Mesenchymal Stem Cells: Cell Fate Decision to Osteoblast or Adipocyte and Application in Osteoporosis Treatment

Lifang Hu, Chong Yin, Fan Zhao, Arshad Ali, Jianhua Ma, Airong Qian, Lifang Hu, Chong Yin, Fan Zhao, Arshad Ali, Jianhua Ma, Airong Qian

Abstract

Osteoporosis is a progressive skeletal disease characterized by decreased bone mass and degraded bone microstructure, which leads to increased bone fragility and risks of bone fracture. Osteoporosis is generally age related and has become a major disease of the world. Uncovering the molecular mechanisms underlying osteoporosis and developing effective prevention and therapy methods has great significance for human health. Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into osteoblasts, adipocytes, or chondrocytes, and have become the favorite source of cell-based therapy. Evidence shows that during osteoporosis, a shift of the cell differentiation of MSCs to adipocytes rather than osteoblasts partly contributes to osteoporosis. Thus, uncovering the molecular mechanisms of the osteoblast or adipocyte differentiation of MSCs will provide more understanding of MSCs and perhaps new methods of osteoporosis treatment. The MSCs have been applied to both preclinical and clinical studies in osteoporosis treatment. Here, we review the recent advances in understanding the molecular mechanisms regulating osteoblast differentiation and adipocyte differentiation of MSCs and highlight the therapeutic application studies of MSCs in osteoporosis treatment. This will provide researchers with new insights into the development and treatment of osteoporosis.

Keywords: adipocyte; cell therapy; mesenchymal stem cell; osteoblast; osteoporosis.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Schematic diagram of the characteristics of mesenchymal stem cells (MSCs). There are both positive markers and negative markers for identifying MSCs. MSCs possess the characteristics of self-renewing and differentiating into multiple cell types, including osteoblast, adipocyte, chondrocyte, myocyte, and fibroblast.
Figure 2
Figure 2
Integration of bone morphogenic protein (BMP) and wingless and int-1 (Wnt) signaling pathways, miRNAs, and key transcription factors in regulating osteoblast and adipocyte differentiation of MSCs. The BMP signaling, Wnt signaling, and miRNAs regulate osteoblast differentiation or adipocyte differentiation of MSCs by targeting key transcription factors such as runx2, osterix, or PPARγ.

References

    1. Kanis J.A., Melton L.J., III, Christiansen C., Johnston C.C., Khaltaev N. The diagnosis of osteoporosis. J. Bone Miner. Res. 1994;9:1137–1141. doi: 10.1002/jbmr.5650090802.
    1. Kanis J.A. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Synopsis of a WHO report. WHO Study Group. Osteoporos. Int. 1994;4:368–381. doi: 10.1007/BF01622200.
    1. Johnell O., Kanis J.A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int. 2006;17:1726–1733. doi: 10.1007/s00198-006-0172-4.
    1. Moerman E.J., Teng K., Lipschitz D.A., Lecka-Czernik B. Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: The role of PPAR-γ2 transcription factor and TGF-β/BMP signaling pathways. Aging Cell. 2004;3:379–389. doi: 10.1111/j.1474-9728.2004.00127.x.
    1. Li Y., He X., Li Y., He J., Anderstam B., Andersson G., Lindgren U. Nicotinamide phosphoribosyltransferase (Nampt) affects the lineage fate determination of mesenchymal stem cells: A possible cause for reduced osteogenesis and increased adipogenesis in older individuals. J. Bone Miner. Res. 2011;26:2656–2664. doi: 10.1002/jbmr.480.
    1. Yeung D.K., Griffith J.F., Antonio G.E., Lee F.K., Woo J., Leung P.C. Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: A proton MR spectroscopy study. J. Magn. Reson. Imaging. 2005;22:279–285. doi: 10.1002/jmri.20367.
    1. Shen W., Chen J., Gantz M., Punyanitya M., Heymsfield S.B., Gallagher D., Albu J., Engelson E., Kotler D., Pi-Sunyer X., et al. MRI-measured pelvic bone marrow adipose tissue is inversely related to DXA-measured bone mineral in younger and older adults. Eur. J. Clin. Nutr. 2012;66:983–988. doi: 10.1038/ejcn.2012.35.
    1. Li C.J., Cheng P., Liang M.K., Chen Y.S., Lu Q., Wang J.Y., Xia Z.Y., Zhou H.D., Cao X., Xie H., et al. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. J. Clin. Investig. 2015;125:1509–1522. doi: 10.1172/JCI77716.
    1. Liao L., Yang X., Su X., Hu C., Zhu X., Yang N., Chen X., Shi S., Shi S., Jin Y. Redundant miR-3077-5p and miR-705 mediate the shift of mesenchymal stem cell lineage commitment to adipocyte in osteoporosis bone marrow. Cell Death Dis. 2013;4:e600. doi: 10.1038/cddis.2013.130.
    1. Weinstein R.S., Roberson P.K., Manolagas S.C. Giant osteoclast formation and long-term oral bisphosphonate therapy. N. Engl. J. Med. 2009;360:53–62. doi: 10.1056/NEJMoa0802633.
    1. Rogers M.J., Crockett J.C., Coxon F.P., Monkkonen J. Biochemical and molecular mechanisms of action of bisphosphonates. Bone. 2011;49:34–41. doi: 10.1016/j.bone.2010.11.008.
