General Anesthesia: A Probe to Explore Consciousness

Vincent Bonhomme, Cécile Staquet, Javier Montupil, Aline Defresne, Murielle Kirsch, Charlotte Martial, Audrey Vanhaudenhuyse, Camille Chatelle, Stephen Karl Larroque, Federico Raimondo, Athena Demertzi, Olivier Bodart, Steven Laureys, Olivia Gosseries, Vincent Bonhomme, Cécile Staquet, Javier Montupil, Aline Defresne, Murielle Kirsch, Charlotte Martial, Audrey Vanhaudenhuyse, Camille Chatelle, Stephen Karl Larroque, Federico Raimondo, Athena Demertzi, Olivier Bodart, Steven Laureys, Olivia Gosseries

Abstract

General anesthesia reversibly alters consciousness, without shutting down the brain globally. Depending on the anesthetic agent and dose, it may produce different consciousness states including a complete absence of subjective experience (unconsciousness), a conscious experience without perception of the environment (disconnected consciousness, like during dreaming), or episodes of oriented consciousness with awareness of the environment (connected consciousness). Each consciousness state may potentially be followed by explicit or implicit memories after the procedure. In this respect, anesthesia can be considered as a proxy to explore consciousness. During the recent years, progress in the exploration of brain function has allowed a better understanding of the neural correlates of consciousness, and of their alterations during anesthesia. Several changes in functional and effective between-region brain connectivity, consciousness network topology, and spatio-temporal dynamics of between-region interactions have been evidenced during anesthesia. Despite a set of effects that are common to many anesthetic agents, it is still uneasy to draw a comprehensive picture of the precise cascades during general anesthesia. Several questions remain unsolved, including the exact identification of the neural substrate of consciousness and its components, the detection of specific consciousness states in unresponsive patients and their associated memory processes, the processing of sensory information during anesthesia, the pharmacodynamic interactions between anesthetic agents, the direction-dependent hysteresis phenomenon during the transitions between consciousness states, the mechanisms of cognitive alterations that follow an anesthetic procedure, the identification of an eventual unitary mechanism of anesthesia-induced alteration of consciousness, the relationship between network effects and the biochemical or sleep-wake cycle targets of anesthetic agents, as well as the vast between-studies variations in dose and administration mode, leading to difficulties in between-studies comparisons. In this narrative review, we draw the picture of the current state of knowledge in anesthesia-induced unconsciousness, from insights gathered on propofol, halogenated vapors, ketamine, dexmedetomidine, benzodiazepines and xenon. We also describe how anesthesia can help understanding consciousness, we develop the above-mentioned unresolved questions, and propose tracks for future research.

Keywords: brain function; brain networks; consciousness; general anesthesia; mechanisms.

Figures

Figure 1
Figure 1
Summary representation of the available types of studies of the functioning brain that are applicable to the exploration of anesthetic brain effects. ICA, independent component analysis; DCM, dynamic causal modeling; ERP, event-related potentials; TMS-EEG, combined electroencephalography and transcranial magnetic stimulation; PCI, perturbational complexity index.
Figure 2
Figure 2
Summary of the currently emerging issues regarding the brain effects of anesthetic agents and their relationship with the postulated neural mechanisms of consciousness.

