Mechanisms of Action of Extracorporeal Photopheresis in the Control of Bronchiolitis Obliterans Syndrome (BOS): Involvement of Circulating miRNAs

Sara Bozzini, Claudia Del Fante, Monica Morosini, Hatice Oya Berezhinskiy, Sophia Auner, Elena Cattaneo, Matteo Della Zoppa, Laura Pandolfi, Rosalia Cacciatore, Cesare Perotti, Konrad Hoetzenecker, Peter Jaksch, Alberto Benazzo, Federica Meloni, Sara Bozzini, Claudia Del Fante, Monica Morosini, Hatice Oya Berezhinskiy, Sophia Auner, Elena Cattaneo, Matteo Della Zoppa, Laura Pandolfi, Rosalia Cacciatore, Cesare Perotti, Konrad Hoetzenecker, Peter Jaksch, Alberto Benazzo, Federica Meloni

Abstract

Clinical evidence suggests an improvement or stabilization of lung function in a fraction of patients with bronchiolitis obliterans syndrome (BOS) treated by extracorporeal photopheresis (ECP); however, few studies have explored the epigenetic and molecular regulation of this therapy. The aim of present study was to evaluate whether a specific set of miRNAs were significantly regulated by ECP. Total RNA was isolated from serum of patients with established BOS grade 1-2 prior to the start and after 6 months of ECP treatment. We observed a significant downregulation of circulating hsa-miR-155-5p, hsa-miR-146a-5p and hsa-miR-31-5p in BOS patients at the start of ECP when compared to healthy subjects. In responders, increased miR-155-5p and decreased miR-23b-3p expression levels at 6 months were found. SMAD4 mRNA was found to be a common target of these two miRNAs in prediction pathways analysis, and a significant downregulation was found at 6 months in PBMCs of a subgroup of ECP-treated patients. According to previous evidence, the upregulation of miR-155 might be correlated with a pro-tolerogenic modulation of the immune system. Our analysis also suggests that SMAD4 might be a possible target for miR-155-5p. Further longitudinal studies are needed to address the possible role of miR-155 and its downstream targets.

Keywords: BOS; ECP; circulating microRNAs.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Quantitative expression of (a) miR-155, (b) miR-146a and (c) miR-31 in serum samples from 26 patients before ECP therapy and 17 healthy subjects. Relative expressions were expressed as log2 transformed values. *** p < 0.0001; * p < 0.05.
Figure 2
Figure 2
Quantitative expression of (a) miR-155, (b) miR-146a, (c) miR-31 and (d) miR-23 in serum of patients before ECP therapy and after 6 months of treatment. Relative expressions were expressed as log2 transformed values. *** p < 0.0001.
Figure 3
Figure 3
Quantitative expression of (a) miR-155 and (b) miR-23b assessed by qRT-PCR in responder patients. Relative expressions were expressed as log2 transformed values. *** p < 0.001; ** p < 0.01.
Figure 4
Figure 4
Quantitative expression of (a) miR-155 and miR-23b and (b) SMAD3, SMAD4 and STAT3 assessed by qRT-PCR in PBMCs of BOS patients. * p < 0.05.
Figure 5
Figure 5
(a) Quantitative expression of miR-155 and miR-23b assessed by qRT-PCR and (b) TGFβ levels by ELISA in BAL supernatant of BOS patients. * p < 0.05.

References

    1. Gottlieb J. Lung Transplantation for Interstitial Lung Diseases and Pulmonary Hypertension. Semin. Respir. Crit. Care Med. 2013;34:281–287. doi: 10.1055/s-0033-1348462.
    1. Yusen R.D., Edwards L.B., Dipchand A.I., Goldfarb S.B., Kucheryavaya A.Y., Levvey B.J., Lund L.H., Meiser B., Rossano J.W., Stehlik J. International Society for Heart and Lung Transplantation. The Registry of the International Society for Heart and Lung Transplantation: Thirty-third Adult Lung and Heart–Lung Transplant Report—2016; Focus Theme: Primary Diagnostic Indications for Transplant. J. Heart Lung Transplant. 2016;35:1170–1184. doi: 10.1016/j.healun.2016.09.001.
    1. Barr M.L. Call It BOS, Call It CLAD—The Need for Prospective Clinical Trials and Elucidating the Mechanism of Extracorporeal Photopheresis. Am. J. Transplant. 2013;13:833–834. doi: 10.1111/ajt.12158.
    1. Dieterlen M.T., Bittner H.B., Pierzchalski A., Dhein S., Mohr F.W., Barten M.J. Immunological monitoring of extracorporeal photopheresis after heart transplantation. Clin. Exp. Immunol. 2014;176:120–128. doi: 10.1111/cei.12254.
