Bioaccumulation and Toxicity of Carbon Nanoparticles Suspension Injection in Intravenously Exposed Mice

Ping Xie, Sheng-Tao Yang, Tiantian He, Shengnan Yang, Xiao-Hai Tang, Ping Xie, Sheng-Tao Yang, Tiantian He, Shengnan Yang, Xiao-Hai Tang

Abstract

Carbon nanoparticles suspension injection (CNSI) has been widely used in tumor drainage lymph node mapping, and its new applications in drug delivery, photothermal therapy, and so on have been extensively investigated. To develop new clinical applications, the toxicity of CNSI after intravenous exposure should be thoroughly investigated to ensure its safe use. Herein, we studied the bioaccumulation of CNSI in reticuloendothelial system (RES) organs and the corresponding toxicity to mice. After the intravenous injection of CNSI, no abnormal behavior of mice was observed during the 28-day observation period. The body weight increases were similar among the exposed groups and the control group. The parameters of hematology and serum biochemistry remained nearly unchanged, with very few of them showing significant changes. The low toxicity of CNSI was also reflected by the unchanged histopathological characteristics of these organs. The injection of CNSI did not induce higher apoptosis levels either. The slight oxidative stress was observed in RES organs at high dosages at day 7 post-exposure. The implication to the clinical applications and toxicological evaluations of carbon nanomaterials is discussed.

Keywords: Raman spectroscopy; biodistribution; biosafety; carbon nanoparticles suspension injection; nanotoxicity.

Conflict of interest statement

Tiantian He and Xiao-Hai Tang are employees of Chongqing Lummy Pharmaceutical Co., Ltd. The authors report no other conflicts of interest in this work. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Figures

Figure 1
Figure 1
Transmission electron microscopy (TEM) image (a) and C1s X-ray photoelectron spectroscopy (XPS) spectrum (b) of carbon nanoparticles suspension injection (CNSI).
Figure 2
Figure 2
Bioaccumulations of CNSI in reticuloendothelial system (RES) organs, including the liver, spleen, and lungs. The dark aggregates of CNSI are indicated by white arrows (400×).
Figure 3
Figure 3
Serum biochemical parameters of the mice exposed to CNSI post intravenous exposure. Data represent means ± SD (n = 6). * p < 0.05 compared with the control group.
Figure 4
Figure 4
Histopathological observations of the mice exposed to CNSI at 28 days post intravenous exposure (100×).
Figure 5
Figure 5
Apoptosis analyses of the mice exposed to CNSI at 28 days post intravenous exposure by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) method (200×).
Figure 6
Figure 6
Oxidative stress levels of the mice exposed to CNSI post intravenous exposure. Data represent means ± SD (n = 5). * p < 0.05 compared with the control group.

References

    1. LeCroy G.E., Yang S.-T., Yang F., Yang F., Liu Y., Fernando K.A.S., Bunker C.E., Hu Y., Luo P.G., Sun Y.-P. Functionalized carbon nanoparticles: Syntheses and applications in optical bioimaging and energy conversion. Coord. Chem. Rev. 2016;320–321:66–81. doi: 10.1016/j.ccr.2016.02.017.
    1. De Volder M.F.L., Tawfick S.H., Baughman R.H., Hart A.J. Carbon nanotubes: Present and future commercial applications. Science. 2013;339:535–539. doi: 10.1126/science.1222453.
    1. Hong G., Diao S., Antaris A.L., Dai H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 2015;115:10816–10906. doi: 10.1021/acs.chemrev.5b00008.
    1. Luo P.G., Yang F., Yang S.-T., Sonkar S.K., Yang L., Broglie J.J., Liu Y., Sun Y.-P. Carbon-based quantum dots for fluorescence imaging of cells and tissues. RSC Adv. 2014;4:10791–10807. doi: 10.1039/c3ra47683a.
    1. Son K.H., Hong J.H., Lee J.W. Carbon nanotubes as cancer therapeutic carriers and mediators. Int. J. Nanomed. 2016;11:5163–5185. doi: 10.2147/IJN.S112660.
    1. Zhang B., Wang Y., Liu J., Zhai J. Recent developments of phototherapy based on graphene family nanomaterials. Curr. Med. Chem. 2017;24:268–291. doi: 10.2174/0929867323666161019141817.
    1. Wang P., Liu J., Gao H., Hu Y., Hou X., LeCroy G.E., Bunker C.E., Liu Y., Sun Y.-P. Host–guest carbon dots as high-performance fluorescence probes. J. Mater. Chem. C. 2017;5:6328–6335. doi: 10.1039/C7TC01574G.
    1. Li Y., Zheng X., Zhang X., Liu S., Pei Q., Zheng M., Xie Z. Porphyrin-based carbon dots for photodynamic therapy of hepatoma. Adv. Healthc. Mater. 2017;6:1600924. doi: 10.1002/adhm.201600924.
    1. Reina G., González-Domínguez J.M., Criado A., Vázquez E., Bianco A., Prato M. Promises, facts and challenges for graphene in biomedical applications. Chem. Soc. Rev. 2017;46:4400–4416. doi: 10.1039/C7CS00363C.
    1. Chongqing Lummy Pharmaceutical Co., Ltd., Chongqing, China. Internal data of carbon nanoparticles suspension injection, 2017.