References

    1. Abdallah C. G., De Feyter H. M., Averill L. A., Jiang L., Averill C. L., Chowdhury G. M. I., et al. . (2018). The effects of ketamine on prefrontal glutamate neurotransmission in healthy and depressed subjects. Neuropsychopharmacology 43, 2154–2160. 10.1038/s41386-018-0136-3
    1. Agarwal S., Stamatakis E. A., Geva S., Warburton E. A. (2016). Dominant hemisphere functional networks compensate for structural connectivity loss to preserve phonological retrieval with aging. Brain Behav. 6:e00495. 10.1002/brb3.495
    1. Akeju O., Brown E. N. (2017). Neural oscillations demonstrate that general anesthesia and sedative states are neurophysiologically distinct from sleep. Curr. Opin. Neurobiol. 44, 178–185. 10.1016/j.conb.2017.04.011
    1. Alkire M. T., Gruver R., Miller J., McReynolds J. R., Hahn E. L., Cahill L. (2008). Neuroimaging analysis of an anesthetic gas that blocks human emotional memory. Proc. Natl. Acad. Sci. U S A 105, 1722–1727. 10.1073/pnas.0711651105
    1. Alkire M. T., Haier R. J., Barker S. J., Shah N. K., Wu J. C., Kao Y. J. (1995). Cerebral metabolism during propofol anesthesia in humans studied with positron emission tomography. Anesthesiology 82, 393–403. 10.1097/00000542-199502000-00010
    1. Alonso L. M., Solovey G., Yanagawa T., Proekt A., Cecchi G. A., Magnasco M. O. (2019). Single-trial classification of awareness state during anesthesia by measuring critical dynamics of global brain activity. Sci. Rep. 9:4927. 10.1038/s41598-019-41345-4
    1. Aubinet C., Murphy L., Bahri M. A., Larroque S. K., Cassol H., Annen J., et al. . (2018). Brain, behavior, and cognitive interplay in disorders of consciousness: a multiple case study. Front. Neurol. 9:665. 10.3389/fneur.2018.00665
    1. Barttfeld P., Uhrig L., Sitt J. D., Sigman M., Jarraya B., Dehaene S. (2015). Signature of consciousness in the dynamics of resting-state brain activity. Proc. Natl. Acad. Sci. U S A 112, 887–892. 10.1073/pnas.1418031112
    1. Bayne T., Hohwy J., Owen A. M. (2016). Are there levels of consciousness? Trends Cogn. Sci. 20, 405–413. 10.1016/j.tics.2016.03.009
    1. Bekinschtein T. A., Dehaene S., Rohaut B., Tadel F., Cohen L., Naccache L. (2009). Neural signature of the conscious processing of auditory regularities. Proc. Natl. Acad. Sci. U S A 106, 1672–1677. 10.1073/pnas.0809667106
    1. Bodart O., Gosseries O., Wannez S., Thibaut A., Annen J., Boly M., et al. . (2017). Measures of metabolism and complexity in the brain of patients with disorders of consciousness. Neuroimage Clin. 14, 354–362. 10.1016/j.nicl.2017.02.002
    1. Boly M., Massimini M., Tsuchiya N., Postle B. R., Koch C., Tononi G. (2017). Are the neural correlates of consciousness in the front or in the back of the cerebral cortex? Clinical and neuroimaging evidence. J. Neurosci. 37, 9603–9613. 10.1523/JNEUROSCI.3218-16.2017
    1. Boly M., Moran R., Murphy M., Boveroux P., Bruno M.-A., Noirhomme Q., et al. . (2012). Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness. J. Neurosci. 32, 7082–7090. 10.1523/JNEUROSCI.3769-11.2012
    1. Bonhomme V., Boveroux P., Vanhaudenhuyse A., Hans P., Brichant J. F., Jaquet O., et al. . (2011). Linking sleep and general anesthesia mechanisms: this is no walkover. Acta Anaesthesiol. Belg. 62, 161–171.
