Metabolic and Endocrine Consequences of Bariatric Surgery

Isabel Cornejo-Pareja, Mercedes Clemente-Postigo, Francisco J Tinahones, Isabel Cornejo-Pareja, Mercedes Clemente-Postigo, Francisco J Tinahones

Abstract

Obesity is one of the most serious worldwide epidemics of the twenty-first century according to the World Health Organization. Frequently associated with a number of comorbidities, obesity threatens and compromises individual health and quality of life. Bariatric surgery (BS) has been demonstrated to be an effective treatment to achieve not only sustained weight loss but also significant metabolic improvement that goes beyond mere weight loss. The beneficial effects of BS on metabolic traits are so widely recognized that some authors have proposed BS as metabolic surgery that could be prescribed even for moderate obesity. However, most of the BS procedures imply malabsorption and/or gastric acid reduction which lead to nutrient deficiency and, consequently, further complications could be developed in the long term. In fact, BS not only affects metabolic homeostasis but also has pronounced effects on endocrine systems other than those exclusively involved in metabolic function. The somatotropic, corticotropic, and gonadal axes as well as bone health have also been shown to be affected by the various BS procedures. Accordingly, further consequences and complications of BS in the long term in systems other than metabolic system need to be addressed in large cohorts, taking into account each bariatric procedure before making generalized recommendations for BS. In this review, current data regarding these issues are summarized, paying special attention to the somatotropic, corticotropic, gonadal axes, and bone post-operative health.

Keywords: bariatric surgery; bone metabolism; corticotropic axis; gonadal axis; somatotropic axis.

Copyright © 2019 Cornejo-Pareja, Clemente-Postigo and Tinahones.

Figures

Figure 1
Figure 1
Mechanism for T2DM resolution. Mechanisms and modifications of main gastrointestinal hormones involved in T2DM resolution after bariatric surgery. Several mechanisms have been proposed to explain the metabolic improvement after bariatric surgery. However, due to the fact that each bariatric procedure does not involve the same gastrointestinal tract modifications, it has been suggested that each procedure acts by means of different mechanisms to achieve T2DM resolution, including differential shifts in gastrointestinal hormones levels. It has been proposed that the exclusion of the duodenum and proximal jejunum in bariatric procedures such as RYGB or BPD would inhibit the “anti-incretin” signaling (“foregut hypothesis”). This kind of remodeling would also reduce the time that nutrients take to reach distal jejunum which could imply an early activation of incretin-secreting L-cells in the distal ileum and proximal colon (“hindgut hypothesis”). Incretins such as GLP-1, PYY, or oxyntomodulin improve pancreatic insulin secretion and reduce glucagon release. By contrast, the main gastrointestinal hormonal shift expected after SG is the decrease in the levels of the orexigenic hormone ghrelin due to the removal of the gastric fundus and therefore, of the ghrelin-producing mucosa. However, it has also been described an increase in GLP-1 and PYY levels after SG likely due to a shorter intestinal transit after surgery. Apart from changes in gastrointestinal hormone patterns, alterations in bile acid metabolism, gut microbiota composition, modification in gastrointestinal vagal signaling or changes in adipokines levels described after the different bariatric procedures, could be also involved in the bariatric metabolic improvement and T2DM resolution after surgery. BPD, biliopancreatic diversion; GIP, gastric inhibitory polypeptide; GLP-1, Glucagon-like Peptide 1; PYY, Peptide YY; RYGB, Roux-en-Y gastric bypass; SG, sleeve gastrectomy; T2DM, Type 2 diabetes mellitus.

