Current Therapeutic Modalities for the Management of Chronic Diabetic Wounds of the Foot

Olajumoke Arinola Oyebode, Sandy Winfield Jere, Nicolette Nadene Houreld, Olajumoke Arinola Oyebode, Sandy Winfield Jere, Nicolette Nadene Houreld

Abstract

Impaired wound healing is common in patients with diabetes mellitus (DM). Different therapeutic modalities including wound debridement and dressing, transcutaneous electrical nerve stimulation (TENS), nanomedicine, shockwave therapy, hyperbaric (HBOT) and topical (TOT) oxygen therapy, and photobiomodulation (PBM) have been used in the management of chronic diabetic foot ulcers (DFUs). The selection of a suitable treatment method for DFUs depends on the hosts' physiological status including the intricacy and wound type. Effective wound care is considered a critical component of chronic diabetic wound management. This review discusses the causes of diabetic wounds and current therapeutic modalities for the management of DFUs, specifically wound debridement and dressing, TENS, nanomedicine, shockwave therapy, HBOT, TOT, and PBM.

Conflict of interest statement

The authors declare no conflict of interest.

Copyright © 2023 Olajumoke Arinola Oyebode et al.

Figures

Figure 1
Figure 1
A summary of the major causes of chronic diabetic wounds.
Figure 2
Figure 2
Conventional methods in the management of diabetic wounds.

