Factors Related to Weight Loss Maintenance in the Medium-Long Term after Bariatric Surgery: A Review

Isabel Cornejo-Pareja, María Molina-Vega, Ana María Gómez-Pérez, Miguel Damas-Fuentes, Francisco J Tinahones, Isabel Cornejo-Pareja, María Molina-Vega, Ana María Gómez-Pérez, Miguel Damas-Fuentes, Francisco J Tinahones

Abstract

Despite bariatric surgery being the most effective treatment for obesity, some individuals do not respond adequately, especially in the long term. Identifying the predictors of correct weight maintenance in the medium (from 1 to 3 years after surgery) and long term (from 3 years and above) is of vital importance to reduce failure after bariatric surgery; therefore, we summarize the evidence about certain factors, among which we highlight surgical technique, psychological factors, physical activity, adherence to diet, gastrointestinal hormones or neurological factors related to appetite control. We conducted a search in PubMed focused on the last five years (2015-2021). Main findings are as follows: despite Roux-en-Y gastric bypass being more effective in the long term, sleeve gastrectomy shows a more beneficial effectiveness-complications balance; pre-surgical psychological and behavioral evaluation along with post-surgical treatment improve long-term surgical outcomes; physical activity programs after bariatric surgery, in addition to continuous and comprehensive care interventions regarding diet habits, improve weight loss maintenance, but it is necessary to improve adherence; the impact of bariatric surgery on the gut-brain axis seems to influence weight maintenance. In conclusion, although interesting findings exist, the evidence is contradictory in some places, and long-term clinical trials are necessary to draw more robust conclusions.

Keywords: bariatric surgery; diet; gut hormones; gut–brain axis; physical activity; psychological disorders; surgical technique; weight regain.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Bischoff S.C., Schweinlin A. Obesity therapy. Clin. Nutr. ESPEN. 2020;38:9–18. doi: 10.1016/j.clnesp.2020.04.013.
    1. González-Muniesa P., Mártinez-González M.A., Hu F.B., Després J.P., Matsuzawa Y., Loos R.J.F., Moreno L.A., Bray G.A., Martinez J.A. Obesity. Nat. Rev. Dis. Primers. 2017;15:17034. doi: 10.1038/nrdp.2017.34.
    1. Janssen F., Bardoutsos A., Vidra N. Obesity prevalence in the long-term future in 18 european countries and in the USA. Obes. Facts. 2020;13:514–527. doi: 10.1159/000511023.
    1. Petroni M.L., Caletti M.T., Calugi S., Dalle Grave R., Marchesini G. Long-term treatment of severe obesity: Are lifestyle interventions still an option? Expert Rev. Endocrinol. Metab. 2017;12:391–400. doi: 10.1080/17446651.2017.1386551.
    1. Belligoli A., Bettini S., Segato G., Busetto L. Predicting responses to bariatric and metabolic surgery. Curr. Obes. Rep. 2020;9:373–379. doi: 10.1007/s13679-020-00390-1.
    1. Nguyen N.T., Varela J.E. Bariatric surgery for obesity and metabolic disorders: State of the art. Nat. Rev. Gastroenterol. Hepatol. 2017;14:160–169. doi: 10.1038/nrgastro.2016.170.
    1. Arterburn D.E., Telem D.A., Kushner R.F., Courcoulas A.P. Benefits and risks of bariatric surgery in adults: A review. JAMA. 2020;324:879–887. doi: 10.1001/jama.2020.12567.
    1. Hu Z., Sun J., Li R., Wang Z., Ding H., Zhu T., Wang G.A. Comprehensive comparison of LRYGB and LSG in obese patients including the effects on QoL, comorbidities, weight loss, and complications: A systematic review and meta-analysis. Obes. Surg. 2020;30:819–827. doi: 10.1007/s11695-019-04306-4.
    1. Yang P., Chen B., Xiang S., Lin X.F., Luo F., Li W. Long-term outcomes of laparoscopic sleeve gastrectomy versus Roux-en-Y gastric bypass for morbid obesity: Results from a meta-analysis of randomized controlled trials. Surg. Obes. Relat. Dis. 2019;15:546–555. doi: 10.1016/j.soard.2019.02.001.
    1. Hayoz C., Hermann T., Raptis D.A., Brönnimann A., Peterli R., Zuber M. Comparison of metabolic outcomes in patients undergoing laparoscopic Roux-en-Y gastric bypass versus sleeve gastrectomy—A systematic review and meta-analysis of randomised controlled trials. Swiss Med. Wkly. 2018;148:14633.
    1. Osland E., Yunus R.M., Khan S., Memon B., Memon M.A. Weight loss outcomes in laparoscopic vertical sleeve gastrectomy (LVSG) versus laparoscopic Roux-en-Y gastric bypass (LRYGB) procedures: A meta-analysis and systematic review of randomized controlled trials. Surg. Laparosc. Endosc. Percutan. Tech. 2017;27:8–18. doi: 10.1097/SLE.0000000000000374.
    1. King W.C., Hinerman A.S., Courcoulas A.P. Weight regain after bariatric surgery: A systematic literature review and comparison across studies using a large reference sample. Surg. Obes. Relat. Dis. 2020;16:1133–1144. doi: 10.1016/j.soard.2020.03.034.
