Evaluation of lecithinized human recombinant super oxide dismutase as cardioprotectant in anthracycline-treated breast cancer patients

Frederik J F Broeyer, Susanne Osanto, Jun Suzuki, Felix de Jongh, Henk van Slooten, Bea C Tanis, Tobias Bruning, Jeroen J Bax, Henk J Ritsema van Eck, Marieke L de Kam, Adam F Cohen, Yutaka Mituzhima, Jacobus Burggraaf, Frederik J F Broeyer, Susanne Osanto, Jun Suzuki, Felix de Jongh, Henk van Slooten, Bea C Tanis, Tobias Bruning, Jeroen J Bax, Henk J Ritsema van Eck, Marieke L de Kam, Adam F Cohen, Yutaka Mituzhima, Jacobus Burggraaf

Abstract

Aim: Anthracycline-induced cardiotoxicity is (partly) mediated by free radical overload. A randomized study was performed in breast cancer patients to investigate whether free radical scavenger super oxide dismutase (SOD) protects against anthracycline-induced cardiotoxicity as measured by changes in echo, electrocardiography and an array of biomarkers.

Method and results: Eighty female, chemotherapy-naïve breast cancer patients (median age 49, range 24-67 years) scheduled for four or five courses of adjuvant 3 weekly doxorubicin plus cyclophosphamide (AC) chemotherapy, were randomly assigned to receive 80 mg PC-SOD (human recombinant SOD bound to lecithin) or placebo, administered intravenously (i.v.) immediately prior to each AC course. The primary end point was protection against cardiac damage evaluated using echocardiography, QT assessments and a set of biochemical markers for myocardial function, oxidative stress and inflammation. Assessments were performed before and during each course of chemotherapy, and at 1, 4 and 9 months after completion of the chemotherapy regimen. In all patients cardiac effects such as increases in NT-proBNP concentration and prolongation of the QTc interval were noticed. There were no differences between the PC-SOD and placebo-treated patients in systolic or diastolic cardiac function or for any other of the biomarkers used to assess the cardiac effects of anthracyclines.

Conclusion: PC-SOD at a dose of 80 mg i.v. is not cardioprotective in patients with breast carcinoma treated with anthracyclines.

Keywords: anthracyclines; biological markers; breast neoplasms; electrocardiography; heart failure; oxidative stress.

© 2014 The British Pharmacological Society.

Figures

Figure 1
Figure 1
Mean left ventricular ejection fraction (A) and E : A ratio (B) for PC-SOD (open circles) and placebo (closed circles) and 95% CIs (PC-SOD down, placebo up) at baseline and 1, 4 and 9 months post-chemotherapy
Figure 2
Figure 2
Mean NT-proBNP (A) concentrations and QTc (B) linearly corrected for heart rate according to Framingham, during chemotherapy and follow-up for PC-SOD (open circles) and placebo (closed circles) and 95% CIs (PC-SOD up, placebo down) during the course and 1, 4, 9 months post-chemotherapy