References

    1. Salas-Salvadó J, Rubio MA, Barbany M, Moreno B, de la SEEDO GC. Consenso SEEDO 2007 para la evaluación del sobrepeso y la obesidad y el establecimiento de criterios de intervención terapéutica. Med Clin. (2007) 28:184–96. 10.1016/S0025-7753(07)72531-9
    1. WHO Obesity and Overweight. Available online at:
    1. Look AHEAD Research Group. Wing RR, Bolin P, Brancati FL, Bray GA, Clark JM, et al. . Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med. (2013) 369:145–54. 10.1056/NEJMoa1212914
    1. Daigle CR, Brethauer SA, Tu C, Petrick AT, Morton JM, Schauer PR, et al. . Which postoperative complications matter most after bariatric surgery? Prioritizing quality improvement efforts to improve national outcomes. Surg Obes Relat Dis. (2018) 14:652–7. 10.1016/j.soard.2018.01.008
    1. Magouliotis DE, Tasiopoulou VS, Svokos KA, Svokos AA, Sioka E, Tzovaras G, et al. . Banded vs. non-banded Roux-en-Y gastric bypass for morbid obesity: a systematic review and meta-analysis. Clin Obes. (2018) 8:424–33. 10.1111/cob.12274
    1. Tice JA, Karliner L, Walsh J, Petersen AJ, Feldman MD. Gastric banding or bypass? A systematic review comparing the two most popular bariatric procedures. Am J Med. (2008) 121:885–93. 10.1016/j.amjmed.2008.05.036
    1. Colquitt JL, Pickett K, Loveman E, Frampton GK. Surgery for weight loss in adults. Cochrane Database Syst Rev. (2014). 8:CD003641 10.1002/14651858.CD003641.pub4
    1. Rachlin E, Galvani C. Metabolic surgery as a treatment option for type 2 diabetes mellitus: surgical view. Curr Diab Rep. (2018) 18:113. 10.1007/s11892-018-1094-1
    1. Schauer PR, Kashyap SR, Wolski K, Brethauer SA, Kirwan JP, Pothier CE, et al. . Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. (2012) 366: 1567–76. 10.1056/NEJMoa1200225
    1. Sjöström L. Bariatric surgery and reduction in morbidity and mortality: experiences from the SOS study. Int J Obes. (2008) 32(Suppl. 7):S93–7. 10.1038/ijo.2008.244
    1. Sjöström L, Narbro K, Sjöström CD, Karason K, Larsson B, Wedel H, et al. Swedish obese subjects study. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med. (2007) 357:741–52. 10.1056/NEJMoa066254
    1. Adil MT, Jain V, Rashid F, Al-Taan O, Whitelaw D, Jambulingam P. Meta-analysis of the effect of bariatric surgery on physical function. Br J Surg. (2018) 105:1107–18. 10.1002/bjs.10880
    1. Leonetti F, Capoccia D, Coccia F, Casella G, Baglio G, Paradiso F, et al. . Obesity, type 2 diabetes mellitus, and other comorbidities: a prospective cohort study of laparoscopic sleeve gastrectomy vs medical treatment. Arch Surg. (2012) 147:694–700. 10.1001/archsurg.2012.222
    1. Risstad H, Søvik TT, Engström M, Aasheim ET, Fagerland MW, Olsén MF, et al. . Five-year outcomes after laparoscopic gastric bypass and laparoscopic duodenal switch in patients with body mass index of 50 to 60: a randomized clinical trial. JAMA Surg. (2015) 150:352–61. 10.1001/jamasurg.2014.3579
    1. Peterli R, Wölnerhanssen BK, Vetter D, Nett P, Gass M, Borbély Y, et al. Laparoscopic sleeve gastrectomy versus Roux-Y-gastric bypass for morbid obesity-3-year outcomes of the prospective randomized Swiss Multicenter Bypass Or Sleeve Study (SM-BOSS). Ann Surg. (2017) 265:466–73. 10.1097/SLA.0000000000001929