    1. Kang J.H., Le Q.A. Effectiveness of bariatric surgical procedures: A systematic review and network meta-analysis of randomized controlled trials. Medicine. 2017;96:e8632. doi: 10.1097/MD.0000000000008632.
    1. Zhao H., Jiao L. Comparative analysis for the effect of Roux-en-Y gastric bypass vs. sleeve gastrectomy in patients with morbid obesity: Evidence from 11 randomized clinical trials (meta-analysis) Int. J. Surg. 2019;72:216–223. doi: 10.1016/j.ijsu.2019.11.013.
    1. Park C.H., Nam S.J., Choi H.S., Kim K.O., Kim D.H., Kim J.W., Sohn W., Yoon J.H., Jung S.H., Hyun Y.S., et al. Korean research group for endoscopic management of metabolic disorder and obesity. comparative efficacy of bariatric surgery in the treatment of morbid obesity and diabetes mellitus: A systematic review and network meta-analysis. Obes. Surg. 2019;29:2180–2190. doi: 10.1007/s11695-019-03831-6.
    1. O’Brien P.E., Hindle A., Brennan L., Skinner S., Burton P., Smith A., Crosthwaite G., Brown W. Long-term outcomes after bariatric surgery: A systematic review and meta-analysis of weight loss at 10 or more years for all bariatric procedures and a single-centre review of 20-year outcomes after adjustable gastric banding. Obes. Surg. 2019;29:3–14. doi: 10.1007/s11695-018-3525-0.
    1. Salminen P., Helmiö M., Ovaska J., Juuti A., Leivonen M., Peromaa-Haavisto P., Hurme S., Soinio M., Nuutila P., Victorzon M. Effect of laparoscopic sleeve gastrectomy vs. laparoscopic Roux-en-Y gastric bypass on weight loss at 5 years among patients with morbid obesity: The SLEEVEPASS randomized clinical trial. JAMA. 2018;16:241–254. doi: 10.1001/jama.2017.20313.
    1. Grönroos S., Helmiö M., Juuti A., Tiusanen R., Hurme S., Löyttyniemi E., Ovaska J., Leivonen M., Peromaa-Haavisto P., Mäklin S., et al. Effect of laparoscopic sleeve gastrectomy vs. Roux-en-Y gastric bypass on weight loss and quality of life at 7 years in patients with morbid obesity: The SLEEVEPASS randomized clinical trial. JAMA Surg. 2020;9:e205666.
    1. Hofsø D., Fatima F., Borgeraas H., Birkeland K.I., Gulseth H.L., Hertel J.K., Johnson L.K., Lindberg M., Nordstrand N., Småstuen M.C., et al. Gastric bypass versus sleeve gastrectomy in patients with type 2 diabetes (Oseberg): A single-centre, triple-blind, randomised controlled trial. Lancet Diabetes Endocrinol. 2019;7:912–924. doi: 10.1016/S2213-8587(19)30344-4.
    1. Murphy R., Clarke M.G., Evennett N.J., John R.S., Lee H.M., Hammodat H., Jones B., Kim D.D., Cutfield R., Johnson M.H., et al. Laparoscopic sleeve gastrectomy versus banded Roux-en-Y gastric bypass for diabetes and obesity: A prospective randomised double-blind trial. Obes. Surg. 2018;28:293–302. doi: 10.1007/s11695-017-2872-6.
    1. Schneider J., Peterli R., Gass M., Slawik M., Peters T., Wölnerhanssen B.K. Laparoscopic sleeve gastrectomy and Roux-en-Y gastric bypass lead to equal changes in body composition and energy metabolism 17 months postoperatively: A prospective randomized trial. Surg. Obes. Relat. Dis. 2016;12:563–570. doi: 10.1016/j.soard.2015.07.002.
    1. Peterli R., Wölnerhanssen B.K., Vetter D., Nett P., Gass M., Borbély Y., Peters T., Schiesser M., Schultes B., Beglinger C., et al. Laparoscopic sleeve gastrectomy versus Roux-Y-gastric bypass for morbid obesity-3-year outcomes of the prospective randomized Swiss multicenter bypass or sleeve study (SM-BOSS) Ann. Surg. 2017;265:466–473. doi: 10.1097/SLA.0000000000001929.
    1. Peterli R., Wölnerhanssen B.K., Peters T., Vetter D., Kröll D., Borbély Y., Schultes B., Beglinger C., Drewe J., Schiesser M., et al. Effect of laparoscopic sleeve gastrectomy vs. laparoscopic Roux-en-Y gastric bypass on weight loss in patients with morbid obesity: The SM-BOSS randomized clinical trial. JAMA. 2018;319:255–265. doi: 10.1001/jama.2017.20897.
    1. Seetharamaiah S., Tantia O., Goyal G., Chaudhuri T., Khanna S., Singh J.P., Ahuja A. LSG vs. OAGB-1 year follow-up data—A randomized control trial. Obes. Surg. 2017;27:948–954. doi: 10.1007/s11695-016-2403-x.
    1. Shivakumar S., Tantia O., Goyal G., Chaudhuri T., Khanna S., Ahuja A., Poddar A., Majumdar K. LSG vs. MGB-OAGB-3-year follow-up data: A randomised control trial. Obes. Surg. 2018;28:2820–2828. doi: 10.1007/s11695-018-3255-3.
