Spectacle Lenses With Aspherical Lenslets for Myopia Control vs Single-Vision Spectacle Lenses: A Randomized Clinical Trial

Jinhua Bao, Yingying Huang, Xue Li, Adeline Yang, Fengchao Zhou, Junqian Wu, Chu Wang, Yuhao Li, Ee Woon Lim, Daniel P Spiegel, Björn Drobe, Hao Chen, Jinhua Bao, Yingying Huang, Xue Li, Adeline Yang, Fengchao Zhou, Junqian Wu, Chu Wang, Yuhao Li, Ee Woon Lim, Daniel P Spiegel, Björn Drobe, Hao Chen

Abstract

Importance: Reducing myopia progression can reduce the risk of associated ocular pathologies.

Objective: To evaluate whether spectacle lenses with higher lenslet asphericity have a higher myopia control efficacy throughout 2 years.

Design, setting, and participants: This double-masked randomized clinical trial was conducted between July 2018 and October 2020 at the Eye Hospital of Wenzhou Medical University in Wenzhou, China. Children aged 8 to 13 years with a cycloplegic spherical equivalent refraction (SER) of -0.75 D to -4.75 D and astigmatism with less than -1.50 D were recruited. A data and safety monitoring committee reviewed findings from a planned interim analysis in 2019.

Interventions: Participants were randomly assigned in a 1:1:1 ratio to receive spectacle lenses with highly aspherical lenslets (HAL), spectacle lenses with slightly aspherical lenslets (SAL), or single-vision spectacle lenses (SVL).

Main outcome and measures: Two-year changes in SER and axial length and their differences between groups.

Results: Of 157 participants who completed each visit (mean [SD] age, 10.4 [1.2] years), 54 were analyzed in the HAL group, 53 in the SAL group, and 50 in the SVL group. Mean (SE) 2-year myopia progression in the SVL group was 1.46 (0.09) D. Compared with SVL, the mean (SE) change in SER was less for HAL (by 0.80 [0.11] D) and SAL (by 0.42 [0.11] D; P ≤ .001). The mean (SE) increase in axial length was 0.69 (0.04) mm for SVL. Compared with SVL, increase in axial length was slowed by a mean (SE) of 0.35 (0.05) mm for HAL and 0.18 (0.05) mm for SAL (P ≤ .001). Compared with SVL, for children who wore HAL at least 12 hours every day, the mean (SE) change in SER was slowed by 0.99 (0.12) D, and increase in axial length slowed by 0.41 (0.05) mm.

Conclusions and relevance: In this study, HAL and SAL reduced the rate of myopia progression and axial elongation throughout 2 years, with higher efficacy for HAL. Longer wearing hours resulted in better myopia control efficacy for HAL.

Trial registration: Chinese Clinical Trial Registry Identifier: ChiCTR1800017683.

Conflict of interest statement

Conflict of Interest Disclosures: Dr Drobe reported pending patents for WO2019166653, WO2019166654, and WO2019166655 (co-inventor). Drs Yang, Spiegel, and Drobe and Ms Lim are employees of Essilor International, which sells lenses with highly aspherical lenslets design and supplied the study device. No other disclosures were reported.

Figures

Figure 1.. CONSORT Study Flowchart
Figure 1.. CONSORT Study Flowchart
HAL indicates spectacle lenses with highly aspherical lenslets; PAL, progressive addition lenses; SAL, spectacle lenses with slightly aspherical lenslets; SVL, single-vision spectacle lenses.
Figure 2.. Change in Unadjusted Spherical Equivalent…
Figure 2.. Change in Unadjusted Spherical Equivalent Refraction (SER) and Axial Length (AL) From Baseline to 2 Years
Error bars represent standard errors of the mean. HAL indicates spectacle lenses with highly aspherical lenslets; SAL, spectacle lenses with slightly aspherical lenslets; SVL, single-vision spectacle lenses.

