25-Hydroxyvitamin D and Peripheral Immune Mediators: Results from Two Nationwide Danish Pediatric Cohorts

Steffen U Thorsen, Christian B Pipper, Kristin Skogstrand, Flemming Pociot, Jannet Svensson, Steffen U Thorsen, Christian B Pipper, Kristin Skogstrand, Flemming Pociot, Jannet Svensson

Abstract

(1) Background: We aimed to examine if 25-hydroxyvitamin D (25(OH)D) was related to the peripheral immunological and inflammatory signature both at birth, and in newly diagnosed patients with childhood type 1 diabetes (T1D) and their healthy controls; (2) Methods: The birth cohort consisted of 470 patients and 500 healthy controls. Dried blood samples were collected from the neonates in the period 1981-1999. The newly diagnosed cohort consisted of 460 patients and 453 siblings. Serum samples were collected in the period 1997-2005. A variety of peripheral immune mediators were measured and compared to total 25(OH)D levels (25(OH)D₂ + 25(OH)D₃). For each immune mediator, the relative change (RC) in the mean level was modeled by robust log-normal regression and correction for multiple testing was performed; (3) Results: Two associations were identified; there was a negative association between 25(OH)D (10 nmol/L increase) and leptin (RC (95% confidence interval (CI)), 0.98 (0.96; 1.00)), and a positive association between 25(OH)D (10 nmol/L increase) and the chemokine, chemokine (c-x-c motif) ligand (CXCL) 8 (RC (95% CI), 1.07 (1.01; 1.13)); (4) Conclusion: CXCL8 and leptin have significant associations with levels of 25(OH)D in the newly diagnosed cohort. These results do not indicate a strong influence of 25(OH)D on the peripheral immunological or inflammatory signature.

Keywords: Adolescent; C-reactive protein; Child; Cytokines/immunology; Diabetes Mellitus, Type 1; Infant, Newborn; TREM1, human; mannose-binding lectin; vitamin D.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Relative change in mean levels of immune mediators with 95% confidence bands by 10 nmol/L increase in 25(OH)D levels in the birth cohort—results from the full adjusted model. IL, interleukin; IFNγ, interferon gamma; TNFα, tumor necrosis factor alpha; TGFβ, transforming growth factor beta; CRP, c-reactive protein; MBL, mannose-binding lectin; sTREM-1, soluble triggering receptor expressed on myeloid cells-1; CXCL, chemokine (c-x-c motif) ligand.
Figure 2
Figure 2
Relative change in mean levels of immune mediators with 95% confidence bands by 10 nmol/L increase in 25(OH)D levels in the newly diagnosed cohort—results from the full adjusted model. IL, interleukin; IFNγ, interferon gamma; TNFα, tumor necrosis factor alpha; TGFβ, transforming growth factor beta; CRP, c-reactive protein; MBL, mannose-binding lectin; sTREM-1, soluble triggering receptor expressed on myeloid cells-1; CXCL, chemokine (c-x-c motif) ligand; CCL, chemokine (c-c motif) ligand; CI, confidence interval.