    1. Ignat M., Vix M., Imad I., D’Urso A., Perretta S., Marescaux J., Mutter D. Randomized trial of Roux-en-Y gastric bypass versus sleeve gastrectomy in achieving excess weight loss. Br. J. Surg. 2017;104:248–256. doi: 10.1002/bjs.10400.
    1. Hedberg S., Olbers T., Peltonen M., Österberg J., Wirén M., Ottosson J., Thorell A., BEST Study Group BEST: Bypass equipoise sleeve trial; rationale and design of a randomized, registry-based, multicenter trial comparing Roux-en-Y gastric bypass with sleeve gastrectomy. Contemp. Clin. Trials. 2019;84:105809. doi: 10.1016/j.cct.2019.07.001.
    1. Rudolph A., Hilbert A. Cognitive-behavioral therapy for postbariatric surgery patients with mental disorders: A pilot study. Front. Psychiatry. 2020;11:14. doi: 10.3389/fpsyt.2020.00014.
    1. Raman J., Smith E., Hay P. The clinical obesity maintenance model: An integration of psychological constructs including mood, emotional regulation, disordered overeating, habitual cluster behaviours, health literacy and cognitive function. J. Obes. 2013 doi: 10.1155/2013/240128.
    1. Gunstad J., Paul R.H., Cohen R.A., Tate D.F., Spitznagel M.B., Gordon E. Elevated body mass index is associated with executive dysfunction in otherwise healthy adults. Compr. Psychiatry. 2007;48:57–61. doi: 10.1016/j.comppsych.2006.05.001.
    1. Stuss D.T., Benson D.F. The Frontal Lobes. Ravan Press; New York, NY, USA: 1996.
    1. Smith E., Hay P., Campbell L., Trollor J.N. A review of the association between obesity and cognitive function across the lifespan: Implications for novel approaches to prevention and treatment. Obes. Rev. 2011;12:740–755. doi: 10.1111/j.1467-789X.2011.00920.x.
    1. Favieri F., Forte G., Casagrande M. The executive functions in overweight and obesity: A systematic review of neuropsychological cross-sectional and longitudinal studies. Front. Psychol. 2019;10:2126. doi: 10.3389/fpsyg.2019.02126.
    1. Yang Y., Shields G.S., Guo C., Liu Y. Executive function performance in obesity and overweight individuals: A meta-analysis and review. Neurosci. Biobehav. Rev. 2018;84:225–244. doi: 10.1016/j.neubiorev.2017.11.020.
    1. Pignatti R., Bertella L., Albani G., Mauro A., Molinari E., Semenza C. Decision-making in obesity: A study using the gambling task. Eat. Weight Disord. Stud. Anorex. Bulim. Obes. 2006;11:126–132. doi: 10.1007/BF03327557.
    1. Tchanturia K., Liao P.-C., Uher R., Lawrence N., Treasure J., Campbell I.C. An investigation of decision making in anorexia nervosa using the Iowa gambling task and skin conductance measurements. J. Int. Neuropsychol. Soc. JINS. 2007;13:635–641. doi: 10.1017/S1355617707070798.
    1. Tchanturia K., Davies H., Lopez C., Schmidt U., Treasure J., Wykes T. Neuropsychological task performance before and after cognitive remediation in anorexia nervosa: A pilot case-series. Psychol. Med. 2008;38:1371–1373. doi: 10.1017/S0033291708003796.
    1. Roberts M.E., Demetriou L., Treasure J.L., Tchanturia K. Neuropsychological profile in the overweight population: An exploratory study of set-shifting and detail focused processing styles. Therapy. 2007;4:821–824. doi: 10.2217/14750708.4.6.821.
    1. Dohle S., Diel K., Hofmann W. Executive functions and the self-regulation of eating behavior: A review. Appetite. 2018;124:4–9. doi: 10.1016/j.appet.2017.05.041.
    1. Small D.M. Dopamine adaptations as a common pathway for neurocognitive impairment in diabetes and obesity: A neuropsychological perspective. Front. Neurosci. 2017;11:134. doi: 10.3389/fnins.2017.00134.
    1. Rashidian H., Rosenblat J.D., McIntyre R.S., Mansur R.B. Leptin, obesity, and response to ketamine. Prog. Neuro Psychopharmacol. Biol. Psychiatry. 2020;98:109773. doi: 10.1016/j.pnpbp.2019.109773.
    1. Alosco M.L., Spitznagel M.B., Strain G., Devlin M., Cohen R., Crosby R.D., Mitchell J.E., Gunstad J. Improved serum leptin and ghrelin following bariatric surgery predict better postoperative cognitive function. J. Clin. Neurol. 2015;11:48–56. doi: 10.3988/jcn.2015.11.1.48.
    1. Luppino F.S., Leonore M., Wit D.L.M., Bouvy P.F., Stijnen T., Cuijpers P., Penninx B.W.J.H.P., Frans G.Z. Overweight, obesity, and depression: A systematic review and meta-analysis of longitudinal studies. Arch. Gen. Psychiatry. 2010;67:220–229. doi: 10.1001/archgenpsychiatry.2010.2.
    1. Linde J.A., Simon G.E., Ludman E.J., Ichikawa L.E., Operskalski B.H., Arterburn D., Rohde P., Finch E.A., Jeffery R.W. A randomized controlled trial of behavioral weight loss treatment versus combined weight loss/depression treatment among women with comorbid obesity and depression. Ann. Behav. Med. 2011;41:119–130. doi: 10.1007/s12160-010-9232-2.