References

    1. Kharroubi A. T., Darwish H. M. Diabetes mellitus: the epidemic of the century. World Journal of Diabetes . 2015;6(6):850–867. doi: 10.4239/wjd.v6.i6.850.
    1. American Diabetes Association. Classification and diagnosis of diabetes: standards of medical care in diabetes-2021. Diabetes Care . 2021;44(Supplement_1):S15–S33. doi: 10.2337/dc21-S002.
    1. Bonora E., Trombetta M., Dauriz M., et al. Chronic complications in patients with newly diagnosed type 2 diabetes: prevalence and related metabolic and clinical features: the Verona Newly Diagnosed Type 2 Diabetes Study (VNDS) 9. BMJ Open Diabetes Research & Care . 2020;8(1, article e001549) doi: 10.1136/bmjdrc-2020-001549.
    1. International Diabetes Federation. Diabetes Atlas 2021 . 10th.
    1. Magliano D. J., Boyko E. J. IDF DIABETES ATLAS . 10th. Brussels: International Diabetes Federation; 2021. IDF Diabetes Atlas 10th edition scientific committee. Chapter 3, Global picture. Available from:
    1. Oliver T. I., Mutluoglu M. StatPearls . Treasure Island (FL): StatPearls Publishing; 2022. Diabetic foot ulcer. [Updated 2021 Aug 19] Available from:
    1. Pendsey S. P. Understanding diabetic foot. International Journal of Diabetes in Developing Countries . 2010;30(2):75–79. doi: 10.4103/0973-3930.62596.
    1. Feldman E. L., Callaghan B. C., Pop-Busui R., et al. Diabetic neuropathy. Nature Reviews Disease Primers . 2019;5:p. 41. doi: 10.1038/s41572-019-0092-1.
    1. Akalu Y., Birhan A. Peripheral arterial disease and its associated factors among type 2 diabetes mellitus patients at Debre Tabor General Hospital, Northwest Ethiopia. Journal Diabetes Research . 2020;2020:p. 9419413. doi: 10.1155/2020/9419413.
    1. Thiruvoipati T., Kielhorn C. E., Armstrong E. J. Peripheral artery disease in patients with diabetes: epidemiology, mechanisms, and outcomes. World Journal of Diabetes . 2015;6(7):961–969. doi: 10.4239/wjd.v6.i7.961.
    1. Kamil S., Sehested T. S. G., Carlson N., et al. Diabetes and risk of peripheral artery disease in patients undergoing first-time coronary angiography between 2000 and 2012 – a nationwide study. BMC Cardiovascular Disorders . 2019;19(1):p. 234. doi: 10.1186/s12872-019-1213-1.
    1. Bader M. S. Diabetic foot infection. American Family Physician . 2008;78(1):71–79.
    1. Bowen K. Managing foot infections in patients with diabetes. Australian Prescriber . 2007;30(1):21–24. doi: 10.18773/austprescr.2007.009.
    1. Gemechu F. W., Seemant F., Curley C. A. Diabetic foot infections. American Family Physician . 2013;88(3):177–184.
    1. Patel S., Srivastava S., Singh R. M., Singh D. Mechanistic insight into diabetic wounds: pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomedicine & Pharmacotherapy . 2019;112, article 108615 doi: 10.1016/j.biopha.2019.108615.
    1. Wetzler C., Kampfer H., Stallmeyer B., Pfeilschifter J., Frank S. Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: prolonged persistence of neutrophils and macrophages during the late phase of repair. The Journal of Investigative Dermatology . 2000;115(2):245–253. doi: 10.1046/j.1523-1747.2000.00029.x.
    1. Sabino F., Keller U. A. D. Matrix metalloproteinases in impaired wound healing. Metalloproteinases Med. . 2015;2:1–8.
    1. Spampinato S. F., Caruso G. I., De Pasquale R., Sortino M. A., Merlo S. The treatment of impaired wound healing in diabetes: looking among old drugs. Pharmaceuticals. . 2020;13(4):p. 60. doi: 10.3390/ph13040060.
    1. Bowers S., Franco E. Chronic wounds: evaluation and management. American Family Physician . 2020;101(3):159–166.
    1. Andrews K. L., Houdek M. T., Kiemele L. J. Wound management of chronic diabetic foot ulcers. Prosthetics and Orthotics International . 2015;39(1):29–39. doi: 10.1177/0309364614534296.
