Validation of an Epstein-Barr Virus Antibody Risk Stratification Signature for Nasopharyngeal Carcinoma by Use of Multiplex Serology

Julia Simon, Zhiwei Liu, Nicole Brenner, Kelly J Yu, Wan-Lun Hsu, Cheng-Ping Wang, Yin-Chu Chien, Anna E Coghill, Chien-Jen Chen, Julia Butt, Carla Proietti, Denise L Doolan, Allan Hildesheim, Tim Waterboer, Julia Simon, Zhiwei Liu, Nicole Brenner, Kelly J Yu, Wan-Lun Hsu, Cheng-Ping Wang, Yin-Chu Chien, Anna E Coghill, Chien-Jen Chen, Julia Butt, Carla Proietti, Denise L Doolan, Allan Hildesheim, Tim Waterboer

Abstract

Serological testing for nasopharyngeal carcinoma (NPC) has recently been reinvigorated by the implementation of novel Epstein-Barr virus (EBV)-specific IgA and IgG antibodies from a proteome array. Although proteome arrays are well suited for comprehensive antigen selection, they are not applicable for large-scale studies. We adapted a 13-marker EBV antigen signature for NPC risk identified by proteome arrays to multiplex serology to establish an assay for large-scale studies. Taiwanese NPC cases (n = 175) and matched controls (n = 175) were used for assay validation. Spearman's correlation was calculated, and the diagnostic value of all multiplex markers was assessed independently using the area under the receiver operating characteristic curve (AUC). Two refined signatures were identified using stepwise logistic regression and internally validated with 10-fold cross validation. Array and multiplex serology showed strong correlation for each individual EBV marker, as well as for a 13-marker combined model on continuous data. Two refined signatures with either four (LF2 and BGLF2 IgG, LF2 and BMRF1 IgA) or two (LF2 and BGLF2 IgG) antibodies on dichotomous data were identified as the most parsimonious set of serological markers able to distinguish NPC cases from controls with AUCs of 0.992 (95% confidence interval [CI], 0.983 to 1.000) and 0.984 (95% CI, 0.971 to 0.997), respectively. Neither differed significantly from the 13-marker model (AUC, 0.992; 95% CI, 0.982 to 1.000). All models were internally validated. Multiplex serology successfully validated the original EBV proteome microarray data. Two refined signatures of four and two antibodies were capable of detecting NPC with 99.2% and 98.4% accuracy.

Keywords: Epstein-Barr virus; multiplex serology; nasopharyngeal carcinoma; risk stratification signature; validation.

Copyright © 2020 American Society for Microbiology.

Figures

FIG 1
FIG 1
Scatterplots for the correlation of array and multiplex serology data for four selected antibodies categorized to case/control status. (A) LF2 (IgG); (B) BGLF2 (IgG); (C) VCAp18 (IgA); (D) EBNA1 (IgA). The horizontal dotted line represents the multiplex serology cutoff, which is defined using receiver operating characteristic (ROC) analysis on continuous data with a specificity of 95% to correctly classify control status, and the vertical dotted line represents the threshold of seropositivity for the array data, which is defined as standardized signal intensity > 1.