    1. Salminen P, Helmiö M, Ovaska J, Juuti A, Leivonen M, Peromaa-Haavisto P, et al. . Effect of laparoscopic sleeve gastrectomy vs laparoscopic Roux-en-Y gastric bypass on weight loss at 5 years among patients with morbid obesity: the SLEEVEPASS randomized clinical trial. JAMA. (2018) 319:241–54. 10.1001/jama.2017.20313
    1. Hofsø D, Nordstrand N, Johnson LK, Karlsen TI, Hager H, Jenssen T, et al. . Obesity related cardiovascular risk factors after weight loss: a clinical trial comparing gastric bypass surgery and intensive lifestyle intervention. Eur J Endocrinol. (2010) 163:735–45. 10.1530/EJE-10-0514
    1. Adams TD, Pendleton RC, Strong MB, Kolotkin RL, Walker JM, Litwin SE, et al. . Health outcomes of gastric bypass patients compared to nonsurgical, nonintervened severely obese. Obesity. (2010) 18:121–30. 10.1038/oby.2009.178
    1. Heo YS, Park JM, Kim YJ, Kim SM, Park DJ, Lee SK, et al. . Bariatric surgery versus conventional therapy in obese Korea patients: a multicenter retrospective cohort study. J Korean Surg Soc. (2012) 83:335–42. 10.4174/jkss.2012.83.6.335
    1. Noel OF, Still CD, Argyropoulos G, Edwards M, Gerhard GS. Bile Acids, FXR, and metabolic effects of bariatric surgery. J Obes. (2016) 2016:4390254. 10.1155/2016/4390254
    1. Tinahones FJ, Queipo-Ortuño MI, Clemente-Postigo M, Fernnadez-Garcia D, Mingrone G, Cardona F. Postprandial hypertriglyceridemia predicts improvement in insulin resistance in obese patients after bariatric surgery. Surg Obes Relat Dis. (2013) 9:213–8. 10.1016/j.soard.2011.08.022
    1. Kim J, Brethauer S, ASMBS Clinical Issues Committee American Society for Metabolic and Bariatric Surgery Clinical Issues Committee Position Statement . Metabolic bone changes after bariatric surgery. Surg Obes Relat Dis Off J Am Soc Bariatr Surg. (2015) 11:406–11. 10.1016/j.soard.2014.03.010.
    1. Rodríguez-Carmona Y, López-Alavez FJ, González-Garay AG, Solís-Galicia C, Meléndez G, Serralde-Zúñiga AE. Bone mineral density after bariatric surgery. A systematic review. Int J Surg Lond Engl. (2014) 12:976–82. 10.1016/j.ijsu.2014.08.002
    1. Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Nanni G, et al. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of anopen-label, singlecentre, randomised controlled trial. Lancet. (2015) 386:964–73. 10.1016/S0140-6736(15)00075-6
    1. Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Aminian A, Brethauer SA, et al. STAMPEDE Investigators. Bariatric surgery versus intensive medical therapy for diabetes 5-year outcomes. N Engl J Med. (2017) 376:641–51. 10.1056/NEJMoa1600869
    1. Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Brethauer SA, Navaneethan SD, et al. STAMPEDE Investigators. Bariatric surgery versus intensive medical therapy for diabetes−3-year outcomes. N Engl J Med. (2014) 370:2002–13. 10.1056/NEJMoa1401329
    1. Iaconelli A, Panunzi S, De Gaetano A, Manco M, Guidone C, Leccesi L, et al. . Effects of bilio pancreatic diversion on diabetic complications: a 10 year follow up. Diabetes Care. (2011) 34:56–7. 10.2337/dc10-1761
    1. Singh AK, Singh R, Kota SK. Bariatric surgery and diabetes remission: who would have thought it? Indian J Endocrinol Metab. (2015) 19:563–76. 10.4103/2230-8210.163113