References

    1. Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97:2869–2879.
    1. Von Hoff DD, Layard MW, Basa P, Davis HL, Jr, Von Hoff AL, Rozencweig M, Muggia FM. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979;91:710–717.
    1. Ryberg M, Nielsen D, Cortese G, Nielsen G, Skovsgaard T, Andersen PK. New insight into epirubicin cardiac toxicity: competing risks analysis of 1097 breast cancer patients. J Natl Cancer Inst. 2008;100:1058–1067.
    1. Broeyer FJF, Osanto S, Ritsema van Eck HJ, van Steijn AQMJ, Ballieux BEPB, Schoemaker RC, Cohen AF, Burggraaf J. Evaluation of biomarkers for cardiotoxicity of anthracyclin-based chemotherapy. J Cancer Res Clin Oncol. 2008;134:961–968.
    1. Nakamae H, Tsumura K, Terada Y, Nakane T, Nakamae M, Ohta K, Yamane T, Hino M. Notable effects of angiotensin II receptor blocker, valsartan, on acute cardiotoxic changes after standard chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisolone. Cancer. 2005;104:2492–2498.
    1. Cardinale D, Sandri MT, Martinoni A, Tricca A, Civelli M, Lamantia G, Cinieri S, Martinelli G, Cipolla CM, Fiorentini C. Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. J Am Coll Cardiol. 2000;36:517–522.
    1. Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, Civelli M, Peccatori F, Martinelli G, Fiorentini C, Cipolla CM. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004;109:2749–2754.
    1. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56:185–229.
    1. Igarashi R, Hoshino J, Ochiai A, Morizawa Y, Mizushima Y. Lecithinized superoxide dismutase enhances its pharmacologic potency by increasing its cell membrane affinity. J Pharmacol Exp Ther. 1994;271:1672–1677.
    1. Igarashi R, Hoshino J, Takenaga M, Kawai S, Morizawa Y, Yasuda A, Otani M, Mizushima Y. Lecithinization of superoxide dismutase potentiates its protective effect against Forssman antiserum-induced elevation in guinea pig airway resistance. J Pharmacol Exp Ther. 1992;262:1214–1219.
    1. Tsubokawa T, Jadhav V, Solaroglu I, Shiokawa Y, Konishi Y, Zhang JH. Lecithinized superoxide dismutase improves outcomes and attenuates focal cerebral ischemic injury via antiapoptotic mechanisms in rats. Stroke. 2007;38:1057–1062.
    1. Chikawa T, Ikata T, Katoh S, Hamada Y, Kogure K, Fukuzawa K. Preventive effects of lecithinized superoxide dismutase and methylprednisolone on spinal cord injury in rats: transcriptional regulation of inflammatory and neurotrophic genes. J Neurotrauma. 2001;18:93–103.
    1. Hangaishi M, Nakajima H, Taguchi J, Igarashi R, Hoshino J, Kurokawa K, Kimura S, Nagai R, Ohno M. Lecithinized Cu, Zn-superoxide dismutase limits the infarct size following ischemia-reperfusion injury in rat hearts in vivo. Biochem Biophys Res Commun. 2001;285:1220–1225.
    1. Nakagawa K, Koo DD, Davies DR, Gray DW, McLaren AJ, Welsh KI, Morris PJ, Fuggle SV. Lecithinized superoxide dismutase reduces cold ischemia-induced chronic allograft dysfunction. Kidney Int. 2002;61:1160–1169.
    1. Nakajima H, Ishizaka N, Hangaishi M, Taguchi J, Itoh J, Igarashi R, Mizushima Y, Nagai R, Ohno M. Lecithinized copper, zinc-superoxide dismutase ameliorates prolonged hypoxia-induced injury of cardiomyocytes. Free Radic Biol Med. 2000;29:34–41.
    1. Nakajima H, Hangaishi M, Ishizaka N, Taguchi J, Igarashi R, Mizushima Y, Nagai R, Ohno M. Lecithinized copper, zinc-superoxide dismutase ameliorates ischemia-induced myocardial damage. Life Sci. 2001;69:935–944.
    1. Nakauchi K, Ikata T, Katoh S, Hamada Y, Tsuchiya K, Fukuzawa K. Effects of lecithinized superoxide dismutase on rat spinal cord injury. J Neurotrauma. 1996;13:573–582.
    1. Shimmura S, Igarashi R, Yaguchi H, Ohashi Y, Shimazaki J, Tsubota K. Lecithin-bound superoxide dismutase in the treatment of noninfectious corneal ulcers. Am J Ophthalmol. 2003;135:613–619.
    1. Yunoki M, Kawauchi M, Ukita N, Sugiura T, Ohmoto T. Effects of lecithinized superoxide dismutase on neuronal cell loss in CA3 hippocampus after traumatic brain injury in rats. Surg Neurol. 2003;59:156–160.
    1. den Hartog GJ, Haenen GR, Boven E, van der Vijgh WJ, Bast A. Lecithinized copper,zinc-superoxide dismutase as a protector against doxorubicin-induced cardiotoxicity in mice. Toxicol Appl Pharmacol. 2004;194:180–188.
    1. Broeyer FJ, van Aken BE, Suzuki J, Kemme MJ, Schoemaker HC, Cohen AF, Mizushima Y, Burggraaf J. The pharmacokinetics and effects of a long-acting preparation of superoxide dismutase (PC-SOD) in man. Br J Clin Pharmacol. 2008;65:22–29.
