The relationship of different levels of high iodine and goiter in school children: a meta-analysis

Tingting Xu, Zhiyuan Ren, Shaohan Li, Long Tan, Wanqi Zhang, Tingting Xu, Zhiyuan Ren, Shaohan Li, Long Tan, Wanqi Zhang

Abstract

Background: Over the past decade, the phenomenon of high urine iodine (HUI) and high water iodine (HWI) has become more common. But the risk of goiter caused by different levels of HUI and HWI remains unclear.

Objectives: To explore the risk of goiter development caused by HUI and HWI, and compare the risk of goiter development from different levels of high iodine.

Methods: The Medline, Cochrane library, Embase, China National Knowledge Infrastructure and Wan fang databases were searched for relevant population-based studies investigating the link between high iodine levels and goiter development in mainland China. Three reviewers extracted data from the included studies independently, assessing the prevalence of goiter development due to high iodine.

Results: Taking 100 μg/L ≤ UIC < 300 μg/L (UIC = urinary iodine concentration) as the reference group, the odds ratio (OR) regarding high iodine levels and goiter formation was 1.74 (95% CI 1.50, 2.01, P < 0.001), if the water iodine concentration (WIC) was greater than 100 μg/L, the OR between goiter development and WIC was 4.74 (95% CI 1.15, 19.46, P = 0.001). The Linear trend analysis of HUI and goiter showed that the prevalence of goiter increased with the increase of UIC (χ2 = 734.605, P < 0.001).

Conclusions: When the UIC ≥ 300 μg/L or the WIC ≥ 100 μg/L, the risk of goiter will increase. The higher the UIC, the greater the risk of goiter development. In order to improve the public thyroid health, we should adhere to the monitoring of urinary iodine and water iodine, and keep them at an appropriate level.

Trial registration: PROSPEROCR, CRD42020197620. Registered 8 August 2020, https://www.crd.york.ac.uk/PROSPERO/ .

Keywords: Goiter; High urinary iodine; High water iodine; Meta-analysis; School children.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
A flow chart of the literature search used for this meta-analysis
Fig. 2
Fig. 2
A forest plot of results for a UIC ≥ 300 μg/L and the prevalence of goiters
Fig. 3
Fig. 3
Forest plot of result of WIC ≥ 100 μg/L and the prevalence of goiters
Fig. 4
Fig. 4
Forest plot of subgroup analysis of results of a UIC ≥ 300 μg/L and the prevalence of goiters