    1. Fukumoto S., Matsumoto T. Recent advances in the management of osteoporosis. F1000Research. 2017;6:625. doi: 10.12688/f1000research.10682.1.
    1. Cummings S.R., San Martin J., McClung M.R., Siris E.S., Eastell R., Reid I.R., Delmas P., Zoog H.B., Austin M., Wang A., et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J. Med. 2009;361:756–765. doi: 10.1056/NEJMoa0809493.
    1. Rizzoli R., Yasothan U., Kirkpatrick P. Denosumab. Nat. Rev. Drug Discov. 2010;9:591–592. doi: 10.1038/nrd3244.
    1. Suzuki T., Nakamura Y., Kato H. Changes of bone-related minerals during denosumab administration in post-menopausal osteoporotic patients. Nutrients. 2017;9:871. doi: 10.3390/nu9080871.
    1. Minisola S., Cipriani C., Occhiuto M., Pepe J. New anabolic therapies for osteoporosis. Intern. Emerg. Med. 2017;12:915–921. doi: 10.1007/s11739-017-1719-4.
    1. Cosman F., Crittenden D.B., Adachi J.D., Binkley N., Czerwinski E., Ferrari S., Hofbauer L.C., Lau E., Lewiecki E.M., Miyauchi A., et al. Romosozumab treatment in postmenopausal women with osteoporosis. N. Engl. J. Med. 2016;375:1532–1543. doi: 10.1056/NEJMoa1607948.
    1. Keaveny T.M., Crittenden D.B., Bolognese M.A., Genant H.K., Engelke K., Oliveri B., Brown J.P., Langdahl B.L., Yan C., Grauer A., et al. Greater gains in spine and hip strength for romosozumab compared with teriparatide in postmenopausal women with low bone mass. J. Bone Miner. Res. 2017;32:1956–1962. doi: 10.1002/jbmr.3176.
    1. Khan A.A., Sandor G.K., Dore E., Morrison A.D., Alsahli M., Amin F., Peters E., Hanley D.A., Chaudry S.R., Lentle B., et al. Bisphosphonate associated osteonecrosis of the jaw. J. Rheumatol. 2009;36:478–490. doi: 10.3899/jrheum.080759.
    1. Fernandez Ayora A., Herion F., Rompen E., Reginster J.Y., Magremanne M., Lambert F. Dramatic osteonecrosis of the jaw associated with oral bisphosphonates, periodontitis, and dental implant removal. J. Clin. Periodontol. 2015;42:190–195. doi: 10.1111/jcpe.12322.
    1. da Silva Meirelles L., Chagastelles P.C., Nardi N.B. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci. 2006;119:2204–2213. doi: 10.1242/jcs.02932.
    1. Schneider S., Unger M., van Griensven M., Balmayor E.R. Adipose-derived mesenchymal stem cells from liposuction and resected fat are feasible sources for regenerative medicine. Eur. J. Med. Res. 2017;22:17. doi: 10.1186/s40001-017-0258-9.
    1. Friedenstein A.J., Chailakhjan R.K., Lalykina K.S. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Prolif. 1970;3:393–403. doi: 10.1111/j.1365-2184.1970.tb00347.x.
    1. Friedenstein A.J., Chailakhyan R.K., Latsinik N.V., Panasyuk A.F., Keiliss-Borok I.V. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation. 1974;17:331–340. doi: 10.1097/00007890-197404000-00001.
    1. Zuk P.A., Zhu M., Ashjian P., De Ugarte D.A., Huang J.I., Mizuno H., Alfonso Z.C., Fraser J.K., Benhaim P., Hedrick M.H. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell. 2002;13:4279–4295. doi: 10.1091/mbc.E02-02-0105.
    1. Rodriguez A.M., Elabd C., Amri E.Z., Ailhaud G., Dani C. The human adipose tissue is a source of multipotent stem cells. Biochimie. 2005;87:125–128. doi: 10.1016/j.biochi.2004.11.007.
    1. Sarugaser R., Lickorish D., Baksh D., Hosseini M.M., Davies J.E. Human umbilical cord perivascular (HUCPV) cells: A source of mesenchymal progenitors. Stem Cells. 2005;23:220–229. doi: 10.1634/stemcells.2004-0166.
    1. Liu X., Kumagai G., Wada K., Tanaka T., Asari T., Oishi K., Fujita T., Mizukami H., Furukawa K.I., Ishibashi Y. High osteogenic potential of adipose- and muscle-derived mesenchymal stem cells in spinal-ossification model mice. Spine. 2017;42:E1342–E1349. doi: 10.1097/BRS.0000000000002266.
    1. Batouli S., Miura M., Brahim J., Tsutsui T.W., Fisher L.W., Gronthos S., Robey P.G., Shi S. Comparison of stem-cell-mediated osteogenesis and dentinogenesis. J. Dent. Res. 2003;82:976–981. doi: 10.1177/154405910308201208.
    1. Pittenger M.F., Mackay A.M., Beck S.C., Jaiswal R.K., Douglas R., Mosca J.D., Moorman M.A., Simonetti D.W., Craig S., Marshak D.R. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–147. doi: 10.1126/science.284.5411.143.