    1. Spitznagel M.B., Garcia S., Miller L.A., Strain G., Devlin M., Wing R., Cohen R., Paul R., Crosby R., Mitchell J.E., et al. Cognitive function predicts weight loss following bariatric surgery. Surg. Obes. Relat. Dis. 2013;9:453–459. doi: 10.1016/j.soard.2011.10.008.
    1. Handley J.D., Williams D.M., Caplin S., Stephens J.W., Barry J. Changes in cognitive function following bariatric surgery: A systematic review. Obes. Surg. 2016;26:2530–2537. doi: 10.1007/s11695-016-2312-z.
    1. Spitznagel M.B., Alosco M., Strain G., Devlin M., Cohen R., Paul R., Crosby R.D., Mitchell J.E., Gunstad P.D.J. Cognitive function predicts 24-month weight loss success following bariatric surgery. Surg. Obes. Relat. Dis. 2013;9:765–770. doi: 10.1016/j.soard.2013.04.011.
    1. Spitznagel M.B., Alosco M., Galioto R., Strain G., Devlin M., Sysko R., Crosby R.D., Mitchell J.E., Gunstad J. The role of cognitive function in postoperative weight loss outcomes: 36-month follow-up. Obes. Surg. 2014;24:1078–1084. doi: 10.1007/s11695-014-1205-2.
    1. Alosco M.L., Galioto R., Spitznagel M.B., Strain G., Devlin M., Cohen R., Crosby R.D., Mitchell J.E., Gunstad J. Cognitive function following bariatric surgery: Evidence for improvement 3 years post-surgery. Am. J. Surg. 2014;207:870–876. doi: 10.1016/j.amjsurg.2013.05.018.
    1. Kulendran M., Borovoi L., Purkayastha S., Darzi A., Vlaev I. Impulsivity predicts weight loss after obesity surgery. Surg. Obes. Relat. Dis. 2017;13:1033–1040. doi: 10.1016/j.soard.2016.12.031.
    1. Bergh I., Kvalem L.I., Risstad H., Sniehotta F.F. Preoperative predictors of adherence to dietary and physical activity recommendations and weight loss one year after surgery. Surg. Obes. Relat. Dis. 2016;12:910–918. doi: 10.1016/j.soard.2015.11.009.
    1. Mauro M.F.F.P., Papelbaum M., Brasil M.A.A., Carneiro J.R.I., Coutinho E.S.F., Coutinho W., Appolinario J.C. Is weight regain after bariatric surgery associated with psychiatric comorbidity? A systematic review and meta-analysis. Obes. Rev. 2019;20:1413–1425. doi: 10.1111/obr.12907.
    1. Conceição E.M., Mitchell J.E., Pinto-Bastos A., Arrojado F., Brandão I., Machado P.P. Stability of problematic eating behaviors and weight loss trajectories after bariatric surgery: A longitudinal observational study. Surg. Obes. Relat. 2017;13:1063–1070. doi: 10.1016/j.soard.2016.12.006.
    1. Smith K.E., Orcutt M., Steffen K.J., Crosby R.D., Cao L., Garcia L., Mitchell J.E. Loss of control eating and binge eating in the 7 years following bariatric surgery. Obes. Surg. 2019;29:1773–1780. doi: 10.1007/s11695-019-03791-x.
    1. Brode C.S., Mitchell J.E. Problematic eating behaviors and eating disorders associated with bariatric surgery. Psychiatr. Clin. 2019;42:287–297. doi: 10.1016/j.psc.2019.01.014.
    1. Gunstad J., Strain G., Devlin M.J., Wing R., Cohen R.A., Paul R.H., Crosby R.D., Mitchell J.E. Improved memory function 12 weeks after bariatric surgery. Surg. Obes. Relat. Dis. Off. J. Am. Soc. Bariatr. Surg. 2011;7:465–472. doi: 10.1016/j.soard.2010.09.015.
    1. Calvo D., Galioto R., Gunstad J., Spitznagel M.B. Uncontrolled eating is associated with reduced executive functioning. Clin. Obes. 2014;4:172–179. doi: 10.1111/cob.12058.
    1. Müller A., Hase C., Pommnitz M., Zwaan D.M. Depression and suicide after bariatric surgery. Curr. Psychiatry Rep. 2019;21:84. doi: 10.1007/s11920-019-1069-1.
    1. Ribeiro G.A.N.A., Giapietro H.B., Belarmino L.B., Salgado-Junior W. Depression, anxiety, and binge eating before and after bariatric surgery: Problems that remain. ABCD. Arq. Bras. Cir. Dig. 2018;31:e1356. doi: 10.1590/0102-672020180001e1356.
    1. Romain A., Marleau J., Baillot A. Impact of obesity and mood disorders on physical comorbidities, psychological well-being, health behaviours and use of health services. J Affect. Disord. 2017;225:381–388. doi: 10.1016/j.jad.2017.08.065.
    1. Freire C.C., Zanella M.T., Segal A., Arasaki C.H., Matos M.I.R., Carneiro G. Associations between binge eating, depressive symptoms and anxiety and weight regain after Roux-en-Y gastric bypass surgery. Eat. Weight Disord. 2020:191–199. doi: 10.1007/s40519-019-00839-w.