References

    1. Rewers M., Ludvigsson J. Environmental risk factors for type 1 diabetes. Lancet Lond. Engl. 2016;387:2340–2348. doi: 10.1016/S0140-6736(16)30507-4.
    1. Paul D.S., Teschendorff A.E., Dang M.A.N., Lowe R., Hawa M.I., Ecker S., Beyan H., Cunningham S., Fouts A.R., Ramelius A., et al. Increased DNA methylation variability in type 1 diabetes across three immune effector cell types. Nat. Commun. 2016;7:13555. doi: 10.1038/ncomms13555.
    1. Pociot F., Lernmark Å. Genetic risk factors for type 1 diabetes. Lancet Lond. Engl. 2016;387:2331–2339. doi: 10.1016/S0140-6736(16)30582-7.
    1. Wolden-Kirk H., Overbergh L., Christesen H.T., Brusgaard K., Mathieu C. Vitamin D and diabetes: Its importance for beta cell and immune function. Mol. Cell. Endocrinol. 2011;347:106–120. doi: 10.1016/j.mce.2011.08.016.
    1. Badenhoop K., Kahles H., Penna-Martinez M. Vitamin D, immune tolerance, and prevention of type 1 diabetes. Curr. Diabetes Rep. 2012;12:635–642. doi: 10.1007/s11892-012-0322-3.
    1. Dong J.-Y., Zhang W.-G., Chen J.J., Zhang Z.-L., Han S.-F., Qin L.-Q. Vitamin D intake and risk of type 1 diabetes: A meta-analysis of observational studies. Nutrients. 2013;5:3551–3562. doi: 10.3390/nu5093551.
    1. Thorsen S.U., Mortensen H.B., Carstensen B., Fenger M., Thuesen B.H., Husemoen L.L., Bergholdt R., Brorsson C., Pociot F., Linneberg A., et al. No difference in vitamin d levels between children newly diagnosed with type 1 diabetes and their healthy siblings: A 13-year nationwide Danish study. Diabetes Care. 2013;36:e157–e158. doi: 10.2337/dc13-0342.
    1. Thorsen S.U., Pipper C.B., Eising S., Skogstrand K., Hougaard D.M., Svensson J., Pociot F. Neonatal levels of adiponectin, interleukin-10 and interleukin-12 are associated with the risk of developing type 1 diabetes in childhood and adolescence: A nationwide Danish case-control study. Clin. Immunol. 2017;174:18–23. doi: 10.1016/j.clim.2016.11.007.
    1. Jacobsen R., Thorsen S.U., Cohen A.S., Lundqvist M., Frederiksen P., Pipper C.B., Pociot F., Thygesen L.C., Ascherio A., Svensson J., et al. Neonatal vitamin D status is not associated with later risk of type 1 diabetes: Results from two large Danish population-based studies. Diabetologia. 2016;59:1871–1881. doi: 10.1007/s00125-016-4002-8.
    1. Thorsen S.U., Pipper C.B., Mortensen H.B., Skogstrand K., Pociot F., Johannesen J., Svensson J., Danish Childhood Diabetes Register Levels of soluble TREM-1 in children with newly diagnosed type 1 diabetes and their siblings without type 1 diabetes: A Danish case-control study. Pediatr. Diabetes. 2016 doi: 10.1111/pedi.12464.
    1. Svensson J., Cerqueira C., Kjærsgaard P., Lyngsøe L., Hertel N.T., Madsen M., Mortensen H.B., Johannesen J. Danish Registry of Childhood and Adolescent Diabetes. Clin. Epidemiol. 2016;8:679. doi: 10.2147/CLEP.S99469.
    1. Eising S., Svensson J., Skogstrand K., Nilsson A., Lynch K., Andersen P.S., Lernmark Å., Hougaard D.M., Pociot F., Nørgaard-Pedersen B., et al. Type 1 diabetes risk analysis on dried blood spot samples from population-based newborns: Design and feasibility of an unselected case–control study. Paediatr. Perinat. Epidemiol. 2007;21:507–517. doi: 10.1111/j.1365-3016.2007.00846.x.
    1. Hollegaard M.V., Grauholm J., Nielsen R., Grove J., Mandrup S., Hougaard D.M. Archived neonatal dried blood spot samples can be used for accurate whole genome and exome-targeted next-generation sequencing. Mol. Genet. Metab. 2013;110:65–72. doi: 10.1016/j.ymgme.2013.06.004.
    1. Skogstrand K., Thorsen P., Nørgaard-Pedersen B., Schendel D.E., Sørensen L.C., Hougaard D.M. Simultaneous measurement of 25 inflammatory markers and neurotrophins in neonatal dried blood spots by immunoassay with xMAP technology. Clin. Chem. 2005;51:1854–1866. doi: 10.1373/clinchem.2005.052241.
    1. Leek J.T., Scharpf R.B., Bravo H.C., Simcha D., Langmead B., Johnson W.E., Geman D., Baggerly K., Irizarry R.A. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat. Rev. Genet. 2010;11:733–739. doi: 10.1038/nrg2825.