    1. Bonhomme V., Fiset P., Meuret P., Backman S., Plourde G., Paus T., et al. . (2001). Propofol anesthesia and cerebral blood flow changes elicited by vibrotactile stimulation: a positron emission tomography study. J. Neurophysiol. 85, 1299–1308. 10.1152/jn.2001.85.3.1299
    1. Bonhomme V., Maquet P., Phillips C., Plenevaux A., Hans P., Luxen A., et al. . (2008). The effect of clonidine infusion on distribution of regional cerebral blood flow in volunteers. Anesth. Analg. 106, 899–909. 10.1213/ane.0b013e3181619685
    1. Bonhomme V., Vanhaudenhuyse A., Demertzi A., Bruno M. A., Jaquet O., Bahri M. A., et al. . (2016). Resting-state network-specific breakdown of functional connectivity during ketamine alteration of consciousness in volunteers. Anesthesiology 125, 873–888. 10.1097/aln.0000000000001275
    1. Bouillon T. W., Bruhn J., Radulescu L., Andresen C., Shafer T. J., Cohane C., et al. . (2004). Pharmacodynamic interaction between propofol and remifentanil regarding hypnosis, tolerance of laryngoscopy, bispectral index, and electroencephalographic approximate entropy. Anesthesiology 100, 1353–1372. 10.1097/00000542-200406000-00006
    1. Boveroux P., Vanhaudenhuyse A., Bruno M.-A., Noirhomme Q., Lauwick S., Luxen A., et al. . (2010). Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 113, 1038–1053. 10.1097/ALN.0b013e3181f697f5
    1. Brown E. N., Purdon P. L., Van Dort C. J. (2011). General anesthesia and altered states of arousal: a systems neuroscience analysis. Annu. Rev. Neurosci. 34, 601–628. 10.1146/annurev-neuro-060909-153200
    1. Casali A. G., Gosseries O., Rosanova M., Boly M., Sarasso S., Casali K. R., et al. . (2013). A theoretically based index of consciousness independent of sensory processing and behavior. Sci. Transl. Med. 5:198ra105. 10.1126/scitranslmed.3006294
    1. Cavanna F., Vilas M. G., Palmucci M., Tagliazucchi E. (2018). Dynamic functional connectivity and brain metastability during altered states of consciousness. Neuroimage 180, 383–395. 10.1016/j.neuroimage.2017.09.065
    1. Colombo M. A., Napolitani M., Boly M., Gosseries O., Casarotto S., Rosanova M., et al. . (2019). The spectral exponent of the resting EEG indexes the presence of consciousness during unresponsiveness induced by propofol, xenon, and ketamine. Neuroimage 189, 631–644. 10.1016/j.neuroimage.2019.01.024
    1. Crone J. S., Lutkenhoff E. S., Bio B. J., Laureys S., Monti M. M. (2017). Testing proposed neuronal models of effective connectivity within the cortico-basal gangliathalamo-cortical loop during loss of consciousness. Cereb. Cortex 27, 2727–2738. 10.1093/cercor/bhw112
    1. Darracq M., Funk C. M., Polyakov D., Riedner B., Gosseries O., Nieminen J. O., et al. . (2018a). Evoked α power is reduced in disconnected consciousness during sleep and anesthesia. Sci. Rep. 8:16664. 10.1038/s41598-018-34957-9
    1. Darracq M., Sleigh J., Banks M. I., Sanders R. D. (2018b). Characterising the effect of propofol on complexity and stability in the EEG power spectrum. Br. J. Anaesth. 121, 1368–1369. 10.1016/j.bja.2018.09.006
    1. Demertzi A., Tagliazucchi E., Dehaene S., Deco G., Barttfeld P., Raimondo F., et al. . (2019). Human consciousness is supported by dnamic patterns of brain signal coordination. Sci. Adv. 5:eaat7603. 10.1126/sciadv.aat7603
    1. Driesen N. R., McCarthy G., Bhagwagar Z., Bloch M. H., Calhoun V. D., D’Souza D. C., et al. . (2013a). The impact of NMDA receptor blockade on human working memory-related prefrontal function and connectivity. Neuropsychopharmacology 38, 2613–2622. 10.1038/npp.2013.170
    1. Driesen N. R., McCarthy G., Bhagwagar Z., Bloch M., Calhoun V., D’Souza D. C., et al. . (2013b). Relationship of resting brain hyperconnectivity and schizophrenia-like symptoms produced by the NMDA receptor antagonist ketamine in humans. Mol. Psychiatry 18, 1199–1204. 10.1038/mp.2012.194
