Designing a stepped wedge trial: three main designs, carry-over effects and randomisation approaches

Andrew J Copas, James J Lewis, Jennifer A Thompson, Calum Davey, Gianluca Baio, James R Hargreaves, Andrew J Copas, James J Lewis, Jennifer A Thompson, Calum Davey, Gianluca Baio, James R Hargreaves

Abstract

Background: There is limited guidance on the design of stepped wedge cluster randomised trials. Current methodological literature focuses mainly on trials with cross-sectional data collection at discrete times, yet many recent stepped wedge trials do not follow this design. In this article, we present a typology to characterise the full range of stepped wedge designs, and offer guidance on several other design aspects.

Methods: We developed a framework to define and report the key characteristics of a stepped wedge trial, including cluster allocation and individual participation. We also considered the relative strengths and weaknesses of trials according to this framework. We classified recently published stepped wedge trials using this framework and identified illustrative case studies. We identified key design choices and developed guidance for each.

Results: We identified three main stepped wedge designs: those with a closed cohort, an open cohort, and a continuous recruitment short exposure design. In the first two designs, many individuals experience both control and intervention conditions. In the final design, individuals are recruited in continuous time as they become eligible and experience either the control or intervention condition, but not both, and then provide an outcome measurement at follow-up. While most stepped wedge trials use simple randomisation, stratification and restricted randomisation are often feasible and may be useful. Some recent studies collect outcome information from individuals exposed a long time before or after the rollout period, but this contributes little to the primary analysis. Incomplete designs should be considered when the intervention cannot be implemented quickly. Carry-over effects can arise in stepped wedge trials with closed and open cohorts.

Conclusions: Stepped wedge trial designs should be reported more clearly. Researchers should consider the use of stratified and/or restricted randomisation. Trials should generally not commit resources to collect outcome data from individuals exposed a long time before or after the rollout period. Though substantial carry-over effects are uncommon in stepped wedge trials, researchers should consider their possibility before conducting a trial with closed or open cohorts.

Figures

Fig. 1
Fig. 1
Characteristics and terminology of stepped-wedge cluster randomised controlled trials, where shaded areas indicate intervention exposure and unshaded areas indicate control exposure
Fig. 2
Fig. 2
Diagrams to represent the exposure and timing of measurement for three illustrative participants in each of three main designs: a the continuous recruitment short exposure design; b the closed cohort design with five measurements per participant, c the open cohort design with one to three measurements per participant
Fig. 3
Fig. 3
Diagrams to represent the rollout process in each of the three case studies, where shaded areas indicate intervention exposure and unshaded areas indicate control exposure: a case study one, b case study two, c case study three