    1. Peister A., Mellad J.A., Larson B.L., Hall B.M., Gibson L.F., Prockop D.J. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood. 2004;103:1662–1668. doi: 10.1182/blood-2003-09-3070.
    1. Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop D., Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905.
    1. Lv F.J., Tuan R.S., Cheung K.M., Leung V.Y. Concise review: The surface markers and identity of human mesenchymal stem cells. Stem Cells. 2014;32:1408–1419. doi: 10.1002/stem.1681.
    1. Boxall S.A., Jones E. Markers for characterization of bone marrow multipotential stromal cells. Stem Cells Int. 2012;2012:975871. doi: 10.1155/2012/975871.
    1. Zhou S., Greenberger J.S., Epperly M.W., Goff J.P., Adler C., Leboff M.S., Glowacki J. Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell. 2008;7:335–343. doi: 10.1111/j.1474-9726.2008.00377.x.
    1. Astudillo P., Rios S., Pastenes L., Pino A.M., Rodriguez J.P. Increased adipogenesis of osteoporotic human-mesenchymal stem cells (MSCs) characterizes by impaired leptin action. J. Cell Biochem. 2008;103:1054–1065. doi: 10.1002/jcb.21516.
    1. Augello A., De Bari C. The regulation of differentiation in mesenchymal stem cells. Hum. Gene Ther. 2010;21:1226–1238. doi: 10.1089/hum.2010.173.
    1. Komori T., Yagi H., Nomura S., Yamaguchi A., Sasaki K., Deguchi K., Shimizu Y., Bronson R.T., Gao Y.H., Inada M., et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89:755–764. doi: 10.1016/S0092-8674(00)80258-5.
    1. Komori T. Regulation of osteoblast differentiation by transcription factors. J. Cell Biochem. 2006;99:1233–1239. doi: 10.1002/jcb.20958.
    1. Kobayashi H., Gao Y., Ueta C., Yamaguchi A., Komori T. Multilineage differentiation of Cbfa1-deficient calvarial cells in vitro. Biochem. Biophys. Res. Commun. 2000;273:630–636. doi: 10.1006/bbrc.2000.2981.
    1. Yoshida C.A., Furuichi T., Fujita T., Fukuyama R., Kanatani N., Kobayashi S., Satake M., Takada K., Komori T. Core-binding factor β interacts with Runx2 and is required for skeletal development. Nat. Genet. 2002;32:633–638. doi: 10.1038/ng1015.
    1. Franceschi R.T., Xiao G., Jiang D., Gopalakrishnan R., Yang S., Reith E. Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation. Connect. Tissue Res. 2003;44:109–116. doi: 10.1080/03008200390152188.
    1. Nakashima K., Zhou X., Kunkel G., Zhang Z., Deng J.M., Behringer R.R., de Crombrugghe B. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002;108:17–29. doi: 10.1016/S0092-8674(01)00622-5.
    1. Nishio Y., Dong Y., Paris M., O’Keefe R.J., Schwarz E.M., Drissi H. Runx2-mediated regulation of the zinc finger Osterix/Sp7 gene. Gene. 2006;372:62–70. doi: 10.1016/j.gene.2005.12.022.
    1. Sun D.M., Liu Z.B., Zhao Y., Gong Z.W., Li D., Wang X.Y., Zeng X.L., Liu W.G. Runx2 is involved in regulating osterix promoter activity and gene expression. Prog. Biochem. Biophys. 2006;33:957–964.
    1. Hong J.H., Hwang E.S., McManus M.T., Amsterdam A., Tian Y., Kalmukova R., Mueller E., Benjamin T., Spiegelman B.M., Sharp P.A., et al. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science. 2005;309:1074–1078. doi: 10.1126/science.1110955.
    1. Kim S.H., Cho K.W., Choi H.S., Park S.J., Rhee Y., Jung H.S., Lim S.K. The forkhead transcription factor Foxc2 stimulates osteoblast differentiation. Biochem. Biophys. Res. Commun. 2009;386:532–536. doi: 10.1016/j.bbrc.2009.06.071.
    1. Bialek P., Kern B., Yang X., Schrock M., Sosic D., Hong N., Wu H., Yu K., Ornitz D.M., Olson E.N., et al. A twist code determines the onset of osteoblast differentiation. Dev. Cell. 2004;6:423–435. doi: 10.1016/S1534-5807(04)00058-9.
    1. Zhuang H., Zhang X., Zhu C., Tang X., Yu F., Shang G.W., Cai X. Molecular mechanisms of PPAR-γ governing MSC osteogenic and adipogenic differentiation. Curr. Stem Cell Res. Ther. 2016;11:255–264. doi: 10.2174/1574888X10666150531173309.
    1. Yu W.H., Li F.G., Chen X.Y., Li J.T., Wu Y.H., Huang L.H., Wang Z., Li P., Wang T., Lahn B.T., et al. PPARγ suppression inhibits adipogenesis but does not promote osteogenesis of human mesenchymal stem cells. Int. J. Biochem. Cell Biol. 2012;44:377–384. doi: 10.1016/j.biocel.2011.11.013.
    1. Lin F.T., Lane M.D. CCAAT/enhancer binding protein α is sufficient to initiate the 3T3-L1 adipocyte differentiation program. Proc. Natl. Acad. Sci. USA. 1994;91:8757–8761. doi: 10.1073/pnas.91.19.8757.