    1. Evered L., Silbert B., Knopman D. S., Scott D. A., DeKosky S. T., Rasmussen L. S., et al. . (2018). Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery-2018. Br. J. Anaesth. 121, 1005–1012. 10.1016/j.bja.2017.11.087
    1. Ferrarelli F., Massimini M., Sarasso S., Casali A., Riedner B. A., Angelini G., et al. . (2010). Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proc. Natl. Acad. Sci. U S A 107, 2681–2686. 10.1073/pnas.0913008107
    1. Fiset P., Paus T., Daloze T., Plourde G., Meuret P., Bonhomme V., et al. . (1999). Brain mechanisms of propofol-induced loss of consciousness in humans: a positron emission tomographic study. J. Neurosci. 19, 5506–5513. 10.1523/JNEUROSCI.19-13-05506.1999
    1. Frolich M. A., Banks C., Ness T. J. (2017). The effect of sedation on cortical activation: a randomized study comparing the effects of sedation with midazolam, propofol, and dexmedetomidine on auditory processing. Anesth. Analg. 124, 1603–1610. 10.1213/ane.0000000000002021
    1. Gómez F., Phillips C., Soddu A., Boly M., Boveroux P., Vanhaudenhuyse A., et al. . (2013). Changes in effective connectivity by propofol sedation. PLoS One 8:e71370. 10.1371/journal.pone.0071370
    1. Gao W.-W., He Y.-H., Liu L., Yuan Q., Wang Y.-F., Zhao B. (2018). BIS monitoring on intraoperative awareness: a meta-analysis. Curr. Med. Sci. 38, 349–353. 10.1007/s11596-018-1886-1
    1. Gaskell A. L. L., Hight D. F. F., Winders J., Tran G., Defresne A., Bonhomme V., et al. . (2017). Frontal α-delta EEG does not preclude volitional response during anaesthesia: prospective cohort study of the isolated forearm technique. Br. J. Anaesth. 119, 664–673. 10.1093/bja/aex170
    1. Golkowski D., Larroque S. K., Vanhaudenhuyse A., Plenevaux A., Boly M., Di Perri C., et al. . (2019). Changes in whole brain dynamics and connectivity patterns during sevoflurane- and propofol-induced unconsciousness identified by functional magnetic resonance imaging. Anesthesiology 130, 898–911. 10.1097/aln.0000000000002704
    1. Greicius M. D., Kiviniemi V., Tervonen O., Vainionpää V., Alahuhta S., Reiss A. L., et al. . (2008). Persistent default-mode network connectivity during light sedation. Hum. Brain Mapp. 29, 839–847. 10.1002/hbm.20537
    1. Guldenmund P., Demertzi A., Boveroux P., Boly M., Vanhaudenhuyse A., Bruno M.-A., et al. . (2013). Thalamus, brainstem and salience network connectivity changes during propofol-induced sedation and unconsciousness. Brain Connect. 3, 273–285. 10.1089/brain.2012.0117
    1. Guldenmund P., Gantner I. S., Baquero K., Das T., Demertzi A., Boveroux P., et al. . (2016). Propofol-induced frontal cortex disconnection: a study of resting-state networks, total brain connectivity and mean BOLD signal oscillation frequencies. Brain Connect. 6, 225–237. 10.1089/brain.2015.0369
    1. Guldenmund P., Vanhaudenhuyse A., Sanders R. D., Sleigh J., Bruno M. A., Demertzi A., et al. . (2017). Brain functional connectivity differentiates dexmedetomidine from propofol and natural sleep. Br. J. Anaesth. 119, 674–684. 10.1093/bja/aex257
    1. Hashmi J. A., Loggia M. L., Khan S., Gao L., Kim J., Napadow V., et al. . (2017). Dexmedetomidine disrupts the local and global efficiencies of large-scale brain networks. Anesthesiology 126, 419–430. 10.1097/ALN.0000000000001509
    1. Huang Z., Liu X., Mashour G. A., Hudetz A. G. (2018). Timescales of intrinsic BOLD signal dynamics and functional connectivity in pharmacologic and neuropathologic states of unconsciousness. J. Neurosci. 38, 2304–2317. 10.1523/JNEUROSCI.2545-17.2018
    1. Hutt A., Lefebvre J., Hight D., Sleigh J. (2018). Suppression of underlying neuronal fluctuations mediates EEG slowing during general anaesthesia. Neuroimage 179, 414–428. 10.1016/j.neuroimage.2018.06.043