    1. Skogstrand K. Multiplex assays of inflammatory markers, a description of methods and discussion of precautions—Our experience through the last ten years. Methods San Diego Calif. 2012;56:204–212. doi: 10.1016/j.ymeth.2011.09.025.
    1. Eyles D., Anderson C., Ko P., Jones A., Thomas A., Burne T., Mortensen P.B., Nø rgaard-Pedersen B., Hougaard D.M., McGrath J. A sensitive LC/MS/MS assay of 25OH vitamin D3 and 25OH vitamin D2 in dried blood spots. Clin. Chim. Acta. 2009;403:145–151. doi: 10.1016/j.cca.2009.02.005.
    1. Eyles D.W., Morley R., Anderson C., Ko P., Burne T., Permezel M., Mortensen P.B., Nørgaard-Pedersen B., Hougaard D.M., McGrath J.J. The utility of neonatal dried blood spots for the assessment of neonatal vitamin D status. Paediatr. Perinat. Epidemiol. 2010;24:303–308. doi: 10.1111/j.1365-3016.2010.01105.x.
    1. Thuesen B., Husemoen L., Fenger M., Jakobsen J., Schwarz P., Toft U., Ovesen L., Jø rgensen T., Linneberg A. Determinants of vitamin D status in a general population of Danish adults. Bone. 2012;50:605–610. doi: 10.1016/j.bone.2011.12.016.
    1. Pipper C.B., Ritz C., Bisgaard H. A versatile method for confirmatory evaluation of the effects of a covariate in multiple models. J. R. Stat. Soc. Ser. C Appl. Stat. 2012;61:315–326. doi: 10.1111/j.1467-9876.2011.01005.x.
    1. Hothorn T., Bretz F., Westfall P. Simultaneous inference in general parametric models. Biometr. J. Biometr. Z. 2008;50:346–363. doi: 10.1002/bimj.200810425.
    1. Vandercappellen J., Van Damme J., Struyf S. The role of CXC chemokines and their receptors in cancer. Cancer Lett. 2008;267:226–244. doi: 10.1016/j.canlet.2008.04.050.
    1. Ryynänen J., Carlberg C. Primary 1,25-Dihydroxyvitamin D3 Response of the Interleukin 8 Gene Cluster in Human Monocyte- and Macrophage-Like Cells. PLoS ONE. 2013;8:e78170. doi: 10.1371/journal.pone.0078170.
    1. Greiller C.L., Martineau A.R. Modulation of the Immune Response to Respiratory Viruses by Vitamin D. Nutrients. 2015;7:4240–4270. doi: 10.3390/nu7064240.
    1. Dauletbaev N., Herscovitch K., Das M., Chen H., Bernier J., Matouk E., Bérubé J., Rousseau S., Lands L.C. Down-regulation of IL-8 by high-dose vitamin D is specific to hyperinflammatory macrophages and involves mechanisms beyond up-regulation of DUSP1. Br. J. Pharmacol. 2015;172:4757–4771. doi: 10.1111/bph.13249.
    1. Thorsen S.U., Eising S., Mortensen H.B., Skogstrand K., Pociot F., Johannesen J., Svensson J., Danish Childhood Diabetes Register Systemic Levels of CCL2, CCL3, CCL4 and CXCL8 Differ According to Age, Time Period and Season among Children Newly Diagnosed with type 1 Diabetes and their Healthy Siblings. Scand. J. Immunol. 2014;80:452–461. doi: 10.1111/sji.12240.
    1. Fernández-Riejos P., Najib S., Santos-Alvarez J., Martín-Romero C., Pérez-Pérez A., González-Yanes C., Sánchez-Margalet V. Role of leptin in the activation of immune cells. Mediat. Inflamm. 2010;2010:568343. doi: 10.1155/2010/568343.
    1. Safai N., Eising S., Hougaard D.M., Mortensen H.B., Skogstrand K., Pociot F., Johannesen J., Svensson J. Levels of adiponectin and leptin at onset of type 1 diabetes have changed over time in children and adolescents. Acta Diabetol. 2015;52:167–174. doi: 10.1007/s00592-014-0630-y.
    1. Hajimohammadi M., Shab-Bidar S., Neyestani T.R. Vitamin D and serum leptin: A systematic review and meta-analysis of observational studies and randomized controlled trials. Eur. J. Clin. Nutr. 2016 doi: 10.1038/ejcn.2016.245.
    1. Peakman M. Immunological pathways to β-cell damage in Type 1 diabetes. Diabet. Med. 2013;30:147–154. doi: 10.1111/dme.12085.
    1. Jörns A., Arndt T., Meyer zu Vilsendorf A., Klempnauer J., Wedekind D., Hedrich H.-J., Marselli L., Marchetti P., Harada N., Nakaya Y., et al. Islet infiltration, cytokine expression and beta cell death in the NOD mouse, BB rat, Komeda rat, LEW. 1AR1-iddm rat and humans with type 1 diabetes. Diabetologia. 2014;57:512–521. doi: 10.1007/s00125-013-3125-4.

Source: PubMed

3
Se inscrever