Imaging oxygenation of human tumours

Anwar R Padhani, Kenneth A Krohn, Jason S Lewis, Markus Alber, Anwar R Padhani, Kenneth A Krohn, Jason S Lewis, Markus Alber

Abstract

Tumour hypoxia represents a significant challenge to the curability of human tumours leading to treatment resistance and enhanced tumour progression. Tumour hypoxia can be detected by non-invasive and invasive techniques but the inter-relationships between these remains largely undefined. (18)F-MISO and Cu-ATSM-PET, and BOLD-MRI are the lead contenders for human application based on their non-invasive nature, ease of use and robustness, measurement of hypoxia status, validity, ability to demonstrate heterogeneity and general availability, these techniques are the primary focus of this review. We discuss where developments are required for hypoxia imaging to become clinically useful and explore potential new uses for hypoxia imaging techniques including biological conformal radiotherapy.

Figures

Fig. 1
Fig. 1
Stylised diagram showing how hypoxia leads to therapy resistance and the development of an aggressive tumour cell phenotype. Figure adapted from [4]
Fig. 2
Fig. 2
The 18FDG-PET image (bottom left panel) shows increase uptake in both the oropharyngeal tumour (arrow) and in the left neck nodal metastasis (asterix). The 18F-MISO images (bottom right panel) were acquired in a dynamic mode and representative images after 1 minute, 30 minutes and 240 minutes are shown together with time-activity curves from the two regions of interest indicated in the FDG-PET image. The early distribution (1 minute) shows hyperperfusion in the region of the primary tumour and metastasis because of the high partition coefficient of 18F-MISO. After 2 hours, only the left neck nodal metastasis is shown to be hypoxic
Fig. 3
Fig. 3
The structure of [18F]-fluoromisonidazole, 18F-MISO, and its mechanism of retention in hypoxic tissues. The partition coefficient of 18F-MISO is near unity so the molecule diffuses freely into all cells. Once 18F-MISO is in an environment where electron transport is occurring (viable tissues), the –NO2 substituent (which has a high electron affinity) takes on an electron to form the radical anion reduction product. If O2 is also present, that electron is rapidly transferred to oxygen and 18F-MISO changes back to its original structure and can leave the cell. However, if a second electron from cellular metabolism reacts with the nitroimidazole to form the 2-electron reduction product, the molecule reacts non-discriminately with peptides and RNA within the cell and becomes trapped. Thus, retention of FMISO is inversely related to the intracellular partial pressure of O2 as shown in the lower left panel [45]. This mechanism is confirmed by the autoradiograph of a tumour spheroid (bottom right panel) with a radius of approximately 0.5 mm that shows no retention in the necrotic core or in the well-oxygenated outer sphere but intense uptake (white spots) in a donut like ring where cells are hypoxic
Fig. 4
Fig. 4
Retention mechanism of Cu(II)ATSM in hypoxic tissues. (a) Cu(II)ATSM is bioreduced (Cu(II) to Cu(I)) once entering the cell. The reduced intermediate species (likely to be [Cu-ATSM]-) is trapped within the cell because of its charge. This transient complex can then go through one of two competing pathways: reoxidation to the uncharged Cu(II) species (which can escape by diffusion), or proton-induced dissociation (which releases copper to be irreversibly sequestered by intracellular proteins). [Cu-ATSM]- favours the reoxidation route because it is easily oxidised but chemically more resistant to protonation. Copper from Cu(II) ATSM is trapped reversibly as [Cu-ATSM]- (if oxygen is absent), with the possibility of irreversible trapping by dissociation over a longer period. Cu(II)ATSM is thus hypoxia-selective. (b) High quality axial 60Cu-ATSM-PET image through the mid-upper thorax demonstrates heterogeneously increased uptake (arrow) within a known lung cancer in the aorto-pulmonary window and left suprahilar region. PET images representing summed data were obtained from 30 to 60 minutes after injection of 60Cu-ATSM
Fig. 5
Fig. 5