    1. Frykberg R. G., Banks J. Management of diabetic foot ulcers: a review. Federal Practitioner . 2016;33(2):16–23.
    1. Cardinal M., Eisenbud D. E., Armstrong D. G., et al. Serial surgical debridement: a retrospective study on clinical outcomes in chronic lower extremity wounds. Wound Repair and Regeneration . 2009;17(3):306–311. doi: 10.1111/j.1524-475X.2009.00485.x.
    1. Davis S. C., Ricotti C., Cazzaniga A., Welsh E., Eaglstein W. H., Mertz P. M. Microscopic and physiologic evidence for biofilm-associated wound colonization in vivo. Wound Repair and Regeneration . 2008;16(1):23–29. doi: 10.1111/j.1524-475X.2007.00303.x.
    1. Mori Y., Nakagami G., Kitamura A., et al. Effectiveness of biofilm-based wound care system on wound healing in chronic wounds. Wound Repair and Regeneration . 2019;27(5):540–547. doi: 10.1111/wrr.12738.
    1. Kim P. J., Steinberg J. S. Wound care: biofilm and its impact on the latest treatment modalities for ulcerations of the diabetic foot. Seminars in Vascular Surgery . 2012;25(2):70–74. doi: 10.1053/j.semvascsurg.2012.04.008.
    1. Breuing K. H., Bayer L., Neuwalder J., Orgill D. P. Early experience using low-frequency ultrasound in chronic wounds. Annals of Plastic Surgery . 2005;55(2):183–187. doi: 10.1097/01.sap.0000168695.20350.07.
    1. Falanga V. The chronic wound: impaired healing and solutions in the context of wound bed preparation. Blood Cells, Molecules & Diseases . 2004;32(1):88–94. doi: 10.1016/j.bcmd.2003.09.020.
    1. Tallis A., Motley T. A., Wunderlich R. P., Dickerson J. E., Jr., Waycaster C., Slade H. B. Clinical and economic assessment of diabetic foot ulcer debridement with collagenase: results of a randomized controlled study. Clinical Therapeutics . 2013;35(11):1805–1820. doi: 10.1016/j.clinthera.2013.09.013.
    1. Aderibigbe B. A., Buyana B. Alginate in wound dressings. Pharmaceutics . 2018;10(2):p. 42. doi: 10.3390/pharmaceutics10020042.
    1. Alven S., Aderibigbe B. A. Chitosan and cellulose-based hydrogels for wound management. International Journal of Molecular Sciences . 2020;21(24):p. 9656. doi: 10.3390/ijms21249656.
    1. Williams D., Enoch S., Miller D., Harris K., Price P., Harding K. G. Effect of sharp debridement using curette on recalcitrant nonhealing venous leg ulcers: a concurrently controlled, prospective cohort study. Wound Repair and Regeneration . 2005;13(2):131–137. doi: 10.1111/j.1067-1927.2005.130203.x.
    1. Mudge E., Price P., Walkley N., Harding K. G. A randomized controlled trial of larval therapy for the debridement of leg ulcers: results of a multicenter, randomized, controlled, open, observer blind, parallel group study. Wound Repair and Regeneration . 2014;22(1):43–51. doi: 10.1111/wrr.12127.
    1. Davies C. E., Woolfrey G., Hogg N., et al. Maggots as a wound debridement agent for chronic venous leg ulcers under graduated compression bandages: a randomised controlled trial. Phlebology . 2015;30(10):693–699. doi: 10.1177/0268355514555386.
    1. Gardner S. E., Abbott L. I., Fiala C. A., Rakel B. A. Factors associated with high pain intensity during wound care procedures: a model. Wound Repair and Regeneration . 2017;25(4):558–563. doi: 10.1111/wrr.12553.
    1. Mumcuoglu K. Y., Davidson E., Avidan A., Gilead L. Pain related to maggot debridement therapy. Journal of Wound Care . 2012;21(8):400–405. doi: 10.12968/jowc.2012.21.8.400.
    1. Martínez-Monsalve A., Selva-Sevilla C., Gerónimo-Pardo M. Analgesic effectiveness of topical sevoflurane to perform sharp debridement of painful wounds. Journal of Vascular Surgery . 2019;69(5):1532–1537. doi: 10.1016/j.jvs.2018.08.175.