References

    1. Holden BA, Fricke TR, Wilson DA, et al. . Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036-1042. doi:10.1016/j.ophtha.2016.01.006
    1. Saw SM, Gazzard G, Shih-Yen EC, Chua WH. Myopia and associated pathological complications. Ophthalmic Physiol Opt. 2005;25(5):381-391. doi:10.1111/j.1475-1313.2005.00298.x
    1. Wildsoet CF, Chia A, Cho P, et al. . IMI: Interventions Myopia Institute: interventions for controlling myopia onset and progression report. Invest Ophthalmol Vis Sci. 2019;60(3):M106-M131. doi:10.1167/iovs.18-25958
    1. Sankaridurg P, Conrad F, Tran H, Zhu J. Controlling progression of myopia: optical and pharmaceutical strategies. Asia Pac J Ophthalmol (Phila). 2018;7(6):405-414. doi:10.22608/APO.2018333
    1. Huang J, Wen D, Wang Q, et al. . Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis. Ophthalmology. 2016;123(4):697-708. doi:10.1016/j.ophtha.2015.11.010
    1. Smith EL III, Kee CS, Ramamirtham R, Qiao-Grider Y, Hung LF. Peripheral vision can influence eye growth and refractive development in infant monkeys. Invest Ophthalmol Vis Sci. 2005;46(11):3965-3972. doi:10.1167/iovs.05-0445
    1. Smith EL III, Hung LF. The role of optical defocus in regulating refractive development in infant monkeys. Vision Res. 1999;39(8):1415-1435. doi:10.1016/S0042-6989(98)00229-6
    1. Wallman J, Gottlieb MD, Rajaram V, Fugate-Wentzek LA. Local retinal regions control local eye growth and myopia. Science. 1987;237(4810):73-77. doi:10.1126/science.3603011
    1. Smith EL III. Prentice Award Lecture 2010: a case for peripheral optical treatment strategies for myopia. Optom Vis Sci. 2011;88(9):1029-1044. doi:10.1097/OPX.0b013e3182279cfa
    1. Walline JJ, Walker MK, Mutti DO, et al. ; BLINK Study Group . Effect of high add power, medium add power, or single-vision contact lenses on myopia progression in children: the BLINK Randomized Clinical Trial. JAMA. 2020;324(6):571-580. doi:10.1001/jama.2020.10834
    1. Leung JT, Brown B. Progression of myopia in Hong Kong Chinese schoolchildren is slowed by wearing progressive lenses. Optom Vis Sci. 1999;76(6):346-354. doi:10.1097/00006324-199906000-00013
    1. Hasebe S, Jun J, Varnas SR. Myopia control with positively aspherized progressive addition lenses: a 2-year, multicenter, randomized, controlled trial. Invest Ophthalmol Vis Sci. 2014;55(11):7177-7188. doi:10.1167/iovs.12-11462
    1. Lam CSY, Tang WC, Tse DYY, Tang YY, To CH. Defocus Inc Soft Contact (DISC) lens slows myopia progression in Hong Kong Chinese schoolchildren: a 2-year randomised clinical trial. Br J Ophthalmol. 2014;98(1):40-45. doi:10.1136/bjophthalmol-2013-303914
    1. Bao J, Yang A, Huang Y, et al. . One-year myopia control efficacy of spectacle lenses with aspherical lenslets. Br J Ophthalmol. 2021;bjophthalmol-2020-318367. doi:10.1136/bjophthalmol-2020-318367
    1. Randola. Accessed March 1, 2022.
    1. World Medical Association . World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191-2194. doi:10.1001/jama.2013.281053
    1. Yang Z, Lan W, Ge J, et al. . The effectiveness of progressive addition lenses on the progression of myopia in Chinese children. Ophthalmic Physiol Opt. 2009;29(1):41-48. doi:10.1111/j.1475-1313.2008.00608.x
    1. Olsen T. Sources of error in intraocular lens power calculation. J Cataract Refract Surg. 1992;18(2):125-129. doi:10.1016/S0886-3350(13)80917-0