References

    1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. 2015. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386. doi:10.1002/ijc.29210.
    1. Chang ET, Adami H-O. 2006. The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev 15:1765–1777. doi:10.1158/1055-9965.EPI-06-0353.
    1. American Cancer Society. 2017. Cancer Facts & Figures 2017. American Cancer Society, Atlanta, GA. .
    1. Lee AWM, Sze WM, Au JSK, Leung SF, Leung TW, Chua DTT, Zee BCY, Law SCK, Teo PML, Tung SY, Kwong DLW, Lau WH. 2005. Treatment results for nasopharyngeal carcinoma in the modern era: the Hong Kong experience. Int J Radiat Oncol Biol Phys 61:1107–1116. doi:10.1016/j.ijrobp.2004.07.702.
    1. Ji MF, Sheng W, Cheng WM, Ng MH, Wu BH, Yu X, Wei KR, Li FG, Lian SF, Wang PP, Quan W, Deng L, Li XH, Liu XD, Xie YL, Huang SJ, Ge SX, Huang SL, Liang XJ, He SM, Huang HW, Xia SL, Ng PS, Chen HL, Xie SH, Liu Q, Hong MH, Ma J, Yuan Y, Xia NS, Zhang J, Cao SM. 2019. Incidence and mortality of nasopharyngeal carcinoma: interim analysis of a cluster randomized controlled screening trial (PRO-NPC-001) in southern China. Ann Oncol 30:1630–1637. doi:10.1093/annonc/mdz231.
    1. de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, Plummer M. 2012. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol 13:607–615. doi:10.1016/S1470-2045(12)70137-7.
    1. Henle G, Henle W. 1976. Epstein-Barr virus-specific IgA serum antibodies as an outstanding feature of nasopharyngeal carcinoma. Int J Cancer 17:1–7. doi:10.1002/ijc.2910170102.
    1. Lanier AP, Bornkamm GW, Henle W, Henle G, Bender TR, Talbot ML, Dohan PH. 1981. Association of Epstein-Barr virus with nasopharyngeal carcinoma in Alaskan native patients: serum antibodies and tissue EBNA and DNA. Int J Cancer 28:301–305. doi:10.1002/ijc.2910280308.
    1. Lin TM, Yang CS, Chiou JF, Tu SM, Chen TY, Tu YC, Lin PJ, Kawamura A Jr, Hirayama T. 1977. Antibodies to Epstein-Barr virus capsid antigen and early antigen in nasopharyngeal carcinoma and comparison groups. Am J Epidemiol 106:336–339. doi:10.1093/oxfordjournals.aje.a112470.
    1. Hadar T, Sidi J, Rahima M, Rakowsky E, Kahan E, Sarov B, Sarov I. 1986. Significance of specific Epstein-Barr virus IgA and elevated IgG antibodies to viral capsid antigens in nasopharyngeal carcinoma patients. J Med Virol 20:329–339. doi:10.1002/jmv.1890200405.
    1. Cao SM, Liu Z, Jia WH, Huang QH, Liu Q, Guo X, Huang TB, Ye W, Hong MH. 2011. Fluctuations of Epstein-Barr virus serological antibodies and risk for nasopharyngeal carcinoma: a prospective screening study with a 20-year follow-up. PLoS One 6:e19100. doi:10.1371/journal.pone.0019100.
    1. Chien YC, Chen JY, Liu MY, Yang HI, Hsu MM, Chen CJ, Yang CS. 2001. Serologic markers of Epstein-Barr virus infection and nasopharyngeal carcinoma in Taiwanese men. N Engl J Med 345:1877–1882. doi:10.1056/NEJMoa011610.
    1. Ji MF, Wang DK, Yu YL, Guo YQ, Liang JS, Cheng WM, Zong YS, Chan KH, Ng SP, Wei WI, Chua DTT, Sham JST, Ng MH. 2007. Sustained elevation of Epstein-Barr virus antibody levels preceding clinical onset of nasopharyngeal carcinoma. Br J Cancer 96:623–630. doi:10.1038/sj.bjc.6603609.
    1. Coghill AE, Pfeiffer RM, Proietti C, Hsu W-L, Chien Y-C, Lekieffre L, Krause L, Teng A, Pablo J, Yu KJ, Lou P-J, Wang C-P, Liu Z, Chen C-J, Middeldorp J, Mulvenna J, Bethony J, Hildesheim A, Doolan DL. 2018. Identification of a novel, EBV-based antibody risk stratification signature for early detection of nasopharyngeal carcinoma in Taiwan. Clin Cancer Res 24:1305–1314. doi:10.1158/1078-0432.CCR-17-1929.
    1. Waterboer T, Sehr P, Michael KM, Franceschi S, Nieland JD, Joos TO, Templin MF, Pawlita M. 2005. Multiplex human papillomavirus serology based on in situ-purified glutathione S-transferase fusion proteins. Clin Chem 51:1845–1853. doi:10.1373/clinchem.2005.052381.
    1. Brenner N, Mentzer AJ, Butt J, Michel A, Prager K, Brozy J, Weißbrich B, Aiello AE, Meier HCS, Breuer J, Almond R, Allen N, Pawlita M, Waterboer T. 2018. Validation of multiplex serology detecting human herpesviruses 1–5. PLoS One 13:e0209379. doi:10.1371/journal.pone.0209379.