    1. Machado A. F., Liebano R. E., Furtado F., Hochman B., Ferreira L. M. Effect of high- and low-frequency transcutaneous electrical nerve stimulation on angiogenesis and myofibroblast proliferation in acute excisional wounds in rat skin. Advances in Skin & Wound Care . 2016;29(8):357–363. doi: 10.1097/01.ASW.0000488721.83423.f3.
    1. García-Pérez S., García-Ríos M. C., Pérez-Mármol J. M., et al. Effectiveness of transcutaneous electrical nerve stimulation energy in older adults: a pilot clinical trial. Advances in Skin & Wound Care . 2018;31(10):462–469. doi: 10.1097/01.ASW.0000544614.18501.b4.
    1. Scudds R. J., Helewa A., Scudds R. A. The effects of transcutaneous electrical nerve stimulation on skin temperature in asymptomatic subjects. The Journal of Physical Therapy Science . 1995;75(7):621–628. doi: 10.1093/ptj/75.7.621.
    1. Chang F. Y., Chey W. Y., Ouyang A. Effect of transcutaneous nerve stimulation on esophageal function in normal subjects-evidence for a somatovisceral reflex. The American Journal of Chinese Medicine . 1996;24(2):185–192. doi: 10.1142/S0192415X96000244.
    1. Khalil Z., Merhi M. Effects of aging on neurogenic vasodilator responses evoked by transcutaneous electrical nerve stimulation: relevance to wound healing. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences . 2000;55(6):B257–B263. doi: 10.1093/gerona/55.6.B257.
    1. Sebastian A., Syed F., Perry D., et al. Acceleration of cutaneous healing by electrical stimulation: degenerate electrical waveform down-regulates inflammation, up-regulates angiogenesis and advances remodeling in temporal punch biopsies in a human volunteer study. Wound Repair and Regeneration . 2011;19(6):693–708. doi: 10.1111/j.1524-475X.2011.00736.x.
    1. Koca Kutlu A., Ceçen D., Gürgen S. G., Sayın O., Cetin F. A comparison study of growth factor expression following treatment with transcutaneous electrical nerve stimulation, saline solution, povidone-iodine, and lavender oil in wounds healing. Evidence-based Complementary and Alternative Medicine . 2013;2013:9. doi: 10.1155/2013/361832.361832
    1. Liebano R. E., Abla L. E. F., Ferreira L. M. Effect of low-frequency transcutaneous electrical nerve stimulation (TENS) on the viability of ischemic skin flaps in the rat: an amplitude study. Wound Repair and Regeneration . 2008;16(1):65–69. doi: 10.1111/j.1524-475X.2007.00332.x.
    1. Gürgen S. G., Sayın O., Cetin F., Tuç Y. A. Transcutaneous electrical nerve stimulation (TENS) accelerates cutaneous wound healing and inhibits pro-inflammatory cytokines. Inflammation . 2014;37(3):775–784. doi: 10.1007/s10753-013-9796-7.
    1. Chellappan D. K., Yenese Y., Wei C. C., Gupta G. Nanotechnology and diabetic wound healing: a review. Endocrine, Metabolic & Immune Disorders Drug Targets . 2017;17(2):87–95. doi: 10.2174/1871530317666170421121202.
    1. Smith R. A. Nanotechnology in the future treatment of diabetic wounds. The Review of Diabetic Studies . 2020;16(1):1–12. doi: 10.1900/RDS.2020.16.1.
    1. Bai Q., Han K., Dong K., et al. Potential applications of nanomaterials and technology for diabetic wound healing. International Journal of Nanomedicine . 2020;15:9717–9743. doi: 10.2147/IJN.S276001.
    1. He Y., Al-Mureish A., Wu N. Nanotechnology in the treatment of diabetic complications: a comprehensive narrative review. Journal Diabetes Research . 2021;2021, article 6612063:11. doi: 10.1155/2021/6612063.
    1. Gainza G., José J. A., José L. P., Rosa M. H., Manoli I. rhEGF-loaded PLGA-alginate microspheres enhance the healing of full-thickness excisional wounds in diabetised Wistar rats. European Journal of Pharmaceutical Sciences . 2013;50(3-4):243–252. doi: 10.1016/j.ejps.2013.07.003.
