000000000164.
    1. Grattagliano I, Palmieri VO, Portincasa P, Moschetta A, Palasciano G. Oxidative stress-induced risk factors associated with the metabolic syndrome: a unifying hypothesis. J Nutr Biochem. 2008;19:491–504. doi: 10.1016/j.jnutbio.2007.06.011.
    1. Di Renzo L, Galvano F, Orlandi C, Bianchi A, Di Giacomo C, La Fauci L, et al. Oxidative stress in normal-weight obese syndrome. Obesity. 2010;18:2125–2130. doi: 10.1038/OBY.2010.50.
    1. Vander Borght M, Wyns C. Fertility and infertility: Definition and epidemiology. Clin Biochem. 2018;62:2–10. doi: 10.1016/j.clinbiochem.2018.03.012.
    1. Soldati L, Di Renzo L, Jirillo E, Ascierto PA, Marincola FM, De Lorenzo A. The influence of diet on anti-cancer immune responsiveness. J Transl Med. 2018;16:75. doi: 10.1186/s12967-018-1448-0.
    1. Aitken RJ. Impact of oxidative stress on male and female germ cells: implications for fertility. Reprod Camb Engl. 2020;159:R189–R201. doi: 10.1530/REP-19-0452.
    1. Snider AP, Wood JR. Obesity induces ovarian inflammation and reduces oocyte quality. Reprod Camb Engl. 2019;158:R79–R90. doi: 10.1530/REP-18-0583.
    1. Roth Z. Symposium review: reduction in oocyte developmental competence by stress is associated with alterations in mitochondrial function. J Dairy Sci. 2018;101:3642–3654. doi: 10.3168/jds.2017-13389.
    1. Cristina R-V, E L. Clinical application of antioxidants to improve human oocyte mitochondrial function: a review. Antioxid Basel Switz. 2020;9:1–30. doi: 10.3390/ANTIOX9121197.
    1. Zapatera B, Prados A, Gómez-Martínez S, Marcos A. Immunonutrition: methodology and applications. Nutr Hosp. 2015;31(Suppl 3):145–154. doi: 10.3305/nh.2015.31.sup3.8762.
    1. Patel S. Polycystic ovary syndrome (PCOS), an inflammatory, systemic, lifestyle endocrinopathy. J Steroid Biochem Mol Biol. 2018;182:27–36. doi: 10.1016/j.jsbmb.2018.04.008.
    1. Lizneva D, Suturina L, Walker W, Brakta S, Gavrilova-Jordan L, Azziz R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil Steril. 2016;106:6–15. doi: 10.1016/j.fertnstert.2016.05.003.
    1. Escobar-Morreale HF, Santacruz E, Luque-Ramírez M, Botella Carretero JI. Prevalence of ‘obesity-associated gonadal dysfunction’ in severely obese men and women and its resolution after bariatric surgery: a systematic review and meta-analysis. Hum Reprod Update. 2017;23:390–408. doi: 10.1093/humupd/dmx012.
    1. Mehedintu C, Plotogea MN, Ionescu S, Antonovici M. Endometriosis still a challenge. J Med Life. 2014;7:349–357.
    1. García-Gómez E, Vázquez-Martínez ER, Reyes-Mayoral C, Cruz-Orozco OP, Camacho-Arroyo I, Cerbón M. Regulation of inflammation pathways and inflammasome by sex steroid hormones in endometriosis. Front Endocrinol. 2020;10:935. doi: 10.3389/fendo.2019.00935.
    1. Broi MGD, Ferriani RA, Navarro PA. Ethiopathogenic mechanisms of endometriosis-related infertility. JBRA Assist Reprod. 2019; 10.5935/1518-0557.20190029.
    1. Bulun SE, Wan Y, Matei D. Epithelial mutations in endometriosis: link to ovarian cancer. Endocrinology. 2019;160:626–638. doi: 10.1210/en.2018-00794.
    1. Minhas S, Bettocchi C, Boeri L, Capogrosso P, Carvalho J, Cilesiz NC, et al. European Association of Urology Guidelines on Male Sexual and Reproductive Health: 2021 update on male infertility. Eur Urol. 2021 10.1016/J.EURURO.2021.08.014.
    1. Ahmadi S, Bashiri R, Ghadiri-Anari A, Nadjarzadeh A. Antioxidant supplements and semen parameters: an evidence based review. Int J Reprod Biomed. 2016;14:729–736.
    1. Majzoub A, Agarwal A. Antioxidant therapy in idiopathic oligoasthenoteratozoospermia. Indian J Urol IJU J Urol Soc India. 2017;33:207–214. doi: 10.4103/iju.IJU_15_17.