    1. Kafashan M., Ching S., Palanca B. J. A. (2016). Sevoflurane alters spatiotemporal functional connectivity motifs that link resting-state networks during wakefulness. Front. Neural Circuits 10:107. 10.3389/fncir.2016.00107
    1. Kim H., Moon J.-Y., Mashour G. A., Lee U. (2018). Mechanisms of hysteresis in human brain networks during transitions of consciousness and unconsciousness: theoretical principles and empirical evidence. PLoS Comput. Biol. 14:e1006424. 10.1371/journal.pcbi.1006424
    1. Kim M., Mashour G. A., Moraes S.-B., Vanini G., Tarnal V., Janke E., et al. . (2016). Functional and topological conditions for explosive synchronization develop in human brain networks with the onset of anesthetic-induced unconsciousness. Front. Comput. Neurosci. 10:1. 10.3389/fncom.2016.00001
    1. Koch C., Massimini M., Boly M., Tononi G. (2016). Neural correlates of consciousness: progress and problems. Nat. Rev. Neurosci. 17, 307–321. 10.1038/nrn.2016.22
    1. Kuizenga M. H., Colin P. J., Reyntjens K. M. E. M., Touw D. J., Nalbat H., Knotnerus F. H., et al. . (2018). Test of neural inertia in humans during general anaesthesia. Br. J. Anaesth. 120, 525–536. 10.1016/j.bja.2017.11.072
    1. Lee H., Golkowski D., Jordan D., Berger S., Ilg R., Lee J., et al. . (2018). Relationship of critical dynamics, functional connectivity, and states of consciousness in large-scale human brain networks. Neuroimage 188, 228–238. 10.1016/j.neuroimage.2018.12.011
    1. Lee U., Kim S., Noh G. J., Choi B. M., Hwang E., Mashour G. A. (2009). The directionality and functional organization of frontoparietal connectivity during consciousness and anesthesia in humans. Conscious. Cogn. 18, 1069–1078. 10.1016/j.concog.2009.04.004
    1. Lee U., Ku S., Noh G., Baek S., Choi B., Mashour G. A. (2013). Disruption of frontal-parietal communication by ketamine, propofol, and sevoflurane. Anesthesiology 118, 1264–1275. 10.1097/ALN.0b013e31829103f5
    1. Lee H., Mashour G. A., Noh G.-J., Kim S., Lee U. (2013). Reconfiguration of network hub structure after propofol-induced unconsciousness. Anesthesiology 119, 1347–1359. 10.1097/aln.0b013e3182a8ec8c
    1. Lee U., Mashour G. A. (2018a). Role of network science in the study of anesthetic state transitions. Anesthesiology 129, 1029–1044. 10.1097/ALN.0000000000002228
    1. Lee U., Mashour G. A. (2018b). Stochastic nature of neural inertia. Br. J. Anaesth. 121, 7–8. 10.1016/j.bja.2018.04.018
    1. Lee M., Sanders R. D., Yeom S. K., Won D. O., Seo K. S., Kim H. J., et al. . (2017). Network properties in transitions of consciousness during propofol-induced sedation. Sci. Rep. 7:16791. 10.1038/s41598-017-15082-5
    1. Lewis L. D., Piantoni G., Peterfreund R. A., Eskandar E. N., Harrell P. G., Akeju O., et al. . (2018). A transient cortical state with sleep-like sensory responses precedes emergence from general anesthesia in humans. Elife 7:e33250. 10.7554/elife.33250
    1. Li M., Woelfer M., Colic L., Safron A., Chang C., Jochen H. (2018). Default mode network connectivity change corresponds to ketamine’s delayed glutamatergic effects. Eur. Arch. Psychiatry Clin. Neurosci. [Epub ahead of print]. 10.1007/s00406-018-0942-y
    1. Liang Z., Huang C., Li Y., Hight D. F., Voss L. J., Sleigh J. W., et al. . (2018). Emergence EEG pattern classification in sevoflurane anesthesia. Physiol. Meas. 39:045006. 10.1088/1361-6579/aab4d0
    1. Liang P., Zhang H., Xu Y., Jia W., Zang Y., Li K. (2015). Disruption of cortical integration during midazolam-induced light sedation. Hum. Brain Mapp. 36, 4247–4261. 10.1002/hbm.22914