References

    1. Beard E, Lewis JJ, Prost A, Copas A, Davey C, Osrin D, et al. Stepped wedge randomised controlled trials: systematic review. in press Trials [under review].
    1. Hussey MA, Hughes JP. Design and analysis of stepped wedge cluster randomized trials. Contemp Clin Trials. 2007;28:182–91. doi: 10.1016/j.cct.2006.05.007.
    1. Hemming K, Lilford R, Girling AJ. Stepped-wedge cluster-randomised controlled trials: a generic framework including parallel and multiple-level designs. Stat Med. 2015;34:181–96. doi: 10.1002/sim.6325.
    1. Rhoda DA, Murray DM, Andridge RR, Pennell ML, Hade EM. Studies with staggered starts: multiple baseline designs and group-randomized trials. Am J Public Health. 2011;101:2164–9. doi: 10.2105/AJPH.2011.300264.
    1. Woertman W, de Hoop E, Moerbeck M, Zuidema SU, Gerritsen DL, Teerenstra S. Stepped wedge designs could reduce the required sample size in cluster randomized trials. J Clin Epidemiol. 2013;66:752–8. doi: 10.1016/j.jclinepi.2013.01.009.
    1. Hemming K, Girling A, Haines T, Lilford R. Protocol: Consort extension to stepped wedge cluster randomised controlled trial. 2014. . Accessed 24 Feb 2015.
    1. Baio G, Copas A, Ambler G, King M, Beard E, Omar RZ. Sample size calculation for a stepped wedge trial. Trials [Under review].
    1. Hemming K, Haines TP, Chilton PJ, Girling AJ, Lilford RJ. The stepped wedge cluster randomised trial: rationale, design, analysis, and reporting. BMJ. 2015;350:h391. doi: 10.1136/bmj.h391.
    1. Poldervaart JM, Reitsma JB, Koffijberg H, Backus BE, Six AJ, Doevendans PA, et al. The impact of the HEART risk score in the early assessment of patients with acute chest pain: design of a stepped wedge, cluster randomised trial. BMC Cardiovasc Disord. 2013;13:77. doi: 10.1186/1471-2261-13-77.
    1. Mhurchu CN, Gorton D, Turley M, Jiang Y, Michie J, Maddison R, et al. Effects of a free school breakfast programme on children's attendance, academic achievement and short-term hunger: results from a stepped-wedge, cluster randomised controlled trial. J Epidemiol Community Health. 2013;67:257–64. doi: 10.1136/jech-2012-201540.
    1. Fuller C, Michie S, Savage J, McAteer J, Besser S, Charlett A, et al. The Feedback Intervention Trial (FIT)--improving hand-hygiene compliance in UK healthcare workers: a stepped wedge cluster randomised controlled trial. PLoS One. 2012;7 doi: 10.1371/journal.pone.0041617.
    1. Stern A, Mitsakakis N, Paulden M, Alibhai S, Wong J, Tomlinson G, et al. Pressure ulcer multidisciplinary teams via telemedicine: a pragmatic cluster randomized stepped wedge trial in long term care. BMC Health Serv Res. 2014;14:83. doi: 10.1186/1472-6963-14-83.
    1. Williams A, Phillips CJ, Watkins A, Rushton AB. The effect of work-based mentoring on patient outcome in musculoskeletal physiotherapy: study protocol for a randomised controlled trial. in press Trials. 2014;15:409. doi: 10.1186/1745-6215-15-409.
    1. Davey C, Hargreaves J, Thompson JA, Copas AJ, Beard A, Lewis JJ, et al. Analysis and reporting of stepped-wedge randomised-controlled trials: synthesis and critical appraisal of published studies, 2010-2014. in press Trials [Under review].
    1. Prost A, Binik A, Abubakar I, Roy A, de Allegri et al. Uncertainty on a background of optimism: logistic, ethical and political dimensions of stepped wedge designs. in press Trials [Under review].
    1. Dreischulte T, Grant A, Donnan P, McCowan C, Davey P, Petrie D, et al. A cluster randomised stepped wedge trial to evaluate the effectiveness of a multifaceted information technology-based intervention in reducing high-risk prescribing of non-steroidal anti-inflammatory drugs and antiplatelets in primary medical care: The DQIP study protocol. Implement Sci. 2012;7:24. doi: 10.1186/1748-5908-7-24.
    1. Hayes RJ, Moulton LH. Cluster randomised trials. Boca Raton: Chapman & Hall/CRC; 2009.
    1. Stringer JSA, Chisembele-Taylor A, Chibwesha C, Chi HF, Ayles A, Manda H, et al. Protocol-driven primary care and community linkages to improve population health in rural Zambia: the Better Health Outcomes through Mentoring and Assessment (BHOMA) project. BMC Health Serv Res. 2013;13:S7. doi: 10.1186/1472-6963-13-S2-S7.
    1. Marshall T, Caley M, Hemming K, Gill P, Gale N, Jolly K. Mixed methods evaluation of targeted case finding for cardiovascular disease prevention using a stepped wedged cluster RCT. BMC Public Health. 2012;12:908. doi: 10.1186/1471-2458-12-908.
    1. Durovni B, Saraceni V, Moulton LH, Pacheco AG, Cavalcante SC, King BS, et al. Effect of improved tuberculosis screening and isoniazid preventive therapy on incidence of tuberculosis and death in patients with HIV in clinics in Rio de Janeiro, Brazil: a stepped wedge, cluster-randomised trial. Lancet Infect Dis. 2013;13:852–8. doi: 10.1016/S1473-3099(13)70187-7.
    1. Moulton LH, Golub JE, Durovni B, Cavalcante SC, Pacheco AG, Saraceni V, et al. Statistical design of THRio: a phased implementation clinic-randomized study of a tuberculosis preventive therapy intervention. Clin Trials. 2007;4:190–9. doi: 10.1177/1740774507076937.
    1. Senn S. Cross-over trials in clinical research. 2. Chichester: Wiley; 2002.
    1. Gucciardi E, Fortugno M, Horodezny S, Lou W, Sidani S, et al. Will Mobile Diabetes Education Teams (MDETs) in primary care improve patient care processes and health outcomes? Study protocol for a randomized controlled trial. Trials. 2012;13:165. doi: 10.1186/1745-6215-13-165.
    1. Ratanawongsa N, Handley MA, Quan J, Sarkar U, Pfeifer K, Soria C, et al. Quasi-experimental trial of diabetes Self-Management Automated and Real-Time Telephonic Support (SMARTSteps) in a Medicaid managed care plan: study protocol. BMC Health Serv Res. 2012;12:22. doi: 10.1186/1472-6963-12-22.
    1. Koeberlein-Neu J. Prospective, cluster-randomized, controlled trial of effectiveness and costs of a cross-professional and cross-organisational medication therapy management in multimorbid patients with polypharmacy. 2013.
    1. Gerritsen DL, Smalbrugge M, Teerenstra S, Leontjevas R, Adang EM, Vernooij-Dassen MJ, et al. Act In case of Depression: the evaluation of a care program to improve the detection and treatment of depression in nursing homes. Study Protocol. BMC Psychiatry. 2011;11:91. doi: 10.1186/1471-244X-11-91.

Source: PubMed

3
Se inscrever