    1. Novelli I.R., Fonseca L.G., Gomes D.L., Dutra E.S., Carvalho D.B.K.M. Emotional eating behavior hinders body weight loss in women after Roux-en-Y gastric bypass surgery. Nutrition. 2018;49:13–16. doi: 10.1016/j.nut.2017.11.017.
    1. Feig E.H., Golden J., Huffman J.C. Emotional impact on health behavior adherence after bariatric surgery: What about positive psychological constructs? Obes. Surg. 2019;29:2238–2246. doi: 10.1007/s11695-019-03833-4.
    1. Goldschmidt A.B., Conceição E.M., Thomas J.G., Mitchell J.E., Raynor H.A., Bond D.S. Conceptualizing and studying binge and loss of control eating in bariatric surgery patients-time for a paradigm shift? Surg. Obes. Relat.Dis. 2016;12:1622–1625. doi: 10.1016/j.soard.2016.09.008.
    1. He J., Cai Z., Fan X. Prevalence of binge and loss of control eating among children and adolescents with overweight and obesity: An exploratory meta-analysis. Int. J. Eat. Disord. 2017;50:91–103. doi: 10.1002/eat.22661.
    1. Goldschmidt A.B., Khoury J., Jenkins T.M., Bond D.S., Thomas J.G., Utzinger L.M., Zeller M.H., Inge T.H., Mitchell J.E. Adolescent loss-of-control eating and weight loss maintenance after bariatric surgery. Pediatrics. 2018;141 doi: 10.1542/peds.2017-1659.
    1. White M.A., Kalarchian M.A., Masheb R.M., Marcus M.D., Grilo C.M. Loss of control over eating predicts outcomes in bariatric surgery patients: A prospective, 24-month follow-up study. J. Clin. Psychiatry. 2010;71:175–184. doi: 10.4088/JCP.08m04328blu.
    1. Peterhänsel C., Linde K., Wagner B., Dietrich A., Kersting A. Subtypes of personality and “locus of control” in bariatric patients and their effect on weight loss, eating disorder and depressive symptoms, and quality of life. Eur. Eat Disord. Rev. 2017;25:397–405. doi: 10.1002/erv.2534.
    1. Gordon P.C., Sallet J.A., Sallet P.C. The impact of temperament and character inventory personality traits on long-term outcome of Roux-en-Y Gastric Bypass. Obes. Surg. 2014;24:1647–1655. doi: 10.1007/s11695-014-1229-7.
    1. NICE Clinical Guideline. 189th ed. NICE; London, UK: 2014. National Institute for Health and Care Excelence (NICE). Obesity: Identification, Assessment and Management of Overweight and Obesity in Children, Young People and Adults; p. 37.
    1. Goodpaster B.H., Delany J.P., Otto A.D., Kuller L., Vockley J., South-Paul J.E., Thomas S.B., Brown J., McTigue K., Hames K.C., et al. Effects of diet and physical activity interventions on weight loss and cardiometabolic risk factors in severely obese adults: A randomized trial. JAMA. 2010;304:1795–1802. doi: 10.1001/jama.2010.1505.
    1. Bond D.S., Jakicic J.M., Vithiananthan S., Thomas J.G., Leahey T.M., Sax H.C., Pohl D., Roye G.D., Ryder B.A., Wing R.R. Objective quantification of physical activity in bariatric surgery candidates and normal-weight controls. Surg. Obes. Relat. Dis. 2010;6:72–78. doi: 10.1016/j.soard.2009.08.012.
    1. Elkins G., Whitfield P., Marcus J., Symmonds R., Rodriguez J., Cook T. Noncompliance with behavioral recommendations following bariatric surgery. Obes. Surg. 2005;15:546–551. doi: 10.1381/0960892053723385.
    1. King W.C., Hsu J.Y., Belle S.H., Courcoulas A.P., Eid G.M., Flum D.R., Mitchell J.E., Pender J.R., Smith M.D., Steffen K.J., et al. Pre- to postoperative changes in physical activity: Report from the longitudinal assessment of bariatric surgery-2 (LABS-2) Surg. Obes. Relat. 2012;8:522–532. doi: 10.1016/j.soard.2011.07.018.
    1. Bond D.S., Jakicic J.M., Unick J.L., Vithiananthan S., Pohl D., Roye G.D., Ryder B.A., Sax H.C., Wing R.R. Pre-to post-operative physical activity changes in bariatric surgery patients: Self-report vs. objective measures. Obesity. 2010;18:2395–2397. doi: 10.1038/oby.2010.88.
    1. Ouellette K.A., Mabey J.G., Eisenman P.A., Shaw J.M., Brusseau T.A., Hatfield D.L., Ford C.N., Davidson L.E. Physical activity patterns among individuals before and soon after bariatric surgery. Obes. Surg. 2020;30:416–422. doi: 10.1007/s11695-019-04186-8.
    1. Carnero E.A., Dubis G.S., Hames K.C., Jakicic J.M., Houmard J.A., Coen P.M., Goodpaster B.H. Randomized trial reveals that physical activity and energy expenditure are associated with weight and body composition after RYGB. Obesity. 2017;25:1206–1216. doi: 10.1002/oby.21864.
    1. Egberts K., Brown W.A., Brennan L., O’Brien P.E. Does exercise improve weight loss after bariatric surgery? A systematic review. Obes. Surg. 2012;22:335–341. doi: 10.1007/s11695-011-0544-5.