    1. Lichtner G., Auksztulewicz R., Kirilina E., Velten H., Mavrodis D., Scheel M., et al. . (2018a). Effects of propofol anesthesia on the processing of noxious stimuli in the spinal cord and the brain. Neuroimage 172, 642–653. 10.1016/j.neuroimage.2018.02.003
    1. Lichtner G., Auksztulewicz R., Velten H., Mavrodis D., Scheel M., Blankenburg F., et al. . (2018b). Nociceptive activation in spinal cord and brain persists during deep general anaesthesia. Br. J. Anaesth. 121, 291–302. 10.1016/j.bja.2018.03.031
    1. Linassi F., Zanatta P., Tellaroli P., Ori C., Carron M. (2018). Isolated forearm technique: a meta-analysis of connected consciousness during different general anaesthesia regimens. Br. J. Anaesth. 121, 198–209. 10.1016/j.bja.2018.02.019
    1. Liu X., Ward B. D., Binder J. R., Li S. J., Hudetz A. G. (2014). Scale-free functional connectivity of the brain is maintained in anesthetized healthy participants but not in patients with unresponsive wakefulness syndrome. PLoS One 9:e92182. 10.1371/journal.pone.0092182
    1. Marchant N., Sanders R., Sleigh J., Vanhaudenhuyse A., Bruno M. A., Brichant J. F., et al. . (2014). How electroencephalography serves the anesthesiologist. Clin. EEG Neurosci. 45, 22–32. 10.1177/1550059413509801
    1. Mashour G. A. (2018). Highways of the brain, traffic of the mind. Anesthesiology 129, 869–871. 10.1097/aln.0000000000002385
    1. Mashour G. A., Hudetz A. G. (2018). Neural correlates of unconsciousness in large-scale brain networks. Trends Neurosci. 41, 150–160. 10.1016/j.tins.2018.01.003
    1. Mason S. E., Noel-Storr A., Ritchie C. W. (2010). The impact of general and regional anesthesia on the incidence of post-operative cognitive dysfunction and post-operative delirium: a systematic review with meta-analysis. J. Alzheimers Dis. 22, 67–79. 10.3233/jad-2010-101086
    1. Muthukumaraswamy S. D., Liley D. T. (2018). 1/F electrophysiological spectra in resting and drug-induced states can be explained by the dynamics of multiple oscillatory relaxation processes. Neuroimage 179, 582–595. 10.1016/j.neuroimage.2018.06.068
    1. Nelson L. E., Lu J., Guo T., Saper C. B., Franks N. P., Maze M. (2003). The α2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology 98, 428–436. 10.1097/00000542-200302000-00024
    1. Nicolaou N., Georgiou J. (2014). Neural network-based classification of anesthesia/awareness using granger causality features. Clin. EEG Neurosci. 45, 77–88. 10.1177/1550059413486271
    1. Nourski K. V., Steinschneider M., Rhone A. E., Kawasaki H., Howard M. A., III., Banks M. I. (2018). Auditory predictive coding across awareness states under anesthesia: an intracranial electrophysiology study. J. Neurosci. 38, 8441–8452. 10.1523/JNEUROSCI.0967-18.2018
    1. Numan T., Slooter A. J. C., van der Kooi A. W., Hoekman A. M. L., Suyker W. J. L., Stam C. J., et al. . (2017). Functional connectivity and network analysis during hypoactive delirium and recovery from anesthesia. Clin. Neurophysiol. 128, 914–924. 10.1016/j.clinph.2017.02.022
    1. Pal D., Dean J. G., Liu T., Li D., Watson C. J., Hudetz A. G., et al. . (2018). Differential role of prefrontal and parietal cortices in controlling level of consciousness. Curr. Biol. 28, 2145.e5–2152.e5. 10.1016/j.cub.2018.05.025
    1. Palanca B. J. A., Mitra A., Larson-Prior L., Snyder A. Z., Avidan M. S., Raichle M. E. (2015). Resting-state functional magnetic resonance imaging correlates of sevoflurane-induced unconsciousness. Anesthesiology 123, 346–356. 10.1097/aln.0000000000000731
    1. Pappas I., Adapa R. M., Menon D. K., Stamatakis E. A. (2019). Brain network disintegration during sedation is mediated by the complexity of sparsely connected regions. Neuroimage 186, 221–233. 10.1016/j.neuroimage.2018.10.078