    1. Okitsu Y., Takahashi S., Minegishi N., Kameoka J., Kaku M., Yamamoto M., Sasaki T., Harigae H. Regulation of adipocyte differentiation of bone marrow stromal cells by transcription factor GATA-2. Biochem. Biophys. Res. Commun. 2007;364:383–387. doi: 10.1016/j.bbrc.2007.10.031.
    1. Fujimori K., Amano F. Forkhead transcription factor Foxa1 is a novel target gene of C/EBPβ and suppresses the early phase of adipogenesis. Gene. 2011;473:150–156. doi: 10.1016/j.gene.2010.12.002.
    1. Chen G., Deng C., Li Y.P. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci. 2012;8:272–288. doi: 10.7150/ijbs.2929.
    1. Kang Q., Song W.X., Luo Q., Tang N., Luo J., Luo X., Chen J., Bi Y., He B.C., Park J.K., et al. A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells. Stem Cells Dev. 2009;18:545–559. doi: 10.1089/scd.2008.0130.
    1. Gori F., Thomas T., Hicok K.C., Spelsberg T.C., Riggs B.L. Differentiation of human marrow stromal precursor cells: Bone morphogenetic protein-2 increases OSF2/CBFA1, enhances osteoblast commitment, and inhibits late adipocyte maturation. J. Bone Miner. Res. 1999;14:1522–1535. doi: 10.1359/jbmr.1999.14.9.1522.
    1. Javed A., Bae J.S., Afzal F., Gutierrez S., Pratap J., Zaidi S.K., Lou Y., van Wijnen A.J., Stein J.L., Stein G.S., et al. Structural coupling of Smad and Runx2 for execution of the BMP2 osteogenic signal. J. Biol. Chem. 2008;283:8412–8422. doi: 10.1074/jbc.M705578200.
    1. Wang E.A., Israel D.I., Kelly S., Luxenberg D.P. Bone morphogenetic protein-2 causes commitment and differentiation in C3H10T1/2 and 3T3 cells. Growth Factors. 1993;9:57–71. doi: 10.3109/08977199308991582.
    1. Tang Q.Q., Otto T.C., Lane M.D. Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc. Natl. Acad. Sci. USA. 2004;101:9607–9611. doi: 10.1073/pnas.0403100101.
    1. Hata K., Nishimura R., Ikeda F., Yamashita K., Matsubara T., Nokubi T., Yoneda T. Differential roles of Smad1 and p38 kinase in regulation of peroxisome proliferator-activating receptor γ during bone morphogenetic protein 2-induced adipogenesis. Mol. Biol. Cell. 2003;14:545–555. doi: 10.1091/mbc.E02-06-0356.
    1. Kim W., Kim M., Jho E.H. Wnt/β-catenin signalling: From plasma membrane to nucleus. Biochem. J. 2013;450:9–21. doi: 10.1042/BJ20121284.
    1. Etheridge S.L., Spencer G.J., Heath D.J., Genever P.G. Expression profiling and functional analysis of wnt signaling mechanisms in mesenchymal stem cells. Stem Cells. 2004;22:849–860. doi: 10.1634/stemcells.22-5-849.
    1. Shen L., Glowacki J., Zhou S. Inhibition of adipocytogenesis by canonical WNT signaling in human mesenchymal stem cells. Exp. Cell Res. 2011;317:1796–1803. doi: 10.1016/j.yexcr.2011.05.018.
    1. Yuan Z., Li Q., Luo S., Liu Z., Luo D., Zhang B., Zhang D., Rao P., Xiao J. PPARγ and Wnt signaling in adipogenic and osteogenic differentiation of mesenchymal stem cells. Curr. Stem Cell Res. Ther. 2016;11:216–225. doi: 10.2174/1574888X10666150519093429.
    1. Hartmann C. A Wnt canon orchestrating osteoblastogenesis. Trends Cell Biol. 2006;16:151–158. doi: 10.1016/j.tcb.2006.01.001.
    1. Piters E., Boudin E., Van Hul W. Wnt signaling: A win for bone. Arch. Biochem. Biophys. 2008;473:112–116. doi: 10.1016/j.abb.2008.03.006.
    1. Byun M.R., Hwang J.H., Kim A.R., Kim K.M., Hwang E.S., Yaffe M.B., Hong J.H. Canonical Wnt signalling activates TAZ through PP1A during osteogenic differentiation. Cell Death Differ. 2014;21:854–863. doi: 10.1038/cdd.2014.8.
    1. Bennett C.N., Longo K.A., Wright W.S., Suva L.J., Lane T.F., Hankenson K.D., MacDougald O.A. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc. Natl. Acad. Sci. USA. 2005;102:3324–3329. doi: 10.1073/pnas.0408742102.
    1. Kang S., Bennett C.N., Gerin I., Rapp L.A., Hankenson K.D., Macdougald O.A. Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein α and peroxisome proliferator-activated receptor γ. J. Biol. Chem. 2007;282:14515–14524. doi: 10.1074/jbc.M700030200.