    1. Rothwell L., Kow L., Toouli J. Effect of a post-operative structured exercise programme on short-term weight loss after obesity surgery using adjustable gastric bands. Obes. Surg. 2015;25:126–128. doi: 10.1007/s11695-014-1323-x.
    1. Bellicha A., Ciangura C., Poitou C., Portero P., Oppert J.-M. Effectiveness of exercise training after bariatric surgery-a systematic literature review and meta-analysis. Obes. Rev. 2018;19:1544–1556. doi: 10.1111/obr.12740.
    1. Hanvold S.E., Vinknes K.J., Løken E.B., Hjartåker A., Klungsøyr O., Birkeland E., Risstad H., Gulseth H.L., Refsum H., Aas A.M. Does lifestyle intervention after gastric bypass surgery prevent weight regain? A randomized clinical trial. Obes. Surg. 2019;29:3419–3431. doi: 10.1007/s11695-019-04109-7.
    1. Vatier C., Henegar C., Ciangura C., Poitou-Bernert C., Bouillot J.-L., Basdevant A., Oppert J.M. Dynamic relations between sedentary behavior, physical activity, and body composition after bariatric surgery. Obes. Surg. 2012;22:1251–1256. doi: 10.1007/s11695-012-0619-y.
    1. Evans R.K., Bond D.S., Wolfe L.G., Meador J.G., Herrick J.E., Kellum J.M., Maher J.W. Participation in 150 min/wk of moderate or higher intensity physical activity yields greater weight loss after gastric bypass surgery. Surg. Obes. Relat. Dis. 2007;3:526–530. doi: 10.1016/j.soard.2007.06.002.
    1. Herman K.M., Carver T.E., Christou N.V., Andersen R.E. Keeping the weight off: Physical activity, sitting time, and weight loss maintenance in bariatric surgery patients 2 to 16 years post-surgery. Obes. Surg. 2014;24:1064–1072. doi: 10.1007/s11695-014-1212-3.
    1. Kaviani S., Dadgostar H., Mazaherinezhad A., Adib H., Solaymani-Dodaran M., Soheilipour F., Hakiminezhad M. Comparing minimally supervised home-based and closely supervised gym-based exercise programs in weight reduction and insulin resistance after bariatric surgery: A randomized clinical trial. Med. J. Islam. Repub. Iran. 2017;31:34. doi: 10.14196/mjiri.31.34.
    1. Woodlief T.L., Carnero E.A., Standley R.A., Distefano G., Anthony S.J., Dubis G.S., Jakicic J.M., Houmard J.A., Coen P.M., Goodpaster B.H. Dose response of exercise training following roux-en-Y gastric bypass surgery: A randomized trial. Obesity. 2015;23:2454–2461. doi: 10.1002/oby.21332.
    1. Ryder J.R., Gross A.C., Fox C.K., Kaizer A.M., Rudser K.D., Jenkins T.M., Ratcliff M.B., Kelly A.S., Kirk S., Siegel R.M., et al. Factors associated with long-term weight-loss maintenance following bariatric surgery in adolescents with severe obesity. Int. J. Obes. 2005;42:102–107. doi: 10.1038/ijo.2017.193.
    1. Coen P.M., Tanner C.J., Helbling N.L., Dubis G.S., Hames K.C., Xie H., Eid G.M., Stefanovic-Racic M., Toledo F.G., Jakicic J.M., et al. Clinical trial demonstrates exercise following bariatric surgery improves insulin sensitivity. J. Clin. Invest. 2015;125:248–257. doi: 10.1172/JCI78016.
    1. Shah M., Snell P.G., Rao S., Adams-Huet B., Quittner C., Livingston E.H., Garg A. High-volume exercise program in obese bariatric surgery patients: A randomized, controlled trial. Obesity (Silver Spring) 2011;19:1826–1834. doi: 10.1038/oby.2011.172.
    1. Coleman K.J., Caparosa S.L., Nichols J.F., Fujioka K., Koebnick C., McCloskey K.N., Ngor E., Levy S. Understanding the capacity for exercise in post-bariatric patients. Obes. Surg. 2017;27:51–58. doi: 10.1007/s11695-016-2240-y.
    1. Herring L.Y., Stevinson C., Carter P., Biddle S.J.H., Bowrey D., Sutton C., Davies M.J. The effects of supervised exercise training 12-24 months after bariatric surgery on physical function and body composition: A randomised controlled trial. Int. J. Obes. 2017;41:909–916. doi: 10.1038/ijo.2017.60.
    1. Shaw K., O’Rourke P., Del Mar C., Kenardy J. Psychological interventions for overweight or obesity. Cochrane Database Syst. Rev. 2005 doi: 10.1002/14651858.CD003818. CD003818.
    1. Metcalf B., Rabkin R.A., Rabkin J.M., Metcalf L.J., Lehman-Becker L.B. Weight loss composition: The effects of exercise following obesity surgery as measured by bioelectrical impedance analysis. Obes. Surg. 2005;15:183–186. doi: 10.1381/0960892053268381.
    1. Chaston T.B., Dixon J.B., O’Brien P.E. Changes in fat-free mass during significant weight loss: A systematic review. Int. J. Obes. 2007;31:743–750. doi: 10.1038/sj.ijo.0803483.