    1. Lorenz K., Rommel K., Mani J., Jin N., Hilgendorf I., Ho A.D., Freund M., Schmitt M., Schmitt A. Modulation of lymphocyte subpopulations by extracorporeal photopheresis in pa-tients with acute graft-versus-host disease or graft rejection. Leuk. Lymphoma. 2015;56:671–675. doi: 10.3109/10428194.2014.931956.
    1. Baskaran G., Tiriveedhi V., Ramachandran S., Aloush A., Grossman B., Hachem R., Mohanakumar T. Efficacy of extracorporeal photopheresis in clearance of antibodies to donor-specific and lung-specific antigens in lung transplant recipients. J. Heart Lung Transplant. 2014;33:950–956. doi: 10.1016/j.healun.2014.04.020.
    1. Meloni F., Cascina A., Miserere S., Perotti C., Vitulo P., Fietta A.M. Peripheral CD4+CD25+ TREG cell counts and the response to extracorporeal photopheresis in lung transplant recipients. Transplant. Proc. 2007;39:213–217. doi: 10.1016/j.transproceed.2006.10.227.
    1. Hart J.W., Shiue L.H., Shpall E.J., Alousi A.M. Extracorporeal photopheresis in the treatment of graft-versus-host disease: Evidence and opinion. Ther. Adv. Hematol. 2013;4:320–334. doi: 10.1177/2040620713490316.
    1. Edelson R.L. Mechanistic insights into extracorporeal photochemotherapy: Efficient induction of monocyte-to-dendritic cell maturation. Transfus. Apher. Sci. 2014;50:322–329. doi: 10.1016/j.transci.2013.07.031.
    1. Lagos-Quintana M., Rauhut R., Lendeckel W., Tuschl T. Identification of Novel Genes Coding for Small Expressed RNAs. Science. 2001;294:853–858. doi: 10.1126/science.1064921.
    1. Zampetaki A., Mayr M. MicroRNAs in vascular and metabolic disease. Circ. Res. 2012;110:508–522. doi: 10.1161/CIRCRESAHA.111.247445.
    1. Dai R., Ahmed S.A. MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl. Res. 2011;157:163–179. doi: 10.1016/j.trsl.2011.01.007.
    1. O’Reilly S. MicroRNAs in fibrosis: Opportunities and challenges. Arthritis Res. Ther. 2016;18:11. doi: 10.1186/s13075-016-0929-x.
    1. Chen C.-Z., Schaffert S., Fragoso R., Loh C. Regulation of immune responses and tolerance: The microRNA perspective. Immunol. Rev. 2013;253:112–128. doi: 10.1111/imr.12060.
    1. Marques M.B., Tuncer H.H. Photopheresis in solid organ transplant rejection. J. Clin. Apher. 2006;21:72–77. doi: 10.1002/jca.20089.
    1. Perotti C., Del Fante C., Tinelli C., Viarengo G., Scudeller L., Zecca M., Locatelli F., Salvaneschi L. Extracorporeal photochemotherapy in graft-versus-host disease: A longitudinal study on factors influencing the response and survival in pediatric patients. Transfusion. 2010;50:1359–1369. doi: 10.1111/j.1537-2995.2009.02577.x.
    1. Stumpfova Z., Hezova R., Meli A.C., Slaby O., Michalek J. MicroRNA Profiling of Activated and Tolerogenic Human Dendritic Cells. Mediat. Inflamm. 2014;2014:259689. doi: 10.1155/2014/259689.
    1. Vigorito E., Perks K.L., Abreu-Goodger C., Bunting S., Xiang Z., Kohlhaas S., Das P.P., Miska E., Rodriguez A., Bradley A., et al. microRNA-155 Regulates the Generation of Immunoglobulin Class-Switched Plasma Cells. Immunity. 2007;27:847–859. doi: 10.1016/j.immuni.2007.10.009.
    1. Lai M., Xiao C. Functional interactions among members of the miR-17–92 cluster in lymphocyte development, differentiation and malignant transformation. Int. Immunopharmacol. 2015;28:854–858. doi: 10.1016/j.intimp.2015.03.041.
    1. Liu C., Li N., Liu G. The Role of MicroRNAs in Regulatory T Cells. J. Immunol. Res. 2020;2020:3232061. doi: 10.1155/2020/3232061.