    1. Li Z., Ao S., Bu Z., Wu A., Wu X., Shan F., Ji X., Zhang Y., Xing Z., Ji J. Clinical study of harvesting lymph nodes with carbon nanoparticles in advanced gastric cancer: A prospective randomized trial. World J. Surg. Oncol. 2016;14:88. doi: 10.1186/s12957-016-0835-3.
    1. Wu X., Lin Q., Chen G., Lu J., Zeng Y., Chen X., Yan J. Sentinel lymph node detection using carbon nanoparticles in patients with early breast cancer. PLoS ONE. 2015;10:e0135714. doi: 10.1371/journal.pone.0135714.
    1. Zhu Y., Chen X., Zhang H., Chen L., Zhou S., Wu K., Wang Z., Kong L., Zhuang H. Carbon nanoparticle–guided central lymph node dissection in clinically node-negative patients with papillary thyroid carcinoma. Head Neck. 2016;38:840–845. doi: 10.1002/hed.24060.
    1. Gu J., Wang J., Nie X., Wang W., Shang J. Potential role for carbon nanoparticles identification and preservation in situ of parathyroid glands during total thyroidectomy and central compartment node dissection. Int. J. Clin. Exp. Med. 2015;8:9640–9648.
    1. Xie P., Tang X., Li L., Qian Z., Ran M., Zhang X., Xin Q., Luo H. Drug-loaded carbon nanoparticle suspension injection, Drug selection, releasing behavior, in vitro cytotoxicity and in vivo lymph node targeting. J. Nanosci. Nanotechnol. 2016;16:6910–6918. doi: 10.1166/jnn.2016.11621.
    1. Yang Q., Wang X., Chen J., Tian C., Li T., Chen Y., Lv C. A clinical study on regional lymphatic chemotherapy using an activated carbon nanoparticle–epirubicin in patients with breast cancer. Tumor Biol. 2012;33:2341–2348. doi: 10.1007/s13277-012-0496-y.
    1. Xie P., Xin Q., Yang S.-T., He T., Huang Y., Zeng G., Ran M., Tang X.H. Skeleton labeled 13C-carbon nanoparticles for the imaging and quantification in tumor drainage lymph nodes. Int. J. Nanomed. 2017;12:4891–4899. doi: 10.2147/IJN.S134493.
    1. Liu Y., Zhao Y., Sun B., Chen C. Understanding the toxicity of carbon nanotubes. Acc. Chem. Res. 2013;46:702–713. doi: 10.1021/ar300028m.
    1. Chang X., Yang S.-T., Xing G. Molecular toxicity of nanomaterials. J. Biomed. Nanotechnol. 2014;10:2828–2851. doi: 10.1166/jbn.2014.1936.
    1. Yang S.-T., Luo J., Zhou Q., Wang H. Pharmacokinetics, metabolism and toxicity of carbon nanotubes for biomedical purposes. Theranostics. 2012;2:271–282. doi: 10.7150/thno.3618.
    1. Yang S.-T., Wang X., Jia G., Gu Y., Wang T., Nie H., Ge C., Wang H., Liu Y. Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol. Lett. 2008;181:182–189. doi: 10.1016/j.toxlet.2008.07.020.
    1. Yang S.-T., Wang X., Wang H., Lu F., Luo P.G., Cao L., Meziani M.J., Liu J.-H., Liu Y., Chen M., et al. Carbon dots as nontoxic and high performance fluorescence imaging agents. J. Phys. Chem. C. 2009;113:18110–18114. doi: 10.1021/jp9085969.
    1. Liu J., Wang T., Wang H., Gu Y., Xu Y., Tang H., Jia G., Liu Y. Biocompatibility of graphene oxide intravenously administrated in mice-effects of dose, size and exposure protocols. Toxicol. Res. 2015;4:83–91. doi: 10.1039/C4TX00044G.
    1. Kanakia S., Toussaint J.D., Chowdhury S.M., Tembulkar T., Lee S., Jiang Y., Lin R.Z., Shroyer K.R., Moore S., Sitharaman B. Dose ranging, expanded acute toxicity and safety pharmacology studies for intravenously administered functionalized graphene nanoparticle formulations. Biomaterials. 2014;35:7022–7031. doi: 10.1016/j.biomaterials.2014.04.066.
    1. Zhang D., Deng X., Ji Z., Dong L., Wu M., Gu T., Liu Y. Long-term hepatotoxicity of polyethylene-glycol functionalized multi-walled carbon nanotubes in mice. Nanotechnology. 2010;21:175101. doi: 10.1088/0957-4484/21/17/175101.
    1. Wang H., Yang S.-T., Cao A., Liu Y. Quantification of carbon nanomaterials in vivo. Acc. Chem. Res. 2013;46:750–760. doi: 10.1021/ar200335j.
    1. Choi H.S., Liu W., Misra P., Tanaka E., Zimmer J.P., Ipe B.I., Bawendi M.G., Frangioni J.V. Renal clearance of quantum dots. Nat. Biotechnol. 2007;25:1165–1170. doi: 10.1038/nbt1340.
    1. Owens D.E., Peppas N.A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006;307:93–102. doi: 10.1016/j.ijpharm.2005.10.010.
    1. Chongqing Lummy Pharmaceutical Co., Ltd., Chongqing, China. Histopathological observations of mice injected with carbon nanoparticles suspension injection at day 1 and 7, 2017.