    1. Beigi Harchegani A, Dahan H, Tahmasbpour E, Bakhtiari Kaboutaraki H, Shahriary A. Effects of zinc deficiency on impaired spermatogenesis and male infertility: the role of oxidative stress, inflammation and apoptosis. Hum Fertil Camb Engl. 2020;23:5–16. doi: 10.1080/14647273.2018.1494390.
    1. Hussain T, Tan B, Yin Y, Blachier F, Tossou MCB, Rahu N. Oxidative stress and inflammation: what polyphenols can do for us? Oxidative Med Cell Longev. 2016;2016:7432797. doi: 10.1155/2016/7432797.
    1. Di Renzo L, Gualtieri P, Pivari F, Soldati L, Attinà A, Leggeri C, et al. COVID-19: Is there a role for immunonutrition in obese patient? J Transl Med. 2020;18:415. doi: 10.1186/s12967-020-02594-4.
    1. Vetvicka V, Vetvickova J. Concept of Immuno-Nutrition. 2016; 10.4172/2155-9600.1000500.
    1. Chaplin DD. Overview of the immune response. J Allergy Clin Immunol. 2010;125:S3–23. doi: 10.1016/j.jaci.2009.12.980.
    1. Garolla A, Petre GC, Francini-Pesenti F, De Toni L, Vitagliano A, Di Nisio A, et al. Dietary supplements for male infertility: a critical evaluation of their composition. Nutrients. 2020;12:E1472. doi: 10.3390/nu12051472.
    1. Tamblyn JA, Hewison M, Wagner CL, Bulmer JN, Kilby MD. Immunological role of vitamin D at the maternal-fetal interface. J Endocrinol. 2015;224:R107–R121. doi: 10.1530/JOE-14-0642.
    1. Achamrah N, Ditisheim A. Nutritional approach to preeclampsia prevention. Curr Opin Clin Nutr Metab Care. 2018;21:168–173. doi: 10.1097/MCO.0000000000000462.
    1. Cruzat V, Macedo Rogero M, Noel Keane K, Curi R, Newsholme P. Glutamine: metabolism and immune function, supplementation and clinical translation. Nutrients. 2018;10:E1564. doi: 10.3390/nu10111564.
    1. Hussain T, Tan B, Murtaza G, Metwally E, Yang H, Kalhoro MS, et al. Role of dietary amino acids and nutrient sensing system in pregnancy associated disorders. Front Pharmacol. 2020;11:586979. doi: 10.3389/fphar.2020.586979.
    1. Perkins AV, Vanderlelie JJ. Multiple micronutrient supplementation and birth outcomes: the potential importance of selenium. Placenta. 2016;48(Suppl 1):S61–S65. doi: 10.1016/j.placenta.2016.02.007.
    1. Pieczyńska J, Grajeta H. The role of selenium in human conception and pregnancy. J Trace Elem Med Biol Organ Soc Miner Trace Elem GMS. 2015;29:31–38. doi: 10.1016/j.jtemb.2014.07.003.
    1. Sayegh L, Fuleihan GE-H, Nassar AH. Vitamin D in endometriosis: a causative or confounding factor? Metabolism. 2014;63:32–41. doi: 10.1016/j.metabol.2013.09.012.
    1. Voulgaris N, Papanastasiou L, Piaditis G, Angelousi A, Kaltsas G, Mastorakos G, et al. Vitamin D and aspects of female fertility. Horm Athens Greece. 2017;16:5–21. doi: 10.14310/horm.2002.1715.
    1. Qazi IH, Angel C, Yang H, Zoidis E, Pan B, Wu Z, et al. Role of selenium and selenoproteins in male reproductive function: a review of past and present evidences. Antioxid Basel Switz. 2019;8 10.3390/ANTIOX8080268.
    1. Ahmad M, Ashok A. Systematic review of antioxidant types and doses in male infertility: benefits on semen parameters, advanced sperm function, assisted reproduction and live-birth rate. Arab J Urol. 2018;16:113–124. doi: 10.1016/J.AJU.2017.11.013.
    1. Esmaeili V, Shahverdi AH, Moghadasian MH, Alizadeh AR. Dietary fatty acids affect semen quality: a review. Andrology. 2015;3:450–461. doi: 10.1111/andr.12024.
    1. Gaskins AJ, Chavarro JE. Diet and fertility: a review. Am J Obstet Gynecol. 2018;218:379–389. doi: 10.1016/j.ajog.2017.08.010.
    1. Kayode OT, Rotimi DE, Kayode AAA, Olaolu TD, Adeyemi OS. Monosodium glutamate (MSG)-induced male reproductive dysfunction: a mini review. Toxics. 2020;8:E7. doi: 10.3390/toxics8010007.