Data acquisition and quantification of BOLD-MRI in the prostate gland. Gradient recalled-echo MR images acquired at 1.5 T with a fixed repetition time and flip angle (TR ~100 msec; alpha 40 degrees) with lengthening echo-time (TE) are acquired through the prostate gland (bottom row of images). These images show increased susceptibility (T2*) effects with increasing TE. The rate of signal intensity decay in the dorsal aspect of the prostate is dependent on intrinsic T2* relaxation (local structure), deoxyhaemoglobin concentration [dHb] and local blood flow. Synthetic R2* (=1/T2*) images are created by plotting the natural logarithm of the signal intensity against the TE (top left panel). R2* map (top right panel) reflects on the structure of tissues and local [dHb] but inflow effects are minimised; however, R2* maps retain sensitivity to pO2 changes caused by alterations in blood flow
Fig. 6
Fig. 6
The re-oxygenation phenomenon. Tumours contain mixtures of aerated and hypoxic cells. Radiation is effective at eliminating well oxygenated cells because they are radiosensitive. Reoxygenation cause the preradiation pattern to return which can be eliminated by further radiation fractions but a progressive decrease in the tumour mass occurs after a series of fractions. Figure adapted from [15]
Fig. 7
Fig. 7
Dose escalation map superimposed on CT with Planning Target Volume (red). Isodose lines show conformality to hypoxic lymph node with a maximum dose increase by 20%. This is the same patient illustrated in Fig. 2

References

    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '13106296', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/13106296/'}]}
    2. Gray LH, Conger AD, Ebert M (1953) The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 26:638–648
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1634/theoncologist.9-90005-10', 'is_inner': False, 'url': 'https://doi.org/10.1634/theoncologist.9-90005-10'}, {'type': 'PubMed', 'value': '15591418', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15591418/'}]}
    2. Vaupel P (2004) The role of hypoxia-induced factors in tumor progression. Oncologist 9:10–17
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '10606224', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/10606224/'}]}
    2. Brown JM (1999) The hypoxic cell: A target for selective cancer therapy-Eighteenth Bruce F. Cain Memorial Award Lecture. Cancer Res 59:5863–5870
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1634/theoncologist.9-90005-4', 'is_inner': False, 'url': 'https://doi.org/10.1634/theoncologist.9-90005-4'}, {'type': 'PubMed', 'value': '15591417', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15591417/'}]}
    2. Vaupel P, Harrison L (2004) Tumor hypoxia: Causative factors, compensatory mechanisms, and cellular response. Oncologist 9:4–9
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/S0093-7754(01)90210-6', 'is_inner': False, 'url': 'https://doi.org/10.1016/s0093-7754(01)90210-6'}, {'type': 'PubMed', 'value': '11395850', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11395850/'}]}
    2. Vaupel P, Kelleher DK, Hockel M (2001) Oxygen status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy. Semin Oncol 28:29–35
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '2211264', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/2211264/'}]}
    2. Kallinowski F, Zander R, Hoeckel M, Vaupel P (1990) Tumor tissue oxygenation as evaluated by computerized-pO2-histography. Int J Radiat Oncol Biol Phys 19:953–961
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '2040005', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/2040005/'}]}
    2. Vaupel P, Schlenger K, Knoop C, Hockel M (1991) Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res 51:3316–3322
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '7928495', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/7928495/'}]}
    2. Brizel DM, Rosner GL, Harrelson J, Prosnitz LR, Dewhirst MW (1994) Pretreatment oxygenation profiles of human soft tissue sarcomas. Int J Radiat Oncol Biol Phys 30:635–642
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '8813149', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/8813149/'}]}
    2. Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509–4515
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/j.radonc.2005.06.038', 'is_inner': False, 'url': 'https://doi.org/10.1016/j.radonc.2005.06.038'}, {'type': 'PubMed', 'value': '16098619', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16098619/'}]}
    2. Nordsmark M, Bentzen SM, Rudat V, Brizel D, Lartigau E, Stadler P, Becker A, Adam M, Molls M, Dunst J, Terris DJ, Overgaard J (2005) Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol 77:18–24