    1. McFadden SA, Tse DY, Bowrey HE, et al. . Integration of defocus by dual power Fresnel lenses inhibits myopia in the mammalian eye. Invest Ophthalmol Vis Sci. 2014;55(2):908-917. doi:10.1167/iovs.13-11724
    1. Tse DY, To CH. Graded competing regional myopic and hyperopic defocus produce summated emmetropization set points in chick. Invest Ophthalmol Vis Sci. 2011;52(11):8056-8062. doi:10.1167/iovs.10-5207
    1. Woods J, Guthrie SE, Keir N, et al. . Inhibition of defocus-induced myopia in chickens. Invest Ophthalmol Vis Sci. 2013;54(4):2662-2668. doi:10.1167/iovs.12-10742
    1. Irving EL, Yakobchuk-Stanger C. Myopia progression control lens reverses induced myopia in chicks. Ophthalmic Physiol Opt. 2017;37(5):576-584. doi:10.1111/opo.12400
    1. Cooper J, OʼConnor B, Watanabe R, et al. . Case series analysis of myopic progression control with a unique extended depth of focus multifocal contact lens. Eye Contact Lens. 2018;44(5):e16-e24. doi:10.1097/ICL.0000000000000440
    1. Brennan NA, Toubouti YM, Cheng X, Bullimore MA. Efficacy in myopia control. Prog Retin Eye Res. 2021;83:100923. doi:10.1016/j.preteyeres.2020.100923
    1. Cheng D, Schmid KL, Woo GC, Drobe B. Randomized trial of effect of bifocal and prismatic bifocal spectacles on myopic progression: two-year results. Arch Ophthalmol. 2010;128(1):12-19. doi:10.1001/archophthalmol.2009.332
    1. Lam CSY, Tang WC, Tse DY, et al. . Defocus Inc Multiple Segments (DIMS) spectacle lenses slow myopia progression: a 2-year randomised clinical trial. Br J Ophthalmol. 2020;104(3):363-368. doi:10.1136/bjophthalmol-2018-313739
    1. Li X, Ding C, Li Y, et al. . Influence of lenslet configuration on short-term visual performance in myopia control spectacle lenses. Front Neurosci. 2021;15:667329. doi:10.3389/fnins.2021.667329
    1. Yam JC, Jiang Y, Tang SM, et al. . Low-concentration atropine for myopia progression (LAMP) study: a randomized, double-blinded, placebo-controlled trial of 0.05%, 0.025%, and 0.01% atropine eye drops in myopia control. Ophthalmology. 2019;126(1):113-124. doi:10.1016/j.ophtha.2018.05.029
    1. Zhu MJ, Feng HY, He XG, Zou HD, Zhu JF. The control effect of orthokeratology on axial length elongation in Chinese children with myopia. BMC Ophthalmol. 2014;14(1):141. doi:10.1186/1471-2415-14-141
    1. Fulk GW, Cyert LA, Parker DA. Seasonal variation in myopia progression and ocular elongation. Optom Vis Sci. 2002;79(1):46-51. doi:10.1097/00006324-200201000-00012
    1. Xu L, Ma Y, Yuan J, et al. . COVID-19 quarantine reveals that behavioral changes have an effect on myopia progression. Ophthalmology. 2021;127(11):1652-1654. doi:10.1016/j.ophtha.2021.04.001
    1. Wang J, Li Y, Musch DC, et al. . Progression of myopia in school-aged children after COVID-19 home confinement. JAMA Ophthalmol. 2021;139(3):293-300. doi:10.1001/jamaophthalmol.2020.6239
    1. Chang P, Zhang B, Lin L, et al. . Comparison of myopic progression before, during, and after COVID-19 lockdown. Ophthalmology. 2021;128(11):1655-1657. doi:10.1016/j.ophtha.2021.03.029
    1. Zhang H, Guo LW, Gao YY, Yao H, Xie ZK, Zhang WX. The impact of the COVID-19 pandemic on pediatric clinical practice in Wenzhou, China: a retrospective study. Front Pediatr. 2020;8:585629. doi:10.3389/fped.2020.585629

Source: PubMed

3
Se inscrever