    1. Calder PC. Fuel utilization by cells of the immune system. Proc Nutr Soc. 1995;54:65–82. doi: 10.1079/pns19950038.
    1. Hsu C-N, Tain Y-L. Impact of arginine nutrition and metabolism during pregnancy on offspring outcomes. Nutrients. 2019;11 10.3390/nu11071452.
    1. Showell MG, Mackenzie-Proctor R, Jordan V, Hart RJ. Antioxidants for female subfertility. Cochrane Database Syst Rev. 2020;8:CD007807. doi: 10.1002/14651858.CD007807.pub4.
    1. Budani MC, Tiboni GM. Novel insights on the role of nitric oxide in the ovary: a review of the literature. Int J Environ Res Public Health. 2021;18:980. doi: 10.3390/ijerph18030980.
    1. Ko EY, Sabanegh ES. The role of over-the-counter supplements for the treatment of male infertility--fact or fiction? J Androl. 2012;33:292–308. doi: 10.2164/jandrol.111.013730.
    1. Brasse-Lagnel C, Lavoinne A, Husson A. Control of mammalian gene expression by amino acids, especially glutamine. FEBS J. 2009;276:1826–1844. doi: 10.1111/j.1742-4658.2009.06920.x.
    1. Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol RBE. 2005;3:28. doi: 10.1186/1477-7827-3-28.
    1. Urrutia RP, Thorp JM. Vitamin D in pregnancy: current concepts. Curr Opin Obstet Gynecol. 2012;24:57–64. doi: 10.1097/GCO.0b013e3283505ab3.
    1. Zanatta AP, Brouard V, Gautier C, Goncalves R, Bouraïma-Lelong H, Mena Barreto Silva FR, et al. Interactions between oestrogen and 1α,25(OH)2-vitamin D3 signalling and their roles in spermatogenesis and spermatozoa functions. Basic Clin Androl. 2017;27:10. doi: 10.1186/s12610-017-0053-z.
    1. Bosdou JK, Konstantinidou E, Anagnostis P, Kolibianakis EM, Goulis DG. Vitamin D and obesity: two interacting players in the field of infertility. Nutrients. 2019;11:E1455. doi: 10.3390/nu11071455.
    1. Henkel R, Sandhu IS, Agarwal A. The excessive use of antioxidant therapy: a possible cause of male infertility? Andrologia. 2019;51:e13162. doi: 10.1111/and.13162.
    1. Noce A, Marrone G, Di Daniele F, Di Lauro M, Pietroboni Zaitseva A, Wilson Jones G, et al. Potential cardiovascular and metabolic beneficial effects of ω-3 PUFA in male obesity secondary hypogonadism syndrome. Nutrients. 2020;12:E2519. doi: 10.3390/nu12092519.
    1. Yang K, Zeng L, Bao T, Ge J. Effectiveness of Omega-3 fatty acid for polycystic ovary syndrome: a systematic review and meta-analysis. Reprod Biol Endocrinol RBE. 2018;16:27. doi: 10.1186/s12958-018-0346-x.
    1. Habibi N, Grieger JA, Bianco-Miotto T. A review of the potential interaction of selenium and iodine on placental and child health. Nutrients. 2020;12 10.3390/nu12092678.
    1. Qazi IH, Angel C, Yang H, Pan B, Zoidis E, Zeng C-J, et al. Selenium, selenoproteins, and female reproduction: a review. Mol Basel Switz. 2018;23 10.3390/molecules23123053.
    1. Mintziori G, Mousiolis A, Duntas LH, Goulis DG. Evidence for a manifold role of selenium in infertility. Horm Athens Greece. 2020;19:55–59. doi: 10.1007/s42000-019-00140-6.
    1. Skoracka K, Eder P, Łykowska-Szuber L, Dobrowolska A, Krela-Kaźmierczak I. Diet and nutritional factors in male (in)fertility-underestimated factors. J Clin Med. 2020;9 10.3390/jcm9051400.
    1. Jung JH, Seo JT. Empirical medical therapy in idiopathic male infertility: promise or panacea? Clin Exp Reprod Med. 2014;41:108–114. doi: 10.5653/cerm.2014.41.3.108.
    1. Xi P, Jiang Z, Zheng C, Lin Y, Wu G. Regulation of protein metabolism by glutamine: implications for nutrition and health. Front Biosci Landmark Ed. 2011;16:578–597. doi: 10.2741/3707.
    1. Wu G, Wu Z, Dai Z, Yang Y, Wang W, Liu C, et al. Dietary requirements of “nutritionally non-essential amino acids” by animals and humans. Amino Acids. 2013;44:1107–1113. doi: 10.1007/s00726-012-1444-2.