    1. Jebbawi F., Fayyad-Kazan H., Merimi M., Lewalle P., Verougstraete J.C.J., Leo O., Romero P., Burny A., Badran B., Martiat P., et al. A microRNA profile of human CD8+ regulatory T cells and characterization of the effects of microRNAs on Treg cell-associated genes. J. Transl. Med. 2014;12:218. doi: 10.1186/s12967-014-0218-x.
    1. Hippen K.L., Loschi M., Nicholls J., MacDonald K.P.A., Blazar B.R. Effects of MicroRNA on Regulatory T Cells and Implications for Adoptive Cellular Therapy to Ameliorate Graft-versus-Host Disease. Front. Immunol. 2018;9:57. doi: 10.3389/fimmu.2018.00057.
    1. Vlachos I.S., Kostoulas N., Vergoulis T., Georgakilas G., Reczko M., Maragkakis M., Paraskevopoulou M.D., Prionidis K., Dalamagas T., Hatzigeorgiou A.G. DIANA miRPath v.2.0: Investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res. 2012;40:W498–W504. doi: 10.1093/nar/gks494.
    1. Hossain D.M.S., Panda A.K., Chakrabarty S., Bhattacharjee P., Kajal K., Mohanty S., Sarkar I., Sarkar D.K., Kar S.K., Sa G. MEK inhibition prevents tumour-shed transforming growth factor-β-induced T-regulatory cell augmentation in tumour milieu. Immunology. 2015;144:561–573. doi: 10.1111/imm.12397.
    1. Iizuka-Koga M., Nakatsukasa H., Ito M., Akanuma T., Lu Q., Yoshimura A. Induction and maintenance of regulatory T cells by transcription factors and epigenetic modifications. J. Autoimmun. 2017;83:113–121. doi: 10.1016/j.jaut.2017.07.002.
    1. Dong M., Wang X., Li T., Wang J., Yang Y., Liu Y., Jing Y., Zhao H., Chen J. Mir-27a-3p attenuates bronchiolitis obliterans in vivo via the regulation of dendritic cells’ maturation and the suppression of myofibroblasts’ differentiation. Clin. Transl. Med. 2020;10:e140. doi: 10.1002/ctm2.140.
    1. Pan H., Ding E., Hu M., Lagoo A.S., Datto M.B., Lagoo-Deenadayalan S.A. SMAD4 Is Required for Development of Maximal Endotoxin Tolerance. J. Immunol. 2010;184:5502–5509. doi: 10.4049/jimmunol.0901601.
    1. Verleden G.M., Glanville A.R., Lease E.D., Fisher A.J., Calabrese F., Corris P.A., Ensor C.R., Gottlieb J., Hachem R.R., Lama V., et al. Chronic lung allograft dysfunction: Definition, diagnostic criteria, and approaches to treatment―A consensus report from the Pulmonary Council of the ISHLT. J. Hear. Lung Transplant. 2019;38:493–503. doi: 10.1016/j.healun.2019.03.009.
    1. Pecoraro Y., Carillo C., Diso D., Mantovani S., Cimino G., De Giacomo T., Troiani P., Shafii M., Gherzi L., Amore D., et al. Efficacy of Extracorporeal Photopheresis in Patients with Bronchiolitis Obliterans Syndrome after Lung Transplantation. Transplant. Proc. 2017;49:695–698. doi: 10.1016/j.transproceed.2017.02.035.
    1. The EPI Study Group. Hage C.A., Klesney-Tait J., Wille K., Arcasoy S., Yung G., Hertz M., Chan K.M., Morrell M., Goldberg H., et al. Extracorporeal photopheresis to attenuate decline in lung function due to refractory obstructive allograft dysfunction. Transfus. Med. 2021;31:292–302. doi: 10.1111/tme.12779.
    1. Morrell M.R., Despotis G.J., Lublin D.M., Patterson G.A., Trulock E.P., Hachem R.R. The efficacy of photopheresis for bronchiolitis obliterans syndrome after lung transplantation. J. Hear. Lung Transplant. 2010;29:424–431. doi: 10.1016/j.healun.2009.08.029.
    1. Piccirillo N., Putzulu R., Massini G., Di Giovanni A., Giammarco S., Metafuni E., Sica S., Zini G., Chiusolo P. Inline and offline extracorporeal photopheresis: Device performance, cell yields and clinical response. J. Clin. Apher. 2021;36:118–126. doi: 10.1002/jca.21851.
    1. Helmberg W., Sipurzynski S., Groselje-Strehle A., Greinix H., Schlenke P. Does Offline Beat Inline Treatment: Investigation into Extracorporeal Photopheresis. Transfus. Med. Hemotherapy. 2020;47:198–204. doi: 10.1159/000506750.