    1. Pflanz C. P., Pringle A., Filippini N., Warren M., Gottwald J., Cowen P. J., et al. . (2015). Effects of seven-day diazepam administration on resting-state functional connectivity in healthy volunteers: a randomized, double-blind study. Psychopharmacology 232, 2139–2147. 10.1007/s00213-014-3844-3
    1. Plourde G., Boylan J. F. (1991). The auditory steady state response during sufentanil anaesthesia. Br. J. Anaesth. 66, 683–691. 10.1093/bja/66.6.683
    1. Purdon P. L., Pierce E. T., Mukamel E. A., Prerau M. J., Walsh J. L., Wong K. F. K., et al. . (2013). Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc. Natl. Acad. Sci. U S A 110, E1142–E1151. 10.1073/pnas.1221180110
    1. Radek L., Kallionpää R. E., Karvonen M., Scheinin A., Maksimow A., Långsjö J., et al. . (2018). Dreaming and awareness during dexmedetomidine- and propofol-induced unresponsiveness. Br. J. Anaesth. 121, 260–269. 10.1016/j.bja.2018.03.014
    1. Ranft A., Golkowski D., Kiel T., Riedl V., Kohl P., Rohrer G., et al. . (2016). Neural correlates of sevoflurane-induced unconsciousness identified by simultaneous functional magnetic resonance imaging and electroencephalography. Anesthesiology 125, 861–872. 10.1097/ALN.0000000000001322
    1. Rex S., Meyer P. T., Baumert J.-H., Rossaint R., Fries M., Bull U., et al. . (2008). Positron emission tomography study of regional cerebral blood flow and flow-metabolism coupling during general anaesthesia with xenon in humans. Br. J. Anaesth. 100, 667–675. 10.1093/bja/aen036
    1. Ribeiro de Paula D., Ziegler E., Abeyasinghe P. M., Das T. K., Cavaliere C., Aiello M., et al. . (2017). A method for independent component graph analysis of resting-state fMRI. Brain Behav. 7:e00626. 10.1002/brb3.626
    1. Rowley P., Boncyk C., Gaskell A., Absalom A., Bonhomme V., Coburn M., et al. . (2017). What do people expect of general anaesthesia? Br. J. Anaesth. 118, 486–488. 10.1093/bja/aex040
    1. Sanders R. D., Banks M. I., Darracq M., Moran R., Sleigh J., Gosseries O., et al. . (2018). Propofol-induced unresponsiveness is associated with impaired feedforward connectivity in cortical hierarchy. Br. J. Anaesth. 121, 1084–1096. 10.1016/j.bja.2018.07.006
    1. Sanders R. D., Gaskell A., Raz A., Winders J., Stevanovic A., Rossaint R., et al. . (2017). Incidence of connected consciousness after tracheal intubation: a prospective, international, multicenter cohort study of the isolated forearm technique. Anesthesiology 126, 214–222. 10.1097/ALN.0000000000001479
    1. Sanders R. D., Tononi G., Laureys S., Sleigh J. W. (2012). Unresponsiveness ≠ unconsciousness. Anesthesiology 116, 946–959. 10.1097/ALN.0b013e318249d0a7
    1. Sarasso S., Boly M., Napolitani M., Gosseries O., Charland-Verville V., Casarotto S., et al. . (2015). Consciousness and complexity during unresponsiveness induced by propofol, xenon and ketamine. Curr. Biol. 25, 3099–3105. 10.1016/j.cub.2015.10.014
    1. Scheidegger M., Walter M., Lehmann M., Metzger C., Grimm S., Boeker H., et al. . (2012). Ketamine decreases resting state functional network connectivity in healthy subjects: implications for antidepressant drug action. PLoS One 7:e44799. 10.1371/journal.pone.0044799
    1. Scheinin H., Alkire E. C., Scheinin A., Alkire M. T., Kantonen O., Langsjo J. (2018). Using positron emission tomography in revealing the mystery of general anesthesia: study design challenges and opportunities. Meth. Enzymol. 603, 279–303. 10.1016/bs.mie.2018.01.025
    1. Sleigh J., Warnaby C., Tracey I. (2018). General anaesthesia as fragmentation of selfhood: insights from electroencephalography and neuroimaging. Br. J. Anaesth. 121, 233–240. 10.1016/j.bja.2017.12.038
    1. Staquet C., Vanhaudenhuyse A., Bonhomme V. (2018). Aware beside an unconscious patient, not the inverse! On the necessity of knowing how anesthesia modulates consciousness. Acta Anaesthesiol. Belg. 69, 137–145.