    1. Liu J., Chen Z., Wang J., et al. Encapsulation of curcumin nanoparticles with MMP9-responsive and thermos-sensitive hydrogel improves diabetic wound healing. ACS Applied Materials & Interfaces . 2018;10(19):16315–16326. doi: 10.1021/acsami.8b03868.
    1. Sonamuthu J., Cai Y., Liu H., et al. MMP-9 responsive dipeptide-tempted natural protein hydrogel-based wound dressings for accelerated healing action of infected diabetic wound. International Journal of Biological Macromolecules . 2020;153:1058–1069. doi: 10.1016/j.ijbiomac.2019.10.236.
    1. Haque S. T., Saha S. K., Haque M. E., Biswas N. Nanotechnology-based therapeutic applications: in vitro and in vivo clinical studies for diabetic wound healing. Biomaterials Science . 2021;9(23):7705–7747. doi: 10.1039/D1BM01211H.
    1. Zare H., Rezayi M., Aryan E., et al. Nanotechnology-driven advances in the treatment of diabetic wounds. Biotechnology and Applied Biochemistry . 2021;68(6):1281–1306. doi: 10.1002/bab.2051.
    1. Wang C. J., Cheng J. H., Kuo Y. R., Schaden W., Mittermayr R. Extracorporeal shockwave therapy in diabetic foot ulcers. International Journal of Surgery . 2015;24(Part B):207–209. doi: 10.1016/j.ijsu.2015.06.024.
    1. Wang C. J., Wu C. T., Yang Y. J., Liu R. T., Kuo Y. R. Long-term outcomes of extracorporeal shockwave therapy for chronic foot ulcers. The Journal of Surgical Research . 2014;189(2):366–372. doi: 10.1016/j.jss.2014.03.002.
    1. Holsapple J. S., Cooper B., Berry S. H., et al. Low intensity shockwave treatment modulates macrophage functions beneficial to healing chronic wounds. International Journal of Molecular Sciences . 2021;22(15):p. 7844. doi: 10.3390/ijms22157844.
    1. Hitchman L. H., Totty J. P., Raza A., et al. Extracorporeal shockwave therapy for diabetic foot ulcers: a systematic review and meta-analysis. Annals of Vascular Surgery . 2019;56:330–339. doi: 10.1016/j.avsg.2018.10.013.
    1. Voelker R. Diabetic foot ulcers heal with shock wave therapy. Journal of the American Medical Association . 2018;319(7):p. 649. doi: 10.1001/jama.2018.0480.
    1. Lipsky B. A., Berendt A. R. Hyperbaric oxygen therapy for diabetic foot wounds: has hope hurdled hype? Diabetes Care . 2010;33(5):1143–1145. doi: 10.2337/dc10-0393.
    1. Fagher K., Nilsson A., Löndahl M. Heart rate-corrected QT interval prolongation as a prognostic marker for 3-year survival in people with type 2 diabetes undergoing above-ankle amputation. Diabetic Medicine . 2015;32(5):679–685. doi: 10.1111/dme.12632.
    1. Vinkel J., Holm N. F. R., Jakobsen J. C., Hyldegaard O. Effects of adding adjunctive hyperbaric oxygen therapy to standard wound care for diabetic foot ulcers: a protocol for a systematic review with meta-analysis and trial sequential analysis. BMJ Open . 2020;10(6, article e031708) doi: 10.1136/bmjopen-2019-031708.
    1. Sharma R., Sharma S. K., Mudgal S. K., Jelly P., Thakur K. Efficacy of hyperbaric oxygen therapy for diabetic foot ulcer, a systematic review and meta-analysis of controlled clinical trials. Scientific Reports . 2021;11(1):p. 2189. doi: 10.1038/s41598-021-81886-1.
    1. Zhang Z., Zhang W., Xu Y., Liu D. Efficacy of hyperbaric oxygen therapy for diabetic foot ulcers: an updated systematic review and meta-analysis. Asian Journal of Surgery . 2022;45(1):68–78. doi: 10.1016/j.asjsur.2021.07.047.
    1. Cates N. K., Paul J. K. Topical oxygen therapy for wound healing: a critical evaluation. Surgical Technology International . 2022;40:33–36.
    1. Frykberg R. G. Topical wound oxygen therapy in the treatment of chronic diabetic foot ulcers. Medicina . 2021;57(9):p. 917. doi: 10.3390/medicina57090917.
    1. Houreld N. Healing effects of photobiomodulation on diabetic wounds. Applied Sciences . 2019;9(23):p. 5114. doi: 10.3390/app9235114.