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '15141023', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15141023/'}]}
    2. Powis G, Kirkpatrick L (2004) Hypoxia inducible factor-1{alpha} as a cancer drug target. Mol Cancer Ther 3:647–654
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1097/01.cad.0000180116.85912.69', 'is_inner': False, 'url': 'https://doi.org/10.1097/01.cad.0000180116.85912.69'}, {'type': 'PubMed', 'value': '16162966', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16162966/'}]}
    2. Belozerov VE, Van Meir EG (2005) Hypoxia inducible factor-1: a novel target for cancer therapy. Anticancer Drugs 16:901–909
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1093/jnci/93.4.266', 'is_inner': False, 'url': 'https://doi.org/10.1093/jnci/93.4.266'}, {'type': 'PubMed', 'value': '11181773', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11181773/'}]}
    2. Hockel M, Vaupel P (2001) Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93:266–276
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '7658224', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/7658224/'}]}
    2. Caldwell JH, Revenaugh JR, Martin GV, Johnson PM, Rasey JS, Krohn KA (1995) Comparison of fluorine-18-fluorodeoxyglucose and tritiated fluoromisonidazole uptake during low-flow ischemia. J Nucl Med 36:1633–1638
    1. None
    2. Hall EJ, Giaccia AJ (2006) Oxygen effect and reoxygenation. In: Hall EJ, Giaccia AJ (eds) Radiobiology for the Radiologist. Lippincott Williams & Wilkins, Philadelphia, pp 85–105
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1379/CSC-99r.1', 'is_inner': False, 'url': 'https://doi.org/10.1379/csc-99r.1'}, {'type': 'PMC', 'value': 'PMC1176476', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc1176476/'}, {'type': 'PubMed', 'value': '16038406', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16038406/'}]}
    2. Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10:86–103
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/S0167-8140(03)00011-2', 'is_inner': False, 'url': 'https://doi.org/10.1016/s0167-8140(03)00011-2'}, {'type': 'PubMed', 'value': '12758235', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12758235/'}]}
    2. Bussink J, Kaanders JH, van der Kogel AJ (2003) Tumor hypoxia at the micro-regional level: clinical relevance and predictive value of exogenous and endogenous hypoxic cell markers. Radiother Oncol 67:3–15
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '16594164', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16594164/'}]}
    2. Williams KJ, Parker CA, Stratford IJ (2005) Exogenous and endogenous markers of tumour oxygenation status: definitive markers of tumour hypoxia? Adv Exp Med Biol 566:285–294
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/j.rcl.2004.08.004', 'is_inner': False, 'url': 'https://doi.org/10.1016/j.rcl.2004.08.004'}, {'type': 'PubMed', 'value': '15693655', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15693655/'}]}
    2. Rajendran JG, Krohn KA (2005) Imaging hypoxia and angiogenesis in tumors. Radiol Clin North Am 43:169–187
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '7673026', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/7673026/'}]}
    2. Koh WJ, Bergman KS, Rasey JS, Peterson LM, Evans ML, Graham MM, Grierson JR, Lindsley KL, Lewellen TK, Krohn KA et al (1995) Evaluation of oxygenation status during fractionated radiotherapy in human nonsmall cell lung cancers using [F-18]fluoromisonidazole positron emission J Radiat Oncol Biol Phys 33:391-398
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '12632200', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12632200/'}]}
    2. Rajendran JG, Wilson DC, Conrad EU, Peterson LM, Bruckner JD, Rasey JS, Chin LK, Hofstrand PD, Grierson JR, Eary JF, Krohn KA (2003) [(18)F]FMISO and [(18)F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. Eur J Nucl Med Mol Imaging 30:695–704
    1. None
    2. Ng P, Rajendran JG, Schwartz DL, Patterson LM, Scharnhorst J, Krohn KA (2003) Can [F-18] fluoromisonidazole PET imaging predict treatment response in head and neck cancer? J Nucl Med 44:128P
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1158/1078-0432.CCR-0688-3', 'is_inner': False, 'url': 'https://doi.org/10.1158/1078-0432.ccr-0688-3'}, {'type': 'PubMed', 'value': '15073099', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15073099/'}]}