    1. Miller S.L., Wolfe R.R. The danger of weight loss in the elderly. J. Nutr. Health Aging. 2008;12:487–491. doi: 10.1007/BF02982710.
    1. Churchward-Venne T.A., Tieland M., Verdijk L.B., Leenders M., Dirks M.L., Groot D.L.C., Van Loon L.J. There are no nonresponders to resistance-type exercise training in older men and women. J. Am. Med. Dir. Assoc. 2015;16:400–411. doi: 10.1016/j.jamda.2015.01.071.
    1. Forman E.M., Butryn M.L., Manasse S.M., Crosby R.D., Goldstein S.P., Wyckoff E.P., Thomas J.G. Acceptance-based versus standard behavioral treatment for obesity: Results from the mind your health randomized controlled trial. Obesity (Silver Spring) 2016;24:2050–2056. doi: 10.1002/oby.21601.
    1. Sarwer D.B., Wadden T.A., Moore R.H., Baker A.W., Gibbons L.M., Raper S.E., Williams N.N. Preoperative eating behavior, postoperative dietary adherence, and weight loss after gastric bypass surgery. Surg. Obes. Relat. Dis. 2008;4:640–646. doi: 10.1016/j.soard.2008.04.013.
    1. Thomas J.G., Bond D.S., Phelan S., Hill J.O., Wing R.R. Weight-loss maintenance for 10 years in the national weight control registry. Am. J. Prev. Med. 2014;46:17–23. doi: 10.1016/j.amepre.2013.08.019.
    1. Bray G., Smith S., Jonge D.L., Souza D.R., Rood J., Champagne C., Laranjo N., Carey V., Obarzanek E., Loria C.M., et al. Effect of diet composition on energy expenditure during weight loss: The POUNDS LOST Study. Int. J. Obes. 2012;36:448–455. doi: 10.1038/ijo.2011.173.
    1. Grave D.R., Calugi S., Gavasso I., El Ghoch M., Marchesini G. A randomized trial of energy-restricted high-protein versus high-carbohydrate, low-fat diet in morbid obesity. Obesity (Silver Spring) 2013;21:1774–1781. doi: 10.1002/oby.20320.
    1. Reid R.E.R., Oparina E., Plourde H., Andersen R.E. Energy intake and food habits between weight maintainers and regainers, five years after Roux-en-Y gastric bypass. Can. J. Diet. Pract. Res. 2016;77:195–198. doi: 10.3148/cjdpr-2016-013.
    1. Faria S.L., Oliveira D.K.E., Faria O.P., Ito M.K. Snack-eating patients experience lesser weight loss after Roux-en-Y gastric bypass surgery. Obes. Surg. 2009;19:1293–1296. doi: 10.1007/s11695-008-9704-7.
    1. Spaggiari G., Santi D., Budriesi G., Dondi P., Cavedoni S., Leonardi L., Delvecchio C., Valentini L., Bondi M., Miloro C., et al. Eating behavior after bariatric surgery (EBBS) questionnaire: A new validated tool to quantify the patients’ compliance to post-bariatric dietary and lifestyle suggestions. Obes. Surg. 2020;30:3831–3838. doi: 10.1007/s11695-020-04723-w.
    1. Ebbeling C.B., Swain J.F., Feldman H.A., Wong W.W., Hachey D.L., Garcia-Lago E., Ludwig D.S. Effects of dietary composition on energy expenditure during weight-loss maintenance. JAMA. 2012;307:2627–2634. doi: 10.1001/jama.2012.6607.
    1. Larsen T.M., Dalskov S.-M., Van Baak M., Jebb S.A., Papadaki A., Pfeiffer A.F.H., Martinez J.A., Handjieva-Darlenska T., Kunešová M., Pihlsgård M., et al. Diets with high or low protein content and glycemic index for weight-loss maintenance. N. Engl. J. Med. 2010;363:2102–2113. doi: 10.1056/NEJMoa1007137.
    1. Mitchell J.E., Christian N.J., Flum D.R., Pomp A., Pories W.J., Wolfe B.M., Courcoulas A.P., Belle S.H. Postoperative behavioral variables and weight change 3 years after bariatric surgery. JAMA Surg. 2016;151:752–757. doi: 10.1001/jamasurg.2016.0395.
    1. Koliaki C., Liatis S., Dalamaga M., Kokkinos A. The implication of gut hormones in the regulation of energy homeostasis and their role in the pathophysiology of obesity. Curr. Obes. Rep. 2020;9:255–271. doi: 10.1007/s13679-020-00396-9.
    1. Karra E., Batterham R.L. The role of gut hormones in the regulation of body weight and energy homeostasis. Mol. Cell Endocrinol. 2010;316:120–128. doi: 10.1016/j.mce.2009.06.010.
    1. Da Silva A., Salem V., Long C.J., Makwana A., Newbould R.D., Rabiner E.A., Ghatei M.A., Bloom S.R., Matthews P.M., Beaver J.D., et al. The gut hormones PYY 3-36 and GLP-17-36 amide reduce food intake and modulate brain activity in appetite centers in humans. Cell Metab. 2011;14:700–706. doi: 10.1016/j.cmet.2011.09.010.
    1. Madsbad S. The role of glucagon-like peptide-1 impairment in obesity and potential therapeutic implications. Diabetes Obes. Metab. 2014;16:9–21. doi: 10.1111/dom.12119.