    1. Tagliazucchi E., Chialvo D. R., Siniatchkin M., Amico E., Brichant J.-F., Bonhomme V., et al. . (2016). Large-scale signatures of unconsciousness are consistent with a departure from critical dynamics. J. R. Soc. Interface 13:20151027. 10.1098/rsif.2015.1027
    1. Thiery T., Lajnef T., Combrisson E., Dehgan A., Rainville P., Mashour G. A., et al. . (2018). Long-range temporal correlations in the brain distinguish conscious wakefulness from induced unconsciousness. Neuroimage 179, 30–39. 10.1016/j.neuroimage.2018.05.069
    1. Tononi G. (2004). An information integration theory of consciousness. BMC Neurosci. 5:42. 10.1186/1471-2202-5-42
    1. Uhl R. R., Squires K. C., Bruce D. L., Starr A. (1980). Variations in visual evoked potentials under anesthesia. Prog. Brain Res. 54, 463–466. 10.1016/s0079-6123(08)61662-3
    1. Uhrig L., Sitt J. D., Jacob A., Tasserie J., Barttfeld P., Dupont M., et al. . (2018). Resting-state dynamics as a cortical signature of anesthesia in monkeys. Anesthesiology 129, 942–958. 10.1097/ALN.0000000000002336
    1. Untergehrer G., Jordan D., Kochs E. F., Ilg R., Schneider G. (2014). Fronto-parietal connectivity is a non-static phenomenon with characteristic changes during unconsciousness. PLoS One 9:e87498. 10.1371/journal.pone.0087498
    1. van Dellen E., van der Kooi A. W., Numan T., Koek H. L., Klijn F. A. M., Buijsrogge M. P., et al. . (2014). Decreased functional connectivity and disturbed directionality of information flow in the electroencephalography of intensive care unit patients with delirium after cardiac surgery. Anesthesiology 121, 328–335. 10.1097/ALN.0000000000000329
    1. Vanhaudenhuyse A., Demertzi A., Schabus M., Noirhomme Q., Bredart S., Boly M., et al. . (2011). Two distinct neuronal networks mediate the awareness of environment and of self. J. Cogn. Neurosci. 23, 570–578. 10.1162/jocn.2010.21488
    1. Vlisides P. E., Bel-Bahar T., Lee U. C., Li D., Kim H., Janke E., et al. . (2017). Neurophysiologic correlates of ketamine sedation and anesthesia: a high-density electroencephalography study in healthy volunteers. Anesthesiology 127, 58–69. 10.1097/ALN.0000000000001671
    1. Vlisides P. E., Bel-Bahar T., Nelson A., Chilton K., Smith E., Janke E., et al. . (2018). Subanaesthetic ketamine and altered states of consciousness in humans. Br. J. Anaesth. 121, 249–259. 10.1016/j.bja.2018.03.011
    1. Vutskits L. (2018). General anesthetics to treat major depressive disorder: clinical relevance and underlying mechanisms. Anesth. Analg. 126, 208–216. 10.1213/ANE.0000000000002594
    1. Wang J., Noh G. J., Choi B. M., Ku S. W., Joo P., Jung W. S., et al. . (2017). Suppressed neural complexity during ketamine- and propofol-induced unconsciousness. Neurosci. Lett. 653, 320–325. 10.1016/j.neulet.2017.05.045
    1. Warnaby C. E., Sleigh J. W., Hight D., Jbabdi S., Tracey I. (2017). Investigation of slow-wave activity saturation during surgical anesthesia reveals a signature of neural inertia in humans. Anesthesiology 127, 645–657. 10.1097/ALN.0000000000001759
    1. Xie G., Deschamps A., Backman S. B., Fiset P., Chartrand D., Dagher A., et al. . (2011). Critical involvement of the thalamus and precuneus during restoration of consciousness with physostigmine in humans during propofol anaesthesia: a positron emission tomography study. Br. J. Anaesth. 106, 548–557. 10.1093/bja/aeq415

Source: PubMed

3
Se inscrever