    1. Chaves M. E., Araújo A. R., Piancastelli A. C., Pinotti M. Effects of low-power light therapy on wound healing: LASER x LED. Anais Brasileiros de Dermatologia . 2014;89(4):616–623. doi: 10.1590/abd1806-4841.20142519.
    1. Mester E., Szende B., Gärtner P. The effect of laser beams on the growth of hair in mice. Radiobiologia, Radiotherapia . 1968;9(5):621–626.
    1. Mester E., Spiry T., Szende B., Jolan G. Effect of laser rays on wound healing. American Journal of Surgery . 1971;122(4):532–535. doi: 10.1016/0002-9610(71)90482-X.
    1. Mester E. Clinical results of wound-healing stimulation with laser and experimental studies of the action mechanism. Laser. . 1976;75:119–125.
    1. Beckmann K. H., Meyer-Hamme G., Schröder S. Low level laser therapy for the treatment of diabetic foot ulcers: a critical survey. Evidence-based Complementary and Alternative Medicine . 2014;2014:9. doi: 10.1155/2014/626127.626127
    1. Dancáková L., Vasilenko T., Kováč I., et al. Low-level laser therapy with 810 nm wavelength improves skin wound healing in rats with streptozotocin-induced diabetes. Photomedicine and Laser Surgery . 2014;32(4):198–204. doi: 10.1089/pho.2013.3586.
    1. Silva D. C., Plapler H., Costa M. M., Silva S. R., Sá Mda C., Silva B. S. Low level laser therapy (AlGaInP) applied at 5J/cm2 reduces the proliferation of Staphylococcus aureus MRSA in infected wounds and intact skin of rats. Anais Brasileiros de Dermatologia . 2013;88(1):50–55. doi: 10.1590/S0365-05962013000100005.
    1. Karu T. Photobiology of low-power laser effects. Health Physics . 1989;56(5):691–704. doi: 10.1097/00004032-198905000-00015.
    1. Bonini-Domingos C. R., Valente F. M. Low-level laser therapy of leg ulcer in sickle cell anemia. Revista Brasileira de Hematologia e Hemoterapia . 2012;34(1):65–66. doi: 10.5581/1516-8484.20120018.
    1. Colombo F., Neto Ade A., Sousa A. P., Marchionni A. M., Pinheiro A. L., Reis S. R. Effect of low-level laser therapy (λ660 nm) on angiogenesis in wound healing: a immunohistochemical study in a rodent model. Brazilian Dental Journal . 2013;24(4):308–312. doi: 10.1590/0103-6440201301867.
    1. Huang J., Chen J., Xiong S., Huang J., Liu Z. The effect of low-level laser therapy on diabetic foot ulcers: a meta-analysis of randomised controlled trials. International Wound Journal . 2021;18(6):763–776. doi: 10.1111/iwj.13577.
    1. Litscher G. Integrative laser medicine and high-tech acupuncture at the medical university of Graz, Austria, Europe. Evidence-based Complementary and Alternative Medicine . 2012;2012:21. doi: 10.1155/2012/103109.103109
    1. Dungel P., Hartinger J., Chaudary S., et al. Low level light therapy by LED of different wavelength induces angiogenesis and improves ischemic wound healing. Lasers in Surgery and Medicine . 2014;46(10):773–780. doi: 10.1002/lsm.22299.
    1. Oyebode O., Houreld N. N., Abrahamse H. Photobiomodulation in diabetic wound healing: a review of red and near- infrared wavelength applications. Cell Biochemistry and Function . 2021;39(5):596–612. doi: 10.1002/cbf.3629.
    1. Dai T. The antimicrobial effect of blue light: what are behind? Virulence . 2017;8(6):649–652. doi: 10.1080/21505594.2016.1276691.
    1. Mathur R. K., Sahu K., Saraf S., Patheja P., Khan F., Gupta P. K. Low-level laser therapy as an adjunct to conventional therapy in the treatment of diabetic foot ulcers. Lasers in Medical Science . 2017;32(2):275–282. doi: 10.1007/s10103-016-2109-2.
    1. Santos D. A. F., Campelo M. B., de Oliveira R. A., Nicolau R. A., Rezende V. E., Arisawa E. Â. Effects of low-power light therapy on the tissue repair process of chronic wounds in diabetic feet. Photomedicine and Laser Surgery . 2018;36(6):298–304. doi: 10.1089/pho.2018.4455.

Source: PubMed

3
Se inscrever