    1. Steinert R.E., Feinle-Bisset C., Asarian L., Horowitz M., Beglinger C., Geary N., Ghrelin C.C.K. GLP-1, and PYY (3–36): Secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB. Physiol Rev. 2017;97:411–463. doi: 10.1152/physrev.00031.2014.
    1. Dockray G.J. Cholecystokinin. Curr. Opin. Endocrinol. Diabetes Obes. 2012;19:8–12. doi: 10.1097/MED.0b013e32834eb77d.
    1. Malin S.K., Kashyap S.R. Differences in weight loss and gut hormones: Rouen-Y gastric bypass and sleeve gastrectomy surgery. Curr. Obes. Rep. 2015;4:279–286. doi: 10.1007/s13679-015-0151-1.
    1. Cummings D.E. Endocrine mechanisms mediating remission of diabetes after gastric bypass surgery. Int. J. Obes. 2009;33:33–40. doi: 10.1038/ijo.2009.15.
    1. Mithieux G. A novel function of intestinal gluconeogenesis: Central signaling in glucose and energy homeostasis. Nutrition. 2009;25:881–884. doi: 10.1016/j.nut.2009.06.010.
    1. Salinari S., Debard C., Bertuzzi A., Durand C., Zimmet P., Vidal H., Mingrone G. Jejunal proteins secreted by db/db mice or insulin-resistant humans impair the insulin signaling and determine insulin resistance. PLoS ONE. 2013;8:e56258. doi: 10.1371/journal.pone.0056258.
    1. Perakakis N., Kokkinos A., Peradze N., Tentolouris N., Ghaly W., Pilitsi E., Upadhyay J., Alexandrou A., Mantzoros C.S. Circulating levels of gastrointestinal hormones in response to the most common types of bariatric surgery and predictive value for weight loss over one year: Evidence from two independent trials. Metabolism. 2019;101:153997. doi: 10.1016/j.metabol.2019.153997.
    1. Santo M.A., Riccioppo D., Pajecki D., Kawamoto F., Cleva D.R., Antonangelo L., Marçal L., Cecconello I. Weight regain after gastric bypass: Influence of gut hormones. Obes. Surg. 2016;26:919–925. doi: 10.1007/s11695-015-1908-z.
    1. Alamuddin N., Vetter M.L., Ahima R.S., Hesson L., Ritter S., Minnick A., Faulconbridge L.F., Allison K.C., Sarwer D.B., Chittams J., et al. Changes in fasting and prandial gut and adiposity hormones following vertical sleeve gastrectomy or Roux-en-Y-gastric bypass: An 18-month prospective study. Obes. Surg. 2017;27:1563–1572. doi: 10.1007/s11695-016-2505-5.
    1. Ahmad N.N., Pfalzer A., Kaplan L.M. Roux-en-Y gastric bypass normalizes the blunted postprandial bile acid excursion associated with obesity. Int. J. Obes. 2013;37:1553–1559. doi: 10.1038/ijo.2013.38.
    1. Liou A.P., Pazik M., Luevano J.M., Jr., Machineni S., Turnbaugh P.J., Kaplan L.M. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci. Transl. Med. 2013;5:178ra41. doi: 10.1126/scitranslmed.3005687.
    1. Thomas C., Gioiello A., Noriega L., Strehle A., Oury J., Rizzo G., Macchiarulo A., Yamamoto H., Mataki C., Pruzanski M., et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009;10:167–177. doi: 10.1016/j.cmet.2009.08.001.
    1. Duüfer M., Hörth K., Wagner R., Schittenhelm B., Prowald S., Wagner T.F., Oberwinkler J., Lukowski R., Gonzalez F.J., Krippeit-Drews P., et al. Bile acids acutely stimulate insulin secretion of mouse β-cells via farnesoid X receptor activation and K(ATP) channel inhibition. Diabetes. 2012;61:1479–1489.
    1. Carrasco F., Papapietro K., Csendes A., Salazar G., Echenique C., Lisboa C., Díaz E., Rojas J. Changes in resting energy expenditure and body composition after weight loss following Roux-en-Y gastric bypass. Obes. Surg. 2007;17:608–616. doi: 10.1007/s11695-007-9117-z.
    1. Orellana E.R., Covasa M., Hajnal A. Neuro-hormonal mechanisms underlying changes in reward related behaviors following weight loss surgery: Potential pharmacological targets. Biochem. Pharmacol. 2019;164:106–114. doi: 10.1016/j.bcp.2019.04.004.
    1. Kroemer N.B., Small D.M. Fuel not fun: Reinterpreting attenuated brain responses to reward in obesity. Physiol. Behav. 2016;162:37–45. doi: 10.1016/j.physbeh.2016.04.020.
    1. Pepino M.Y., Bradley D., Eagon J.C., Sullivan S., Abumrad N.A., Klein S. Changes in taste perception and eating behavior after bariatric surgery-induced weight loss in women. Obesity. 2014;22:E13–E20. doi: 10.1002/oby.20649.
    1. Zhang Y., Nagarajan N., Portwood C., Smith K.R., Kamath V., Carnell S., Moran T.H., Steele K.E. Does taste preference predict weight regain after bariatric surgery? Surg. Endosc. 2020;34:2623–2629. doi: 10.1007/s00464-019-07033-0.

Source: PubMed

3
Se inscrever