    1. Bueno J., Alonso R., Gonzalez-Santillana C., Naya D., Romera I., Alarcón A., Aguilar M., Bautista G., Duarte R., Ussetti P., et al. A paired trial comparing mononuclear cell collection in two machines for further inactivation through an inline or offline extracorporeal photopheresis procedure. Transfusion. 2019;59:340–346. doi: 10.1111/trf.14975.
    1. Mayer W., Kontekakis A., Maas C., Kuchenbecker U., Behlke S., Schennach H. Comparison of procedure times and collection efficiencies using integrated and multistep nonintegrated procedures for extracorporeal photopheresis. J. Clin. Apher. 2022 doi: 10.1002/jca.21974.
    1. Maeda A., Schwarz A., Kernebeck K., Gross N., Aragane Y., Peritt D., Schwarz T. Intravenous Infusion of Syngeneic Apoptotic Cells by Photopheresis Induces Antigen-Specific Regulatory T Cells. J. Immunol. 2005;174:5968–5976. doi: 10.4049/jimmunol.174.10.5968.
    1. Hequet O., Nosbaum A., Guironnet-Paquet A., Blasco E., Nicolas-Virelizier E., Griffith T.S., Rigal D., Cognasse F., Nicolas J., Vocanson M. CD8+ T cells mediate ultraviolet A-induced immunomodulation in a model of extracorporeal photochemotherapy. Eur. J. Immunol. 2020;50:725–735. doi: 10.1002/eji.201948318.
    1. Dieterlen M.-T., Garbade J., Misfeld M., Lehmann S., Klaeske K., Borger M.A., Barten M.J. Indication-specific immunomodulatory effects of extracorporeal photopheresis: A pilot study in heart transplanted patients. J. Clin. Apher. 2018;33:591–599. doi: 10.1002/jca.21647.
    1. Hachem R., Corris P. Extracorporeal Photopheresis for Bronchiolitis Obliterans Syndrome after Lung Transplantation. Transplantation. 2018;102:1059–1065. doi: 10.1097/TP.0000000000002168.
    1. Robinson C.A., Inci I., Naegeli M., Murer C., Schuurmans M.M., Urosevic-Maiwald M., Schüpbach R., Weder W., Benden C. Extracorporeal photopheresis as second-line treatment therapy in life-threatening primary graft dysfunction following lung transplantation. Pediatr. Transplant. 2018;22:e13145. doi: 10.1111/petr.13145.
    1. Lamioni A., Parisi F., Isacchi G., Giorda E., Di Cesare S., Landolfo A., Cenci F., Bottazzo G.F., Carsetti R. The Immunological Effects of Extracorporeal Photopheresis Unraveled: Induction of Tolerogenic Dendritic Cells In Vitro and Regulatory T Cells In Vivo. Transplantation. 2005;79:846–850. doi: 10.1097/01.TP.0000157278.02848.C7.
    1. Sato Y., Passerini L., Piening B.D., Uyeda M.J., Goodwin M., Gregori S., Snyder M.P., Bertaina A., Roncarolo M., Bacchetta R. Human-engineered Treg-like cells suppress FOXP3-deficient T cells but preserve adaptive immune responses in vivo. Clin. Transl. Immunol. 2020;9:e1214. doi: 10.1002/cti2.1214.
    1. Bergantini L., D’Alessandro M., De Vita E., Perillo F., Fossi A., Luzzi L., Paladini P., Perrone A., Rottoli P., Sestini P., et al. Regulatory and Effector Cell Disequilibrium in Patients with Acute Cellular Rejection and Chronic Lung Allograft Dysfunction after Lung Transplantation: Comparison of Peripheral and Alveolar Distribution. Cells. 2021;10:780. doi: 10.3390/cells10040780.
    1. Mas V.R., Dumur C.I., Scian M.J., Gehrau R.C., Maluf D.G. MicroRNAs as Biomarkers in Solid Organ Transplantation. Am. J. Transplant. 2013;13:11–19. doi: 10.1111/j.1600-6143.2012.04313.x.
    1. Harris A., Krams S.M., Martinez O.M. MicroRNAs as Immune Regulators: Implications for Transplantation. Am. J. Transplant. 2010;10:713–719. doi: 10.1111/j.1600-6143.2010.03032.x.
    1. Montoya R.T., López-Godino O., Garcia-Barbera N., Cifuentes-Riquelme R., Sola M., Heras I., Perotti C., Garcia V.V., González-Conejero R., Del Fante C., et al. Identification of Circulating microRNA Signatures As Potential Noninvasive Biomarkers for Prediction to Response to Extracorporeal Photoapheresis in Patients with Graft Versus Host Disease. Blood. 2019;134:4466. doi: 10.1182/blood-2019-121655.