    1. Carr AC, Maggini S. Vitamin C and immune function. Nutrients. 2017;9:E1211. doi: 10.3390/nu9111211.
    1. McCabe D, Lisy K, Lockwood C, Colbeck M. The impact of essential fatty acid, B vitamins, vitamin C, magnesium and zinc supplementation on stress levels in women: a systematic review. JBI Database System Rev Implement Rep. 2017;15:402–453. doi: 10.11124/JBISRIR-2016-002965.
    1. Chang S-W, Lee H-C. Vitamin D and health - The missing vitamin in humans. Pediatr Neonatol. 2019;60:237–244. doi: 10.1016/j.pedneo.2019.04.007.
    1. Ramasamy I. Vitamin D metabolism and guidelines for vitamin D supplementation. Clin Biochem Rev. 2020;41:103–126. doi: 10.33176/AACB-20-00006.
    1. Wagner CL, Taylor SN, Dawodu A, Johnson DD, Hollis BW. Vitamin D and its role during pregnancy in attaining optimal health of mother and fetus. Nutrients. 2012;4:208–230. doi: 10.3390/nu4030208.
    1. Berger MM, Herter-Aeberli I, Zimmermann MB, Spieldenner J, Eggersdorfer M. Strengthening the immunity of the Swiss population with micronutrients: a narrative review and call for action. Clin Nutr ESPEN. 2021;43:39–48. doi: 10.1016/j.clnesp.2021.03.012.
    1. Ceko MJ, O’Leary S, Harris HH, Hummitzsch K, Rodgers RJ. Trace elements in ovaries: measurement and physiology. Biol Reprod. 2016;94:86. doi: 10.1095/biolreprod.115.137240.
    1. Salas-Huetos A, Bulló M, Salas-Salvadó J. Dietary patterns, foods and nutrients in male fertility parameters and fecundability: a systematic review of observational studies. Hum Reprod Update. 2017;23:371–389. doi: 10.1093/HUMUPD/DMX006.
    1. Brion LP, Heyne R, Lair CS. Role of zinc in neonatal growth and brain growth: review and scoping review. Pediatr Res. 2021;89:1627–1640. doi: 10.1038/s41390-020-01181-z.
    1. Best KP, Gomersall J, Makrides M. Prenatal nutritional strategies to reduce the risk of preterm birth. Ann Nutr Metab. 2021:1–9. 10.1159/000509901.
    1. Sobinoff AP, Sutherland JM, Mclaughlin EA. Intracellular signalling during female gametogenesis. Mol Hum Reprod. 2013;19:265–278. doi: 10.1093/molehr/gas065.
    1. Arzate-Mejía RG, Recillas-Targa F, Corces VG. Developing in 3D: the role of CTCF in cell differentiation. Dev Camb Engl. 2018;145:dev137729. doi: 10.1242/dev.137729.
    1. Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano G, Gasbarrini A, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7:14. doi: 10.3390/microorganisms7010014.
    1. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–563. doi: 10.1038/nature12820.
    1. Barrea L, Muscogiuri G, Frias-Toral E, Laudisio D, Pugliese G, Castellucci B, et al. Nutrition and immune system: from the Mediterranean diet to dietary supplementary through the microbiota. Crit Rev Food Sci Nutr. 2021;61:3066–3090. doi: 10.1080/10408398.2020.1792826.
    1. Ervin SM, Li H, Lim L, Roberts LR, Liang X, Mani S, et al. Gut microbial β-glucuronidases reactivate estrogens as components of the estrobolome that reactivate estrogens. J Biol Chem. 2019;294:18586–18599. doi: 10.1074/jbc.RA119.010950.
    1. Baker JM, Al-Nakkash L, Herbst-Kralovetz MM. Estrogen–gut microbiome axis: physiological and clinical implications. Maturitas. 2017;103:45–53. doi: 10.1016/j.maturitas.2017.06.025.
    1. He F-F, Li Y-M. Role of gut microbiota in the development of insulin resistance and the mechanism underlying polycystic ovary syndrome: a review. J Ovarian Res. 2020;13:73. doi: 10.1186/s13048-020-00670-3.
    1. Yurtdaş G, Akdevelioğlu Y. A new approach to polycystic ovary syndrome: the gut microbiota. J Am Coll Nutr. 2020;39:371–382. doi: 10.1080/07315724.2019.1657515.
    1. Giampaolino P, Foreste V, Di Filippo C, Gallo A, Mercorio A, Serafino P, et al. Microbiome and PCOS: state-of-art and future aspects. Int J Mol Sci. 2021;22:2048. doi: 10.3390/ijms22042048.
    1. Ashraf M, Mustansir F, Baqir S, Alam F, Rehman R. Changes in vitamin E levels as a marker of female infertility. J Pak Med Assoc. 2020;1 10.5455/JPMA.40329.

Source: PubMed

3
Se inscrever