    1. Cawthorn W.P., Bree A.J., Yao Y., Du B., Hemati N., Martinez-Santibanez G., MacDougald O.A. Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a β-catenin-dependent mechanism. Bone. 2012;50:477–489. doi: 10.1016/j.bone.2011.08.010.
    1. Gustafson B., Eliasson B., Smith U. Thiazolidinediones increase the wingless-type MMTV integration site family (WNT) inhibitor Dickkopf-1 in adipocytes: A link with osteogenesis. Diabetologia. 2010;53:536–540. doi: 10.1007/s00125-009-1615-1.
    1. Horvitz H.R., Sulston J.E. Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics. 1980;96:435–454.
    1. Arfat Y., Xiao W.Z., Ahmad M., Zhao F., Li D.J., Sun Y.L., Hu L., Zhihao C., Zhang G., Iftikhar S., et al. Role of microRNAs in osteoblasts differentiation and bone disorders. Curr. Med. Chem. 2015;22:748–758. doi: 10.2174/0929867321999141106121227.
    1. Sekar D., Saravanan S., Karikalan K., Thirugnanasambantham K., Lalitha P., Islam V.I. Role of microRNA 21 in mesenchymal stem cell (MSC) differentiation: A powerful biomarker in MSCs derived cells. Curr. Pharm. Biotechnol. 2015;16:43–48. doi: 10.2174/138920101601150105100851.
    1. Hamam D., Ali D., Kassem M., Aldahmash A., Alajez N.M. microRNAs as regulators of adipogenic differentiation of mesenchymal stem cells. Stem Cells Dev. 2015;24:417–425. doi: 10.1089/scd.2014.0331.
    1. Gennari L., Bianciardi S., Merlotti D. MicroRNAs in bone diseases. Osteoporos. Int. 2017;28:1191–1213. doi: 10.1007/s00198-016-3847-5.
    1. Meng Y.B., Li X., Li Z.Y., Zhao J., Yuan X.B., Ren Y., Cui Z.D., Liu Y.D., Yang X.J. microRNA-21 promotes osteogenic differentiation of mesenchymal stem cells by the PI3K/β-catenin pathway. J. Orthop. Res. 2015;33:957–964. doi: 10.1002/jor.22884.
    1. Kim Y.J., Hwang S.J., Bae Y.C., Jung J.S. MiR-21 regulates adipogenic differentiation through the modulation of TGF-β signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells. 2009;27:3093–3102. doi: 10.1002/stem.235.
    1. Eskildsen T., Taipaleenmaki H., Stenvang J., Abdallah B.M., Ditzel N., Nossent A.Y., Bak M., Kauppinen S., Kassem M. MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc. Natl. Acad. Sci. USA. 2011;108:6139–6144. doi: 10.1073/pnas.1016758108.
    1. Huang J., Zhao L., Xing L., Chen D. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells. 2010;28:357–364. doi: 10.1002/stem.288.
    1. Zhang J.F., Fu W.M., He M.L., Wang H., Wang W.M., Yu S.C., Bian X.W., Zhou J., Lin M.C., Lu G., et al. MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix. Mol. Biol. Cell. 2011;22:3955–3961. doi: 10.1091/mbc.E11-04-0356.
    1. Baglio S.R., Devescovi V., Granchi D., Baldini N. MicroRNA expression profiling of human bone marrow mesenchymal stem cells during osteogenic differentiation reveals Osterix regulation by miR-31. Gene. 2013;527:321–331. doi: 10.1016/j.gene.2013.06.021.
    1. Delaine-Smith R.M., Reilly G.C. Mesenchymal stem cell responses to mechanical stimuli. Muscles Ligaments Tendons J. 2012;2:169–180.
    1. Luu Y.K., Pessin J.E., Judex S., Rubin J., Rubin C.T. Mechanical signals as a non-invasive means to influence mesenchymal stem cell fate, promoting bone and suppressing the fat phenotype. Bonekey Osteovis. 2009;6:132–149. doi: 10.1138/20090371.
    1. Menuki K., Mori T., Sakai A., Sakuma M., Okimoto N., Shimizu Y., Kunugita N., Nakamura T. Climbing exercise enhances osteoblast differentiation and inhibits adipogenic differentiation with high expression of PTH/PTHrP receptor in bone marrow cells. Bone. 2008;43:613–620. doi: 10.1016/j.bone.2008.04.022.
    1. Maredziak M., Smieszek A., Chrzastek K., Basinska K., Marycz K. Physical activity increases the total number of none-marrow-derived mesenchymal stem cells, enhances their osteogenic potential, and inhibits their adipogenic properties. Stem. Cells Int. 2015;2015:379093. doi: 10.1155/2015/379093.
    1. Luu Y.K., Capilla E., Rosen C.J., Gilsanz V., Pessin J.E., Judex S., Rubin C.T. Mechanical stimulation of mesenchymal stem cell proliferation and differentiation promotes osteogenesis while preventing dietary-induced obesity. J. Bone Miner. Res. 2009;24:50–61. doi: 10.1359/jbmr.080817.
    1. Rubin C.T., Capilla E., Luu Y.K., Busa B., Crawford H., Nolan D.J., Mittal V., Rosen C.J., Pessin J.E., Judex S. Adipogenesis is inhibited by brief, daily exposure to high-frequency, extremely low-magnitude mechanical signals. Proc. Natl. Acad. Sci. USA. 2007;104:17879–17884. doi: 10.1073/pnas.0708467104.