    1. Cabral A., Candido D.D.S., Monteiro S.M., Lemos F., Saitovitch D., Noronha I.L., Alves L., Geraldo M.V., Kalil J., Cunha-Neto E., et al. Differential microRNA Profile in Operational Tolerance: A Potential Role in Favoring Cell Survival. Front. Immunol. 2019;10:740. doi: 10.3389/fimmu.2019.00740.
    1. Rodriguez A., Vigorito E., Clare S., Warren M.V., Couttet P., Soond D.R., van Dongen S., Grocock R.J., Das P.P., Miska E.A., et al. Requirement of bic/microRNA-155 for Normal Immune Function. Science. 2007;316:608–611. doi: 10.1126/science.1139253.
    1. Kohlhaas S., Garden O.A., Scudamore C., Turner M., Okkenhaug K., Vigorito E. Cutting Edge: The Foxp3 Target miR-155 Contributes to the Development of Regulatory T Cells. J. Immunol. 2009;182:2578–2582. doi: 10.4049/jimmunol.0803162.
    1. Lu L.-F., Boldin M., Chaudhry A., Lin L.-L., Taganov K.D., Hanada T., Yoshimura A., Baltimore D., Rudensky A.Y. Function of miR-146a in Controlling Treg Cell-Mediated Regulation of Th1 Responses. Cell. 2010;142:914–929. doi: 10.1016/j.cell.2010.08.012.
    1. Nuin B.C.R., De Bejar Á., Martinez-Alarcon L., Herrero J.I., Martínez-Cáceres C.M., Ramírez P., Baroja-Mazo A., Pons-Miñano J.A. Differential profile of activated regulatory T cell subsets and microRNAs in tolerant liver transplant recipients. Liver Transplant. 2017;23:933–945. doi: 10.1002/lt.24691.
    1. Yang S., Xie N., Cui H., Banerjee S., Abraham E., Thannickal V.J., Liu G. miR-31 is a negative regulator of fibrogenesis and pulmonary fibrosis. FASEB J. 2012;26:3790–3799. doi: 10.1096/fj.11-202366.
    1. Zheng J., Jiang H.-Y., Li J., Tang H.-C., Zhang X.-M., Wang X.-R., Du J.-T., Li H.-B., Xu G. MicroRNA-23b promotes tolerogenic properties of dendritic cells in vitro through inhibiting Notch1/NF-κB signalling pathways. Allergy. 2012;67:362–370. doi: 10.1111/j.1398-9995.2011.02776.x.
    1. Hu R., O’Connell R.M. MiR-23b is a safeguard against autoimmunity. Nat. Med. 2012;18:1009–1010. doi: 10.1038/nm.2849.
    1. Liu X., Ni S., Li C., Xu N., Chen W., Wu M., van Wijnen A.J., Wang Y. Circulating microRNA-23b as a new biomarker for rheumatoid arthritis. Gene. 2019;712:143911. doi: 10.1016/j.gene.2019.06.001.
    1. Yang Z., Xiao Z., Guo H., Fang X., Liang J., Zhu J., Yang J., Li H., Pan R., Yuan S., et al. Novel role of the clustered miR-23b-3p and miR-27b-3p in enhanced expression of fibrosis-associated genes by targeting TGFBR3 in atrial fibroblasts. J. Cell. Mol. Med. 2019;23:3246–3256. doi: 10.1111/jcmm.14211.
    1. Song S.-S., Yuan P.-F., Chen J.-Y., Fu J.-J., Wu H.-X., Lu J.T., Wei W. TGF-β favors bone marrow-derived dendritic cells to acquire tolerogenic properties. Immunol. Investig. 2014;43:360–369. doi: 10.3109/08820139.2013.879172.
    1. Meng X.-M., Huang X.R., Xiao J., Chung A.C., Qin W., Chen H.-Y., Lan H.Y. Disruption of Smad4 impairs TGF-β/Smad3 and Smad7 transcriptional regulation during renal inflammation and fibrosis in vivo and in vitro. Kidney Int. 2012;81:266–279. doi: 10.1038/ki.2011.327.
    1. Morishita Y., Yoshizawa H., Watanabe M., Ishibashi K., Muto S., Kusano E., Nagata D. siRNAs targeted to Smad4 prevent renal fibrosis in vivo. Sci. Rep. 2014;4:6424. doi: 10.1038/srep06424.

Source: PubMed

3
Se inscrever