References

    1. Carvalho AC, Machado A, Embalo AR, Bordalo AA. Endemic goiter and iodine deficiency status among Guinea-Bissau school-age children. Eur J Clin Nutr. 2018;72(11):1576–1582.
    1. Cao XY, Jiang XM, Dou ZH, Rakeman MA, Zhang ML, O'Donnell K, et al. Timing of vulnerability of the brain to iodine deficiency in endemic cretinism. N Engl J Med. 1994;331(26):1739–1744.
    1. Dold S, Zimmermann MB, Jukic T, Kusic Z, Jia Q, Sang Z, et al. Universal salt iodization provides sufficient dietary iodine to achieve adequate iodine nutrition during the first 1000 days: a cross-sectional multicenter study. J Nutr. 2018;148(4):587–598.
    1. Leung AM, Braverman LE. Consequences of excess iodine. Nat Rev Endocrinol. 2014;10(3):136–142.
    1. Wan SY, Jin BM, Ren BX, Qu MY, Wu HY, Liu LX, et al. The relationship between high iodine consumption and levels of autoimmune thyroiditis-related biomarkers in a Chinese population: a meta-analysis. Biol Trace Elem Res. 2019.
    1. Chen W, Li X, Wu YL, Bian JC, Shen J, Jiang W, et al. Associations between iodine intake, thyroid volume, and goiter rate in school-aged Chinese children from areas with high iodine drinking water concentrations. Am J Clin Nutr. 2017;105(1):228–233.
    1. Wang Y, Cui Y, Chen C, Duan Y, Wu Y, Li W, et al. Stopping the supply of iodized salt alone is not enough to make iodine nutrition suitable for children in higher water iodine areas: A cross-sectional study in northern China. Ecotoxicol Environ Saf. 2020;188.
    1. Lv S, Xie L, Xu D, Wang Y, Jia L, Du Y. Effect of reducing iodine excess on children’s goiter prevalence in areas with high iodine in drinking water. Endocrine. 2016;52(2):296–304.
    1. WHO/UNICEF/ICCIDD. Assessment of iodine deficiency disorders and monitoring their elimination: a guide for program managers, 3rd ed. Geneva: WHO; 2007. p. 33.
    1. SAC. Definition and demarcation of water-borne iodine-excess areas and iodine-excess endemial areas in Chinese: GB/T 19380—2016. Beijing: China Standards Press; 2016.
    1. Rostom A, Dubé C, Cranney A. Celiac disease. Evid Rep Technol Assess Summ. 2004;104(104):1–6.
    1. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–560.
    1. Higgins JPT, Green S. Cochrane handbook for systematic reviews of interventions version 5.1.0. The Cochrane Collaboration; 2011.
    1. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–634.
    1. Liu P, Liu SJ, Su XH, Zhang SB, Ji XH. Relationship between urinary iodine and goiter prevalence: results of the Chinese national iodine deficiency disorders survey. J Endocrinol Invest. 2010;33(1):26–31.
    1. Wang Y, Jia Q, Zhang X, Guo B, Zhang F, Ren Y. Analysis of monitoring data in high water iodine areas in Shanxi Province in 2012. Chin J Endemiol. 2015;34(3):195–198.
    1. Xiao BZ, Liu SJ, Wang HJ, Chen J, Cha G, Ma BC, et al. Comparative analysis of the survey results of iodine deficiency disorders between high-risk areas in Chongqing and in Linzhi of Tibet in 2007. Chin J Endemiol. 2011;30(1):76–80.
    1. Jia Q, Zhang X, Ren Y, Guo B, Wang Y. Effects of different iodine concentration in drinking water on iodine nutrition, thyroid function and volume. Chin J Endemiol. 2014;33(5):540–544.
    1. Wang Y, Hou C, Cui Y, Zhao L, Feng B, Fu G, et al. An investigation of iodine nutritional status and thyroid function among school-age children in high water iodine areas of Tianjin in 2014. Chin J Endemiol. 2015;34(7):518–521.
    1. Yu X, Fan C, Shan Z, Teng X, Guan H, Li Y, et al. A five-year follow-up study of goiter and thyroid nodules in three regions with different iodine intakes in China. J Endocrinol Invest. 2008;31(3):243–250.
    1. Liu H, Zeng Q, Han S, Zhan W. Effect of high iodine concentration in drinking water on thyroid function of elementary school student in Tianjin. Wei sheng yan jiu = J Hyg Res. 2007;36(3):350–2.
    1. Tang ZC, Jiang XK, Liang W, Zhang L, Yang JY. Investigation on the distribution of high iodine region and inhabitant iodine nutritional status in the city of Liaocheng. Chin J Endemiol. 2006;25(6):683–685.
    1. Jia QZ, Zhang XD, Wang ZH, Li J, Wen XP, Guo BS, et al. An epidemiological study on the distributive characters and the harm of high water iodine in Shanxi Province. Chin J Endemiol. 2006;25(3):294–296.
    1. Dai HX, Zeng P, Wang KY, Zhang XG, Ma ZJ, Zhou YG, et al. Analysis of a survey results of patients with suspected high iodine goiter in Liuji Town Fuping County of Shaanxi Province. Chin J Endemiol. 2013;32(4):408–411.
    1. Disorders WUICftCoID. Assessment of iodine deficiency disorders and monitoring their elimination: a guide for programme managers: Geneva: WHO; 2007.
    1. Pearce EN, Caldwell KL. Urinary iodine, thyroid function, and thyroglobulin as biomarkers of iodine status. Am J Clin Nutr. 2016;104(3):898s–901s.
    1. Serra-Majem L, Pfrimer K, Doreste-Alonso J, Ribas-Barba L, Sanchez-Villegas A, Ortiz-Andrellucchi A, et al. Dietary assessment methods for intakes of iron, calcium, selenium, zinc and iodine. Br J Nutr. 2009;102(Suppl 1):S38–55.
    1. Saboori AM, Rose NR, Bresler HS, Vladut-Talor M, Burek CL. Iodination of human thyroglobulin (Tg) alters its immunoreactivity. I. Iodination alters multiple epitopes of human Tg. Clin Exp Immunol. 1998;113(2):297–302.
    1. Wolff J, Chaikoff IL. Plasma inorganic iodide as a homeostatic regulator of thyroid function. J Biol Chem. 1948;174:555–564.
    1. Eng PH, Cardona GR, Fang SL, Previti M, Alex S, Carrasco N, et al. Escape from the acute WolffChaikoff effect is associated with a decrease in thyroid sodium/iodide symporter messenger ribonucleic acid and protein. Endocrinology. 1999;140:3404–3410.
    1. Farebrother J, Zimmermann MB, Andersson M. Excess iodine intake: sources, assessment, and effects on thyroid function. Ann NY Acad Sci. 2019;1446(1):44–65.
    1. Guo HL, Hou XH, Yang XF, Xu J. Influences of excess iodine on thyroid hormone concentrations in cerebrum of filial mice and intervention of selenium. Wei Sheng Yan Jiu. 2006;35(2):194–195.
    1. Roti E, Uberti ED. Iodine excess and hyperthyroidism. Thyroid. 2001;11(5):493–500.
    1. Kang MJ, Hwang IT, Chung HR. Excessive iodine intake and subclinical hypothyroidism in children and adolescents aged 6–19 years: results of the sixth Korean National Health and Nutrition Examination survey, 2013–2015. Thyroid. 2018;28(6):773–779.
    1. Prakash R. High thyroid volume in children with excess dietary iodine intakes. Am J Clin Nutr. 2005;82(3):708–709.
    1. Rayman MP. Multiple nutritional factors and thyroid disease, with particular reference to autoimmune thyroid disease. Proc Nutr Soc. 2019;78(1):34–44.

Source: PubMed

3
Se inscrever