    1. Benotti P, Wood GC, Winegar DA, Petrick AT, Still CD, Argyropoulos G, et al. . Risk factors associated with mortality after Roux-en-Y gastric bypass surgery. Ann Surg. (2014) 259:123–30. 10.1097/SLA.0b013e31828a0ee4
    1. Garrido-Sanchez L, Murri M, Rivas-Becerra J, Ocaña-Wilhelmi L, Cohen RV, Garcia-Fuentes E, et al. . Bypass of the duodenum improves insulin resistance much more rapidly than sleeve gastrectomy. Surg Obes Relat Dis. (2012) 8:145–50. 10.1016/j.soard.2011.03.010
    1. Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K, et al. . Bariatric surgery: a systematic review and meta-analysis. JAMA. (2004) 292.1724–37. 10.1001/jama.292.14.1724
    1. Pournaras DJ, Aasheim ET, Søvik TT, Andrews R, Mahon D, Welbourn R, et al. . Effect of the definition of type II diabetes remission in the evaluation of bariatric surgery for metabolic disorders. Br J Surg. (2012) 99:100–3. 10.1002/bjs.7704
    1. Brethauer SA, Aminian A, Romero-Talam'as H, Batayyah E, Mackey J, Kennedy L, et al. . Can diabetes be surgically cured? Long-term metabolic effects of bariatric surgery in obese patients with type 2 diabetes mellitus. Ann Surg. (2013) 258:628–36. Discussion 636–7. 10.1097/SLA.0b013e3182a5034b
    1. Buse JB, Caprio S, Cefalu WT, Ceriello A, Del Prato S, Inzucchi SE, et al. . How do we define cure of diabetes? Diabetes Care. (2009) 32:2133–5. 10.2337/dc09-9036
    1. Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Leccesi L, et al. . Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. (2012) 366:1577–85. 10.1056/NEJMoa1200111
    1. Yan Y, Sha Y, Yao G, Wang S, Kong F, Liu H, et al. . Roux-en-Y Gastric bypass versus medical treatment for type 2 diabetes mellitus in obese patients: a systematic review and meta-analysis of randomized controlled trials. Medicine. (2016) 95:e3462. 10.1097/MD.0000000000003462
    1. Chang SH, Stoll CR, Song J, Varela JE, Eagon CJ, Colditz GA. The effectiveness and risks of bariatric surgery: an updated systematic review and meta-analysis, 2003-2012. JAMA Surg. (2014) 149: 275–87. 10.1001/jamasurg.2013.3654
    1. Wang F-G, Yan W-M, Yan M, Song M-M. Outcomes of Mini vs Roux-en-Y gastric bypass: a meta-analysis and systematic review, Int J Surg. (2018) 56:7–14. 10.1016/j.ijsu.2018.05.009
    1. Bojsen Møller KN, Dirksen C, Jørgensen NB, Jacobsen SH, Serup AK, Albers PH, et al. Early enhancements of hepatic and later of peripheral insulin sensitivity combined with increased postprandial insulin secretion contribute to improved glycemic control after Roux en Y gastric bypass. Diabetes. (2014) 63:1725–37. 10.2337/db13-1307
    1. Camastra S, Gastaldelli A, Mari A, Bonuccelli S, Scartabelli G, Frascerra S, et al. . Early and longer term effects of gastric bypass surgery on tissue specific insulin sensitivity and beta cell function in morbidly obese patients with and without type 2 diabetes. Diabetologia. (2011) 54:2093–102. 10.1007/s00125-011-2193-6
    1. Clemente-Postigo M, Roca-Rodriguez Mdel M, Camargo A, Ocaña-Wilhelmi L, Cardona F, Tinahones FJ. Lipopolysaccharide and lipopolysaccharide-binding protein levels and their relationship to early metabolic improvement after bariatric surgery. Surg Obes Relat Dis. (2015) 11:933–9. 10.1016/j.soard.2014.11.030
    1. Murri M, García-Fuentes E, García-Almeida JM, Garrido-Sánchez L, Mayas MD, Bernal R, et al. . Changes in oxidative stress and insulin resistance in morbidly obese patients after bariatric surgery. Obes Surg. (2010) 20:363–8. 10.1007/s11695-009-0021-6