    1. Suzuki J, Broeyer F, Cohen A, Takebe M, Burggraaf J, Mizushima Y. The pharmacokinetics of PC-SOD, a lecithinized recombinant superoxide dismutase, after single- and multiple-dose administration to healthy Japanese and Caucasian volunteers. J Clin Pharmacol. 2008;48:184–192.
    1. Meinardi MT, van Veldhuisen DJ, Gietema JA, Dolsma WV, Boomsma F, van den Berg MP, Volkers C, Haaksma J, de Vries EG, Sleijfer DT, van der Graaf WT. Prospective evaluation of early cardiac damage induced by epirubicin-containing adjuvant chemotherapy and locoregional radiotherapy in breast cancer patients. J Clin Oncol. 2001;19:2746–2753.
    1. Bryant J, Picot J, Baxter L, Levitt G, Sullivan I, Clegg A. Use of cardiac markers to assess the toxic effects of anthracyclines given to children with cancer: a systematic review. Eur J Cancer. 2007;43:1959–1966.
    1. Nousiainen T, Vanninen E, Jantunen E, Puustinen J, Remes J, Rantala A, Vuolteenaho O, Hartikainen J. Natriuretic peptides during the development of doxorubicin-induced left ventricular diastolic dysfunction. J Intern Med. 2002;251:228–234.
    1. Suzuki T, Hayashi D, Yamazaki T, Mizuno T, Kanda Y, Komuro I, Kurabayashi M, Yamaoki K, Mitani K, Hirai H, Nagai R, Yazaki Y. Elevated B-type natriuretic peptide levels after anthracycline administration. Am Heart J. 1998;136:362–363.
    1. Lipshultz SE, Rifai N, Sallan SE, Lipsitz SR, Dalton V, Sacks DB, Ottlinger ME. Predictive value of cardiac troponin T in pediatric patients at risk for myocardial injury. Circulation. 1997;96:2641–2648.
    1. Kilickap S, Barista I, Akgul E, Aytemir K, Aksoyek S, Aksoy S, Celik I, Kes S, Tekuzman G. cTnT can be a useful marker for early detection of anthracycline cardiotoxicity. Ann Oncol. 2005;16:798–804.
    1. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D for the Modification of Diet in Renal Disease Study Group*. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med. 1999;130:461–470.
    1. Fayers P, Bottomley A. Quality of life research within the EORTC-the EORTC QLQ-C30. European Organisation for Research and Treatment of Cancer. Eur J Cancer. 2002;38(Suppl 4):S125–S133.
    1. Sahn DJ, DeMaria A, Kisslo J, Weyman A. Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation. 1978;58:1072–1083.
    1. Simunek T, Sterba M, Popelova O, Kaiserova H, Adamcova M, Hroch M, Haskova P, Ponka P, Gersl V. Anthracycline toxicity to cardiomyocytes or cancer cells is differently affected by iron chelation with salicylaldehyde isonicotinoyl hydrazone. Br J Pharmacol. 2008;155:138–148.
    1. van Dalen EC, Caron HN, Dickinson HO, Kremer LC. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev. 2008;(2) CD003917.
    1. Gianni L, Herman EH, Lipshultz SE, Minotti G, Sarvazyan N, Sawyer DB. Anthracycline cardiotoxicity: from bench to bedside. J Clin Oncol. 2008;26:3777–3784.
    1. Bernier M, Manning AS, Hearse DJ. Reperfusion arrhythmias: dose-related protection by anti-free radical interventions. Am J Physiol. 1989;256:H1344–H1352.
    1. Downey JM, Omar B, Ooiwa H, McCord J. Superoxide dismutase therapy for myocardial ischemia. Free Radic Res Commun. 1991;12–13(Pt 2):703–720.
    1. Mao GD, Thomas PD, Lopaschuk GD, Poznansky MJ. Superoxide dismutase (SOD)-catalase conjugates. Role of hydrogen peroxide and the Fenton reaction in SOD toxicity. J Biol Chem. 1993;268:416–420.
    1. Omar BA, Gad NM, Jordan MC, Striplin SP, Russell WJ, Downey JM, McCord JM. Cardioprotection by Cu,Zn-superoxide dismutase is lost at high doses in the reoxygenated heart. Free Radic Biol Med. 1990;9:465–471.
    1. Ishihara T, Tanaka KI, Tasaka Y, Namba T, Suzuki J, Ishihara T, Okamoto S, Hibi T, Takenaga M, Igarashi R, Sato K, Mizushima Y, Mizushima T. Therapeutic effect of lecithinized superoxide dismutase against colitis. J Pharmacol Exp Ther. 2009;328:152–164.
    1. Muindi JR, Sinha BK, Gianni L, Myers CE. Hydroxyl radical production and DNA damage induced by anthracycline-iron complex. FEBS Lett. 1984;172:226–230.
    1. Nohl H, Jordan W. OH.-generation by adriamycin semiquinone and H2O2; an explanation for the cardiotoxicity of anthracycline antibiotics. Biochem Biophys Res Commun. 1983;114:197–205.
    1. Ishii T, Iwahashi H, Sugata R, Kido R. Superoxide dismutase enhances the toxicity of 3-hydroxyanthranilic acid to bacteria. Free Radic Res Commun. 1991;14:187–194.
    1. Scott MD, Meshnick SR, Eaton JW. Superoxide dismutase-rich bacteria. Paradoxical increase in oxidant toxicity. J Biol Chem. 1987;262:3640–3645.
    1. Germanakis I, Anagnostatou N, Kalmanti M. Troponins and natriuretic peptides in the monitoring of anthracycline cardiotoxicity. Pediatr Blood Cancer. 2008;51:327–333.

Source: PubMed

3
Se inscrever