    1. Demiray L., Ozcivici E. Bone marrow stem cells adapt to low-magnitude vibrations by altering their cytoskeleton during quiescence and osteogenesis. Turk. J. Biochem. 2015;39:88–97.
    1. Baskan O., Mese G., Ozcivici E. Low-intensity vibrations normalize adipogenesis-induced morphological and molecular changes of adult mesenchymal stem cells. Proc. Inst. Mech. Eng. H. 2017;231:160–168. doi: 10.1177/0954411916687338.
    1. Chen X., He F., Zhong D.Y., Luo Z.P. Acoustic-frequency vibratory stimulation regulates the balance between osteogenesis and adipogenesis of human bone marrow-derived mesenchymal stem cells. BioMed Res. Int. 2015;2015:540731. doi: 10.1155/2015/540731.
    1. Zhou Y., Guan X., Zhu Z., Gao S., Zhang C., Li C., Zhou K., Hou W., Yu H. Osteogenic differentiation of bone marrow-derived mesenchymal stromal cells on bone-derived scaffolds: Effect of microvibration and role of ERK1/2 activation. Eur. Cell Mater. 2011;22:12–25. doi: 10.22203/eCM.v022a02.
    1. Papachristou D.J., Papachroni K.K., Basdra E.K., Papavassiliou A.G. Signaling networks and transcription factors regulating mechanotransduction in bone. Bioessays. 2009;31:794–804. doi: 10.1002/bies.200800223.
    1. Ge C., Xiao G., Jiang D., Yang Q., Hatch N.E., Roca H., Franceschi R.T. Identification and functional characterization of ERK/MAPK phosphorylation sites in the Runx2 transcription factor. J. Biol. Chem. 2009;284:32533–32543. doi: 10.1074/jbc.M109.040980.
    1. Ge C., Xiao G., Jiang D., Franceschi R.T. Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J. Cell Biol. 2007;176:709–718. doi: 10.1083/jcb.200610046.
    1. Uzer G., Pongkitwitoon S., Ete Chan M., Judex S. Vibration induced osteogenic commitment of mesenchymal stem cells is enhanced by cytoskeletal remodeling but not fluid shear. J. Biomech. 2013;46:2296–2302. doi: 10.1016/j.jbiomech.2013.06.008.
    1. Sen B., Xie Z., Case N., Styner M., Rubin C.T., Rubin J. Mechanical signal influence on mesenchymal stem cell fate is enhanced by incorporation of refractory periods into the loading regimen. J. Biomech. 2011;44:593–599. doi: 10.1016/j.jbiomech.2010.11.022.
    1. Lau E., Lee W.D., Li J., Xiao A., Davies J.E., Wu Q., Wang L., You L. Effect of low-magnitude, high-frequency vibration on osteogenic differentiation of rat mesenchymal stromal cells. J. Orthop. Res. 2011;29:1075–1080. doi: 10.1002/jor.21334.
    1. Zhao Q., Lu Y., Gan X., Yu H. Low magnitude high frequency vibration promotes adipogenic differentiation of bone marrow stem cells via P38 MAPK signal. PLoS ONE. 2017;12:e0172954. doi: 10.1371/journal.pone.0189547.
    1. Li R., Liang L., Dou Y., Huang Z., Mo H., Wang Y., Yu B. Mechanical strain regulates osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells. BioMed Res. Int. 2015;2015:873251. doi: 10.1155/2015/873251.
    1. Simmons C.A., Matlis S., Thornton A.J., Chen S., Wang C.Y., Mooney D.J. Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK1/2) signaling pathway. J. Biomech. 2003;36:1087–1096. doi: 10.1016/S0021-9290(03)00110-6.
    1. Carroll S.F., Buckley C.T., Kelly D.J. Cyclic tensile strain can play a role in directing both intramembranous and endochondral ossification of mesenchymal stem cells. Front. Bioeng. Biotechnol. 2017;5:73. doi: 10.3389/fbioe.2017.00073.
    1. Tanabe Y., Koga M., Saito M., Matsunaga Y., Nakayama K. Inhibition of adipocyte differentiation by mechanical stretching through ERK-mediated downregulation of PPARγ2. J. Cell Sci. 2004;117:3605–3614. doi: 10.1242/jcs.01207.
    1. Liu J., Zhao Z., Li J., Zou L., Shuler C., Zou Y., Huang X., Li M., Wang J. Hydrostatic pressures promote initial osteodifferentiation with ERK1/2 not p38 MAPK signaling involved. J. Cell Biochem. 2009;107:224–232. doi: 10.1002/jcb.22118.
    1. Sittichokechaiwut A., Edwards J.H., Scutt A.M., Reilly G.C. Short bouts of mechanical loading are as effective as dexamethasone at inducing matrix production by human bone marrow mesenchymal stem cell. Eur. Cell Mater. 2010;20:45–57. doi: 10.22203/eCM.v020a05.
    1. Holtorf H.L., Jansen J.A., Mikos A.G. Flow perfusion culture induces the osteoblastic differentiation of marrow stroma cell-scaffold constructs in the absence of dexamethasone. J. Biomed. Mater. Res. A. 2005;72:326–334. doi: 10.1002/jbm.a.30251.