    2. Rajendran JG, Mankoff DA, O’Sullivan F, Peterson LM, Schwartz DL, Conrad EU, Spence AM, Muzi M, Farwell DG, Krohn KA (2004) Hypoxia and glucose metabolism in malignant tumors: evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography imaging. Clin Cancer Res 10:2245–2252
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1007/s00259-005-1880-2', 'is_inner': False, 'url': 'https://doi.org/10.1007/s00259-005-1880-2'}, {'type': 'PubMed', 'value': '16133382', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16133382/'}]}
    2. Hicks RJ, Rischin D, Fisher R, Binns D, Scott AM, Peters LJ (2005) Utility of FMISO PET in advanced head and neck cancer treated with chemoradiation incorporating a hypoxia-targeting chemotherapy agent. Eur J Nucl Med Mol Imaging 32:1384–1391
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '9225812', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/9225812/'}]}
    2. Fujibayashi Y, Taniuchi H, Yonekura Y, Ohtani H, Konishi J, Yokoyama A (1997) Copper-62-ATSM: A new hypoxia imaging agent with high membrane permeability and low redox potential. J Nucl Med 38:1155–1160
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1007/s002590050283', 'is_inner': False, 'url': 'https://doi.org/10.1007/s002590050283'}, {'type': 'PubMed', 'value': '9662602', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/9662602/'}]}
    2. Dearling JLD, Lewis JS, Mullen GED, Rae MT, Zweit J, Blower PJ (1998) Design of hypoxia-targeting radiopharmaceuticals: Selective uptake of copper-64 complexes in hypoxic cells in vitro. Eur J Nucl Med 25:788–792
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1039/a805957h', 'is_inner': False, 'url': 'https://doi.org/10.1039/a805957h'}]}
    2. Dearling JLJ, Lewis JS, Welch MJ, McCarthy DW, Blower PJ (1998) Redox-active complexes for imaging hypoxic tissues: Structure-activity relationships in copper(II)bis(thiosemicarbazone) complexes. Chem Commun 22:2531–2533
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '9935074', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/9935074/'}]}
    2. Lewis JS, McCarthy DW, McCarthy TJ, Fujibayashi Y, Welch MJ (1999) The evaluation of 64Cu-diacetyl-bis(N4-methylthiosemicarbazone)(64Cu-ATSM) in vivo and in vitro in a hypoxic tumor model. J Nucl Med 40:177–183
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '11337556', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11337556/'}]}
    2. Lewis JS, Sharp TL, Laforest R, Fujibayashi Y, Welch MJ (2001) Tumor uptake of copper-diacetyl-bis(N4-methylthiosemicarbazone): Effect of changes in tissue oxygenation. J Nucl Med 42:655–661
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1007/s007750100291', 'is_inner': False, 'url': 'https://doi.org/10.1007/s007750100291'}, {'type': 'PubMed', 'value': '11935349', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11935349/'}]}
    2. Dearling JL, Lewis JS, Mullen GE, Welch MJ, Blower PJ (2002) Copper bis(thiosemicarbazone) complexes as hypoxia imaging agents: structure-activity relationships. J Biol Inorg Chem 7:249–259
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '12411560', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12411560/'}]}
    2. Lewis JS, Herrero P, Sharp T, Engelbach JA, Fujibayashi Y, Laforest R, Kovacs A, Gropler RJ, Welch MJ (2002) Delineation of hypoxia in canine myocardium using PET and copper(II)-diacetyl-bis(N4-methylthiosemicarbazone). J Nucl Med 43:1557–1569
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1021/jm0104217', 'is_inner': False, 'url': 'https://doi.org/10.1021/jm0104217'}, {'type': 'PubMed', 'value': '11906283', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11906283/'}]}
    2. Maurer RI, Blower PJ, Dilworth JR, Reynolds CA, Zheng Y, Mullen GED (2002) Studies on the mechanism of hypoxic selectivity in copper bis(thiosemicarbazone) radiopharmaceuticals. J Med Chem 45:1420–1431
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/S0969-8051(96)00130-8', 'is_inner': False, 'url': 'https://doi.org/10.1016/s0969-8051(96)00130-8'}, {'type': 'PubMed', 'value': '9004284', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/9004284/'}]}
    2. Blower PJ, Lewis JS, Zweit J (1996) Copper radionuclides and radiopharmaceuticals in nuclear medicine. Nucl Med Biol 23:957–980