    1. Ashrafian H, le Roux CW. Metabolic surgery and gut hormones– a review of bariatric entero-humoral modulation. Physiol Behav. (2009)97:620–31. 10.1016/j.physbeh.2009.03.012
    1. Santiago-Fernández C, García-Serrano S, Tome M, Valdes S, Ocaña-Wilhelmi L, Rodríguez-Cañete A, et al. . Ghrelin levels could be involved in the improvement of insulin resistance after bariatric surgery. Endocrinol Diabetes Nutr. (2017) 64:355–62. 10.1016/j.endien.2017.08.011
    1. Meek CL, Lewis HB, Reimann F, Gribble FM, Park AJ. The effect of bariatric surgery on gastrointestinal and pancreatic peptide hormones. Peptides. (2016) 77:28–37. 10.1016/j.peptides.2015.08.013
    1. Jacobsen SH, Olesen SC, Dirksen C, Jørgensen NB, Bojsen-Møller KN, Kielgast U, et al. . Changes in gastrointestinal hormone responses, insulin sensitivity, and beta-cell function within 2 weeks after gastric bypass in non-diabetic subjects. Obes Surg. (2012) 22:1084–96. 10.1007/s11695-012-0621-4
    1. Wang JL, Xu XH, Zhang XJ, Li WH. The role of obestatin in roux-en-Y gastric bypass-induced remission of type 2 diabetes mellitus. Diabetes Metab Res Rev. (2016) 32:470–7. 10.1002/dmrr.2735
    1. Adami GF, Gradaschi R, Andraghetti G, Scopinaro N, Cordera R. Serum leptin and adiponectin concentration in type 2 diabetes patients in the short and long term following Biliopancreatic diversion. Obes Surg. (2016) 26:2442–8. 10.1007/s11695-016-2126-z
    1. Malin SK, Bena J, Abood B, Pothier CE, Bhatt DL, Nissen S, et al. . Attenuated improvements in adiponectin and fat loss characterize type 2 diabetes non-remission status after bariatric surgery. Diabetes Obes Metab. (2014) 16:1230–8. 10.1111/dom.12376
    1. Guo Y, Huang ZP, Liu CQ, Qi L, Sheng Y, Zou DJ. Modulation of the gut microbiome: a systematic review of the effect of bariatric surgery. Eur J Endocrinol. (2018) 178:43–56. 10.1530/EJE-17-0403
    1. Haluzík M, Kratochvílová H, Haluzíková D, Mráz M. Gut as an emerging organ for the treatment of diabetes: focus on mechanism of action of bariatric and endoscopic interventions. J Endocrinol. (2018) 237:R1–17. 10.1530/JOE-17-0438
    1. Jackness C, Karmally W, Febres G, Conwell IM, Ahmed L, Bessler M, et al. . Very low-calorie diet mimics the early beneficial effect of Roux-en-Y gastric bypass on insulin sensitivity and beta-cell function in type 2 diabetic patients. Diabetes. (2013) 62:3027–32. 10.2337/db12-1762
    1. Rubino F, Forgione A, Cummings DE, Vix M, Gnuli D, Mingrone G, et al. . The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. (2006) 244:741–9. 10.1097/01.sla.0000224726.61448.1b
    1. Pournaras DJ, Glicksman C, Vincent RP, Kuganolipava S, Alaghband-Zadeh J, Mahon D, et al. . The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology. (2012) 153:3613–9. 10.1210/en.2011-2145
    1. Batterham RL, Cummings DE. Mechanisms of diabetes improvement following bariatric/metabolic surgery. Diabetes Care. (2016) 39:893–901. 10.2337/dc16-0145
    1. Jirapinyo P, Jin DX, Qazi T, Mishra N, Thompson CC. A meta-analysis of GLP-1 after Roux-en-Y gastric bypass: impact of surgical technique andmeasurement strategy. Obes Surg. (2018) 28:615–26. 10.1007/s11695-017-2913-1