    1. Snyder-Talkington B.N., Dong C., Porter D.W., Ducatman B., Wolfarth M.G., Andrew M., Battelli L., Raese R., Castranova V., Guo N.L., et al. Multiwalled carbon nanotube-induced pulmonary inflammatory and fibrotic responses and genomic changes following aspiration exposure in mice: A 1-year post-exposure study. J. Toxicol. Environ. Health A. 2016;79:352–366. doi: 10.1080/15287394.2016.1159635.
    1. Bengtson S., Knudsen K.B., Kyjovska Z.O., Berthing T., Skaug V., Levin M., Koponen I.K., Shivayogimath A., Booth T.J., Alonso B., et al. Differences in inflammation and acute phase response but similar genotoxicity in mice following pulmonary exposure to graphene oxide and reduced graphene oxide. PLoS ONE. 2016;12:e0178355. doi: 10.1371/journal.pone.0178355.
    1. Zhang J.Q., Sun Q., Bo J., Huang R., Zhang M., Xia Z., Ju L., Xiang G. Single-walled carbon nanohorn (SWNH) aggregates inhibited proliferation of human liver cell lines and promoted apoptosis, especially for hepatoma cell lines. Int. J. Nanomed. 2014;9:759–773. doi: 10.2147/IJN.S56353.
    1. Chongqing Lummy Pharmaceutical Co., Ltd., Chongqing, China. TUNEL assays of mice injected with carbon nanoparticles suspension injection at day 1 and 7, 2017.

    1. Shvedova A.A., Pietroiusti A., Fadeel B., Kagan V.E. Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress. Toxicol. Appl. Pharmcol. 2012;261:121–133. doi: 10.1016/j.taap.2012.03.023.
    1. Nurunnabi M., Khatun Z., Huh K.M., Park S.Y., Lee D.Y., Cho K.J., Lee Y. In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano. 2013;7:6858–6867. doi: 10.1021/nn402043c.
    1. [(accessed on 3 March 2017)]; Available online: .
    1. [(accessed on 3 March 2017)]; Available online: .

Source: PubMed

3
Se inscrever