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '12692685', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12692685/'}]}
    2. Dehdashti F, Mintun MA, Lewis JS, Bradley J, Govindan R, Laforest R, Welch MJ, A SB (2003) In vivo assesment of tumor hypoxia in lung cancer with 60Cu-ATSM. Eur J Nucl Med Mol Imaging 30:844–850
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '12654432', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12654432/'}]}
    2. Dehdashti F, Grigsby PW, Mintun MA, Lewis JS, Siegel BA, Welch MJ (2003) Assessing tumor hypoxia in cervical cancer by positron emission tomography with 60Cu-ATSM: relationship to therapeutic response-a preliminary report. Int J Radiat Oncol Biol Phys 55:1233–1238
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1002/nbm.716', 'is_inner': False, 'url': 'https://doi.org/10.1002/nbm.716'}, {'type': 'PubMed', 'value': '11746943', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11746943/'}]}
    2. Howe FA, Robinson SP, McIntyre DJ, Stubbs M, Griffiths JR (2001) Issues in flow and oxygenation dependent contrast (FLOOD) imaging of tumours. NMR Biomed 14:497–506
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1002/jmri.10274', 'is_inner': False, 'url': 'https://doi.org/10.1002/jmri.10274'}, {'type': 'PubMed', 'value': '12655584', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12655584/'}]}
    2. Robinson SP, Rijken PF, Howe FA, McSheehy PM, Van Der Sanden BP, Heerschap A, Stubbs M, Van Der Kogel AJ, Griffiths JR (2003) Tumor vascular architecture and function evaluated by non-invasive susceptibility MRI methods and immunohistochemistry. J Magn Reson Imaging 17:445–454
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '12941821', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12941821/'}]}
    2. Kostourou V, Robinson SP, Whitley GS, Griffiths JR (2003) Effects of overexpression of dimethylarginine dimethylaminohydrolase on tumor angiogenesis assessed by susceptibility magnetic resonance imaging. Cancer Res 63:4960–4966
    1. Carnell DM, Taylor NJ, Smith RE, Hoskin PJ, Stirling JJ, d’Arcy J, Walker-Samuel S, Collins DJ, Leach MO, Padhani AR (2005) Evaluation of prostate gland hypoxia with quantified BOLD MRI: updated results from a correlated histological study. Miami, pp 270
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1002/jmri.1166', 'is_inner': False, 'url': 'https://doi.org/10.1002/jmri.1166'}, {'type': 'PubMed', 'value': '11477674', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11477674/'}]}
    2. Taylor NJ, Baddeley H, Goodchild KA, Powell ME, Thoumine M, Culver LA, Stirling JJ, Saunders MI, Hoskin PJ, Phillips H, Padhani AR, Griffiths JR (2001) BOLD MRI of human tumor oxygenation during carbogen breathing. J Magn Reson Imaging 14:156–163
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/S0360-3016(02)02825-0', 'is_inner': False, 'url': 'https://doi.org/10.1016/s0360-3016(02)02825-0'}, {'type': 'PubMed', 'value': '12128119', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12128119/'}]}
    2. Rijpkema M, Kaanders JH, Joosten FB, van der Kogel AJ, Heerschap A (2002) Effects of breathing a hyperoxic hypercapnic gas mixture on blood oxygenation and vascularity of head-and-neck tumors as measured by magnetic resonance imaging. Int J Radiat Oncol Biol Phys 53:1185–1191
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1002/jmri.20024', 'is_inner': False, 'url': 'https://doi.org/10.1002/jmri.20024'}, {'type': 'PubMed', 'value': '15065173', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15065173/'}]}
    2. Rodrigues LM, Howe FA, Griffiths JR, Robinson SP (2004) Tumor R2* is a prognostic indicator of acute radiotherapeutic response in rodent tumors. J Magn Reson Imaging 19:482–488
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1002/jcb.10399', 'is_inner': False, 'url': 'https://doi.org/10.1002/jcb.10399'}, {'type': 'PubMed', 'value': '12552597', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12552597/'}]}
    2. Neeman M (2002) Functional and molecular MR imaging of angiogenesis: Seeing the target, seeing it work. J Cell Biochem Suppl 39:11–17
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/S0360-3016(00)00467-3', 'is_inner': False, 'url': 'https://doi.org/10.1016/s0360-3016(00)00467-3'}, {'type': 'PubMed', 'value': '10837935', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/10837935/'}]}