    1. Stavenschi E., Labour M.N., Hoey D.A. Oscillatory fluid flow induces the osteogenic lineage commitment of mesenchymal stem cells: The effect of shear stress magnitude, frequency, and duration. J. Biomech. 2017;55:99–106. doi: 10.1016/j.jbiomech.2017.02.002.
    1. Hu L.F., Li R.Z., Su P.H., Arfat Y., Zhang G., Shang P., Qian A.R. Response and adaptation of bone cells to simulated microgravity. Acta Astronaut. 2014;104:396–408. doi: 10.1016/j.actaastro.2014.05.008.
    1. Arfat Y., Xiao W.Z., Iftikhar S., Zhao F., Li D.J., Sun Y.L., Zhang G., Shang P., Qian A.R. Physiological effects of microgravity on bone cells. Calcified Tissue Int. 2014;94:569–579. doi: 10.1007/s00223-014-9851-x.
    1. Pan Z., Yang J., Guo C., Shi D., Shen D., Zheng Q., Chen R., Xu Y., Xi Y., Wang J. Effects of hindlimb unloading on ex vivo growth and osteogenic/adipogenic potentials of bone marrow-derived mesenchymal stem cells in rats. Stem Cells Dev. 2008;17:795–804. doi: 10.1089/scd.2007.0254.
    1. Visigalli D., Strangio A., Palmieri D., Manduca P. Hind limb unloading of mice modulates gene expression at the protein and mRNA level in mesenchymal bone cells. BMC Musculoskelet. Disord. 2010;11:147. doi: 10.1186/1471-2474-11-147.
    1. Zayzafoon M., Gathings W.E., McDonald J.M. Modeled microgravity inhibits osteogenic differentiation of human mesenchymal stem cells and increases adipogenesis. Endocrinology. 2004;145:2421–2432. doi: 10.1210/en.2003-1156.
    1. Huang Y., Dai Z.Q., Ling S.K., Zhang H.Y., Wan Y.M., Li Y.H. Gravity, a regulation factor in the differentiation of rat bone marrow mesenchymal stem cells. J. Biomed. Sci. 2009;16:87. doi: 10.1186/1423-0127-16-87.
    1. Shi D., Meng R., Deng W., Ding W., Zheng Q., Yuan W., Liu L., Zong C., Shang P., Wang J. Effects of microgravity modeled by large gradient high magnetic field on the osteogenic initiation of human mesenchymal stem cells. Stem Cell Rev. 2010;6:567–578. doi: 10.1007/s12015-010-9182-x.
    1. Meyers V.E., Zayzafoon M., Gonda S.R., Gathings W.E., McDonald J.M. Modeled microgravity disrupts collagen I/integrin signaling during osteoblastic differentiation of human mesenchymal stem cells. J. Cell Biochem. 2004;93:697–707. doi: 10.1002/jcb.20229.
    1. Meyers V.E., Zayzafoon M., Douglas J.T., McDonald J.M. RhoA and cytoskeletal disruption mediate reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells in modeled microgravity. J. Bone Miner. Res. 2005;20:1858–1866. doi: 10.1359/JBMR.050611.
    1. Zheng Q., Huang G., Yang J., Xu Y., Guo C., Xi Y., Pan Z., Wang J. Could the effect of modeled microgravity on osteogenic differentiation of human mesenchymal stem cells be reversed by regulation of signaling pathways? Biol. Chem. 2007;388:755–763. doi: 10.1515/BC.2007.082.
    1. Islam M.S., Stemig M.E., Takahashi Y., Hui S.K. Radiation response of mesenchymal stem cells derived from bone marrow and human pluripotent stem cells. J. Radiat. Res. 2015;56:269–277. doi: 10.1093/jrr/rru098.
    1. Parhami F., Tintut Y., Beamer W.G., Gharavi N., Goodman W., Demer L.L. Atherogenic high-fat diet reduces bone mineralization in mice. J. Bone Miner. Res. 2001;16:182–188. doi: 10.1359/jbmr.2001.16.1.182.
    1. da Silva S.V., Renovato-Martins M., Ribeiro-Pereira C., Citelli M., Barja-Fidalgo C. Obesity modifies bone marrow microenvironment and directs bone marrow mesenchymal cells to adipogenesis. Obesity. 2016;24:2522–2532. doi: 10.1002/oby.21660.
    1. Tian L., Yu X. Lipid metabolism disorders and bone dysfunction--interrelated and mutually regulated. Mol. Med. Rep. 2015;12:783–794. doi: 10.3892/mmr.2015.3472.
    1. Barry F.P., Murphy J.M. Mesenchymal stem cells: Clinical applications and biological characterization. Int. J. Biochem. Cell Biol. 2004;36:568–584. doi: 10.1016/j.biocel.2003.11.001.
    1. Wang S., Qu X., Zhao R.C. Clinical applications of mesenchymal stem cells. J. Hematol. Oncol. 2012;5:19. doi: 10.1186/1756-8722-5-19.
    1. Antebi B., Pelled G., Gazit D. Stem cell therapy for osteoporosis. Curr. Osteoporos. Rep. 2014;12:41–47. doi: 10.1007/s11914-013-0184-x.