    1. Svane MS, Bojsen-Møller KN, Nielsen S, Jørgensen NB, Dirksen C, Bendtsen Fet al. Effects of endogenous GLP-1 and GIP on glucose tolerance after Roux-en-Y gastric bypass surgery. Am J Physiol Endocrinol Metab. (2016) 310:E505–14. 10.1152/ajpendo.00471.2015
    1. Mingrone G, Nolfe G, Gissey GC, Iaconelli A, Leccesi L, Guidone C, et al. . Circadian rhythms of GIP and GLP1 in glucosetolerant and in type 2 diabetic patients after biliopancreatic diversion. Diabetologia. (2009) 52 873–81. 10.1007/s00125-009-1288-9
    1. Salinari S, Bertuzzi A, Asnaghi S, Guidone C, Manco M, Mingrone G. First-phase insulin secretion restoration and differential response to glucose load depending on the route of administration in type 2 diabetic subjects after bariatric surgery. Diabetes Care. (2009) 32:375–80. 10.2337/dc08-1314
    1. Oh TJ, Ahn CH, Cho YM. Contribution of the distal small intestine to metabolic improvement after bariatric/metabolic surgery: lessons from ileal transposition surgery. J Diabetes Invest. (2016) 7:94–101. 10.1111/jdi.12444
    1. Lo JC, Ljubicic S, Leibiger B, Kern M, Leibiger IB, Moede T, et al. . Adipsin is an adipokine that improves β cell function in diabetes. Cell. (2014) 158:41–53. 10.1016/j.cell.2014.06.005
    1. Chronaiou A, Tsoli M, Kehagias I, Leotsinidis M, Kalfarentzos F, Alexandrides TK. Lower ghrelin levels and exaggerated postprandial peptide-YY, glucagon-like peptide-1, and insulin responses, after gastric fundus resection, in patients undergoing Roux-en-Y gastric bypass: a randomized clinical trial. Obes Surg. (2012) 22:1761–70. 10.1007/s11695-012-0738-5
    1. Still CD, Wood GC, Chu X, Erdman R, Manney CH, Benotti PN, et al. . High allelic burden of four obesity SNPs is associated with poorer weight loss outcomes following gastric bypass surgery. Obesity. (2011):1676–83. 10.1038/oby.2011.3
    1. Flynn CR, Albaugh VL, Cai S, Cheung-Flynn J, Williams PE, Brucker RM, et al. . Bile diversion to the distal small intestine has comparable metabolic benefits to bariatric surgery. Nat Commun. (2015) 6:7715. 10.1038/ncomms8715
    1. Shungin D, Winkler TW, Croteau-Chonka DC, Ferreira T, Locke AE, Mägi R, et al. . New genetic loci link adipose and insulin biology to body fat distribution. Nature. (2015) 518:187–96. 10.1038/nature14132
    1. Kaska L, Sledzinski T, Chomiczewska A, Dettlaff-Pokora A, Swierczynski J. Improved glucose metabolism following bariatric surgery is associated with increased circulating bile acid concentrations and remodeling of the gut microbiome. World J Gastroenterol. (2016) 22:8698–719. 10.3748/wjg.v22.i39.8698
    1. Ryan KK, Tremaroli V, Clemmensen C, Kovatcheva-Datchary P, Myronovych A, Karns R, et al. . FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature. (2014) 509:183–8. 10.1038/nature13135
    1. Schaap FG, Trauner M, Jansen PLM. Bile acid receptors as targets for drug development. Nat Rev Gastroenterol Hepatol. (2014) 11:55–67. 10.1038/nrgastro.2013.151
    1. Magouliotis DE, Tasiopoulou VS, Sioka E, Chatedaki C, Zacharoulis D. Impact of bariatric surgery on metabolic and gut microbiota profile: a systematic review and meta-analysis. Obes Surg. (2017) 27:1345–57. 10.1007/s11695-017-2595-8