    2. Ling CC, Humm J, Larson S, Amols H, Fuks Z, Leibel S, Koutcher JA (2000) Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 47:551–560
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1080/02841860310004986', 'is_inner': False, 'url': 'https://doi.org/10.1080/02841860310004986'}, {'type': 'PubMed', 'value': '12801131', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12801131/'}]}
    2. Brahme A (2003) Biologically optimized 3-dimensional in vivo predictive assay-based radiation therapy using positron emission tomography-computerized tomography imaging. Acta Oncol 42:123–136
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/S1470-2045(05)01737-7', 'is_inner': False, 'url': 'https://doi.org/10.1016/s1470-2045(05)01737-7'}, {'type': 'PubMed', 'value': '15683820', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15683820/'}]}
    2. Bentzen SM (2005) Theragnostic imaging for radiation oncology: dose-painting by numbers. Lancet Oncol 6:112–117
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/S0360-3016(00)01433-4', 'is_inner': False, 'url': 'https://doi.org/10.1016/s0360-3016(00)01433-4'}, {'type': 'PubMed', 'value': '11240261', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11240261/'}]}
    2. Chao C, Bosch WR, Mutic S, Lewis JS, Dehdashti FD, Mintun MA, Demsey JF, Perez CA, Purdy JA, Welch MJ (2001) A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy. Int J Radiat Biol Phys 49:1171–1182
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1186/1471-2407-5-152', 'is_inner': False, 'url': 'https://doi.org/10.1186/1471-2407-5-152'}, {'type': 'PMC', 'value': 'PMC1325034', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc1325034/'}, {'type': 'PubMed', 'value': '16321146', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16321146/'}]}
    2. Thorwarth D, Eschmann SM, Scheiderbauer J, Paulsen F, Alber M (2005) Kinetic analysis of dynamic 18F-fluoromisonidazole PET correlates with radiation treatment outcome in head-and-neck cancer. BMC Cancer 5:152
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '12182995', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12182995/'}]}
    2. Ljungkvist AS, Bussink J, Rijken PF, Kaanders JH, van der Kogel AJ, Denekamp J (2002) Vascular architecture, hypoxia, and proliferation in first-generation xenografts of human head-and-neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys 54:215–228
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1109/MEMB.2004.1360410', 'is_inner': False, 'url': 'https://doi.org/10.1109/memb.2004.1360410'}, {'type': 'PubMed', 'value': '15565801', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15565801/'}]}
    2. Collins DJ, Padhani AR (2004) Dynamic magnetic resonance imaging of tumor perfusion. Approaches and biomedical challenges. IEEE Eng Med Biol Mag 23:65–83
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '1727119', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/1727119/'}]}
    2. Koh WJ, Rasey JS, Evans ML, Grierson JR, Lewellen TK, Graham MM, Krohn KA, Griffin TW (1992) Imaging of hypoxia in human tumors with [F-18]fluoromisonidazole. Int J Radiat Oncol Biol Phys 22:199–212
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '8892467', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/8892467/'}]}
    2. Rasey JS, Koh WJ, Evans ML, Peterson LM, Lewellen TK, Graham MM, Krohn KA (1996) Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Oncol Biol Phys 36:417–428
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '15695784', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15695784/'}]}
    2. Eschmann SM, Paulsen F, Reimold M, Dittmann H, Welz S, Reischl G, Machulla HJ, Bares R (2005) Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. J Nucl Med 46:253–260
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '15632040', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15632040/'}]}
    2. Piert M, Machulla HJ, Picchio M, Reischl G, Ziegler S, Kumar P, Wester HJ, Beck R, McEwan AJ, Wiebe LI, Schwaiger M (2005) Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside. J Nucl Med 46:106–113
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '10688119', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/10688119/'}]}
    2. Evans SM, Kachur AV, Shiue CY, Hustinx R, Jenkins WT, Shive GG, Karp JS, Alavi A, Lord EM, Dolbier WR Jr, Koch CJ (2000) Noninvasive detection of tumor hypoxia using the 2-nitroimidazole [18F]EF1. J Nucl Med 41:327–336

Source: PubMed

3
Se inscrever