    1. Wang Z., Goh J., Das De S., Ge Z., Ouyang H., Chong J.S., Low S.L., Lee E.H. Efficacy of bone marrow-derived stem cells in strengthening osteoporotic bone in a rabbit model. Tissue Eng. 2006;12:1753–1761. doi: 10.1089/ten.2006.12.1753.
    1. Ichioka N., Inaba M., Kushida T., Esumi T., Takahara K., Inaba K., Ogawa R., Iida H., Ikehara S. Prevention of senile osteoporosis in SAMP6 mice by intrabone marrow injection of allogeneic bone marrow cells. Stem Cells. 2002;20:542–551. doi: 10.1634/stemcells.20-6-542.
    1. Ocarino Nde M., Boeloni J.N., Jorgetti V., Gomes D.A., Goes A.M., Serakides R. Intra-bone marrow injection of mesenchymal stem cells improves the femur bone mass of osteoporotic female rats. Connect. Tissue Res. 2010;51:426–433. doi: 10.3109/03008201003597049.
    1. Sui B., Hu C., Zhang X., Zhao P., He T., Zhou C., Qiu X., Chen N., Zhao X., Jin Y. Allogeneic mesenchymal stem cell therapy promotes osteoblastogenesis and prevents glucocorticoid-induced osteoporosis. Stem Cells Transl Med. 2016;5:1238–1246. doi: 10.5966/sctm.2015-0347.
    1. Kiernan J., Hu S., Grynpas M.D., Davies J.E., Stanford W.L. Systemic mesenchymal stromal cell transplantation prevents functional bone loss in a mouse model of age-related osteoporosis. Stem Cells Transl Med. 2016;5:683–693. doi: 10.5966/sctm.2015-0231.
    1. Kern S., Eichler H., Stoeve J., Kluter H., Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24:1294–1301. doi: 10.1634/stemcells.2005-0342.
    1. Chen H.T., Lee M.J., Chen C.H., Chuang S.C., Chang L.F., Ho M.L., Hung S.H., Fu Y.C., Wang Y.H., Wang H.I., et al. Proliferation and differentiation potential of human adipose-derived mesenchymal stem cells isolated from elderly patients with osteoporotic fractures. J. Cell Mol. Med. 2012;16:582–593. doi: 10.1111/j.1582-4934.2011.01335.x.
    1. Cho S.W., Sun H.J., Yang J.Y., Jung J.Y., Choi H.J., An J.H., Kim S.W., Kim S.Y., Park K.J., Shin C.S. Human adipose tissue-derived stromal cell therapy prevents bone loss in ovariectomized nude mouse. Tissue Eng. Part A. 2012;18:1067–1078. doi: 10.1089/ten.tea.2011.0355.
    1. Mirsaidi A., Genelin K., Vetsch J.R., Stanger S., Theiss F., Lindtner R.A., von Rechenberg B., Blauth M., Muller R., Kuhn G.A., et al. Therapeutic potential of adipose-derived stromal cells in age-related osteoporosis. Biomaterials. 2014;35:7326–7335. doi: 10.1016/j.biomaterials.2014.05.016.
    1. Ye X., Zhang P., Xue S., Xu Y., Tan J., Liu G. Adipose-derived stem cells alleviate osteoporosis by enhancing osteogenesis and inhibiting adipogenesis in a rabbit model. Cytotherapy. 2014;16:1643–1655. doi: 10.1016/j.jcyt.2014.07.009.
    1. Lien C.Y., Chih-Yuan Ho K., Lee O.K., Blunn G.W., Su Y. Restoration of bone mass and strength in glucocorticoid-treated mice by systemic transplantation of CXCR4 and cbfa-1 co-expressing mesenchymal stem cells. J. Bone Miner. Res. 2009;24:837–848. doi: 10.1359/jbmr.081257.
    1. Kumar S., Ponnazhagan S. Bone homing of mesenchymal stem cells by ectopic α4 integrin expression. FASEB J. 2007;21:3917–3927. doi: 10.1096/fj.07-8275com.
    1. Liu T.M., Ng W.M., Tan H.S., Vinitha D., Yang Z., Fan J.B., Zou Y., Hui J.H., Lee E.H., Lim B. Molecular basis of immortalization of human mesenchymal stem cells by combination of p53 knockdown and human telomerase reverse transcriptase overexpression. Stem Cells Dev. 2013;22:268–278. doi: 10.1089/scd.2012.0222.
    1. Fierro F.A., Kalomoiris S., Sondergaard C.S., Nolta J.A. Effects on proliferation and differentiation of multipotent bone marrow stromal cells engineered to express growth factors for combined cell and gene therapy. Stem Cells. 2011;29:1727–1737. doi: 10.1002/stem.720.
    1. Kong F., Shi X., Xiao F., Yang Y., Zhang X., Wang L.S., Wu C.T., Wang H. Transplantation of hepatocyte growth factor-modified dental pulp stem cells prevents bone loss in the early phase of ovariectomy-induced osteoporosis. Hum. Gene Ther. 2017 doi: 10.1089/hum.2017.091.
    1. Tsai C.C., Yew T.L., Yang D.C., Huang W.H., Hung S.C. Benefits of hypoxic culture on bone marrow multipotent stromal cells. Am. J. Blood Res. 2012;2:148–159.

Source: PubMed

3
Se inscrever