    1. Sehr P, Zumbach K, Pawlita M. 2001. A generic capture ELISA for recombinant proteins fused to glutathione S-transferase: validation for HPV serology. J Immunol Methods 253:153–162. doi:10.1016/s0022-1759(01)00376-3.
    1. Waterboer T, Sehr P, Pawlita M. 2006. Suppression of non-specific binding in serological Luminex assays. J Immunol Methods 309:200–204. doi:10.1016/j.jim.2005.11.008.
    1. Coghill AE, Hsu WL, Pfeiffer RM, Juwana H, Yu KJ, Lou PJ, Wang CP, Chen JY, Chen CJ, Middeldorp JM, Hildesheim A. 2014. Epstein-Barr virus serology as a potential screening marker for nasopharyngeal carcinoma among high-risk individuals from multiplex families in Taiwan. Cancer Epidemiol Biomarkers Prev 23:1213–1219. doi:10.1158/1055-9965.EPI-13-1262.
    1. Kreimer AR, Ferreiro-Iglesias A, Nygard M, Bender N, Schroeder L, Hildesheim A, Robbins HA, Pawlita M, Langseth H, Schlecht NF, Tinker LF, Agalliu I, Smoller SW, Ness-Jensen E, Hveem K, D’Souza G, Visvanathan K, May B, Ursin G, Weiderpass E, Giles GG, Milne RL, Cai Q, Blot WJ, Zheng W, Weinstein SJ, Albanes D, Brenner N, Hoffman-Bolton J, Kaaks R, Barricarte A, Tjønneland A, Sacerdote C, Trichopoulou A, Vermeulen RCH, Huang W-Y, Freedman ND, Brennan P, Waterboer T, Johansson M. 2019. Timing of HPV16-E6 antibody seroconversion before OPSCC: findings from the HPVC3 consortium. Ann Oncol 30:1335–1343. doi:10.1093/annonc/mdz138.
    1. Butt J, Varga MG, Blot WJ, Teras L, Visvanathan K, Le Marchand L, Haiman C, Chen Y, Bao Y, Sesso HD, Wassertheil-Smoller S, Ho GYF, Tinker LE, Peek RM, Potter JD, Cover TL, Hendrix LH, Huang LC, Hyslop T, Um C, Grodstein F, Song M, Zeleniuch-Jacquotte A, Berndt S, Hildesheim A, Waterboer T, Pawlita M, Epplein M. 2019. Serologic response to Helicobacter pylori proteins associated with risk of colorectal cancer among diverse populations in the United States. Gastroenterology 156:175–186.e172. doi:10.1053/j.gastro.2018.09.054.
    1. Gossai A, Waterboer T, Nelson HH, Michel A, Willhauck-Fleckenstein M, Farzan SF, Hoen AG, Christensen BC, Kelsey KT, Marsit CJ, Pawlita M, Karagas MR. 2016. Seroepidemiology of human polyomaviruses in a US population. Am J Epidemiol 183:61–69. doi:10.1093/aje/kwv155.
    1. Neuhierl B, Delecluse H-J. 2006. The Epstein-Barr virus BMRF1 gene is essential for lytic virus replication. J Virol 80:5078–5081. doi:10.1128/JVI.80.10.5078-5081.2006.
    1. De Paschale M, Clerici P. 2012. Serological diagnosis of Epstein-Barr virus infection: problems and solutions. World J Virol 1:31–43. doi:10.5501/wjv.v1.i1.31.
    1. Tay JK, Chan SH, Lim CM, Siow CH, Goh HL, Loh KS. 2016. The role of Epstein-Barr virus DNA load and serology as screening tools for nasopharyngeal carcinoma. Otolaryngol Head Neck Surg 155:274–280. doi:10.1177/0194599816641038.
    1. Feederle R, Kost M, Baumann M, Janz A, Drouet E, Hammerschmidt W, Delecluse HJ. 2000. The Epstein-Barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J 19:3080–3089. doi:10.1093/emboj/19.12.3080.
    1. Calderwood MA, Holthaus AM, Johannsen E. 2008. The Epstein-Barr virus LF2 protein inhibits viral replication. J Virol 82:8509–8519. doi:10.1128/JVI.00315-08.
    1. Liu X, Cohen JI. 2016. Epstein-Barr virus (EBV) tegument protein BGLF2 promotes EBV reactivation through activation of the p38 mitogen-activated protein kinase. J Virol 90:1129–1138. doi:10.1128/JVI.01410-15.
    1. Liu Y, Huang Q, Liu W, Liu Q, Jia W, Chang E, Chen F, Liu Z, Guo X, Mo H, Chen J, Rao D, Ye W, Cao S, Hong M. 2012. Establishment of VCA and EBNA1 IgA-based combination by enzyme-linked immunosorbent assay as preferred screening method for nasopharyngeal carcinoma: a two-stage design with a preliminary performance study and a mass screening in southern China. Int J Cancer 131:406–416. doi:10.1002/ijc.26380.
    1. Liu Z, Ji MF, Huang QH, Fang F, Liu Q, Jia WH, Guo X, Xie SH, Chen F, Liu Y, Mo HY, Liu WL, Yu YL, Cheng WM, Yang YY, Wu BH, Wei KR, Ling W, Lin X, Lin EH, Ye W, Hong MH, Zeng YX, Cao SM. 2013. Two Epstein-Barr virus-related serologic antibody tests in nasopharyngeal carcinoma screening: results from the initial phase of a cluster randomized controlled trial in southern China. Am J Epidemiol 177:242–250. doi:10.1093/aje/kws404.

Source: PubMed

3
Se inscrever