    1. Graessler J, Qin Y, Zhong H, Zhang J, Licinio J, Wong M-L, et al. . Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenomics J. (2013) 13:514–22. 10.1038/tpj.2012.43
    1. Zhang H, Di Baise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, et al. . Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci USA. (2009) 106:2365–70. 10.1073/pnas.0812600106
    1. Kong L-C, Tap J, Aron-Wisnewsky J, Pelloux V, Basdevant A, Bouillot J-L, et al. . Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutr. (2013) 98:16–24. 10.3945/ajcn.113.058743
    1. Murphy R, Tsai P, Jüllig M, Liu A, Plank L, Booth M. Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission. Obes Surg. (2017) 27:917–25. 10.1007/s11695-016-2399-2
    1. Tabasi M, Ashrafian F, Khezerloo JK, Eshghjoo S, Behrouzi A, Javadinia SA, et al. . Changes in gut microbiota and hormones after bariatric surgery: a bench-to-bedside review. Obes Surg. (2019) 29:1663–74. 10.1007/s11695-019-03779-7
    1. Palleja A, Kashani A, Allin KH, Nielsen T, Zhang C, Li Y, et al. . Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Med. (2016) 8:67. 10.1186/s13073-016-0312-1
    1. Tremaroli V, Karlsson F, Werling M, Ståhlman M, Kovatcheva-Datchary P, Olbers T, et al. . Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. (2015) 22:228–38. 10.1016/j.cmet.2015.07.009
    1. Ilhan ZE, DiBaise JK, Isern NG, Hoyt DW, Marcus AK, Kang D-W, et al. Distinctive microbiomes and metabolites linked with weight loss after gastric bypass, but not gastric banding. ISME J. (2017) 11:2047–58. 10.1038/ismej.2017.71
    1. Damms-Machado A, Mitra S, Schollenberger AE, Kramer KM, Meile T, Königsrainer A, et al. . Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption. Biomed Res Int. (2015) 2015:806248. 10.1155/2015/806248
    1. Liu H, Hu C, Zhang X, Jia W. Role of gut microbiota, bile acids and their cross-talk in the effects of bariatric surgery on obesity and type 2 diabetes. J Diabetes Investig. (2018) 9:13–20. 10.1111/jdi.12687
    1. Gutiérrez-Repiso C, Moreno-Indias I, de Hollanda A, Martín-Núñez GM, Vidal J, Tinahones FJ. Gut microbiota specific signatures are related to the successful rate of bariatric surgery. Am J Transl Res. (2019) 11:942–52. Available online at:
    1. Furet J-P, Kong L-C, Tap J, Poitou C, Basdevant A, Bouillot J-L, et al. . Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. (2010) 59:3049–57. 10.2337/db10-0253
    1. Clemente-Postigo M, Queipo-Ortuño MI, Murri M, Boto-Ordoñez M, Perez-Martinez P, Andres-Lacueva C, et al. . Endotoxin increase after fat overload is related to postprandial hypertriglyceridemia in morbidly obese patients. J Lipid Res. (2012) 53:973–8. 10.1194/jlr.P020909
    1. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, et al. . Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. (2009) 58:1091–103. 10.1136/gut.2008.165886
    1. Clemente-Postigo M, Oliva-Olivera W, Coin-Aragüez L, Ramos-Molina B, Giraldez-Perez RM, Lhamyani S, et al. . Metabolic endotoxemia promotes adipose dysfunction and inflammation in human obesity. Am J Physiol Endocrinol Metab. (2019) 316:E319–32. 10.1152/ajpendo.00277.2018
    1. Shin AC, Zheng H, Berthoud H-R. Vagal innervation of the hepatic portal vein and liver is not necessary for Roux-en-Y gastric bypass surgery-induced hypophagia, weight loss, and hypermetabolism. Ann Surg. (2012) 255:294–301. 10.1097/SLA.0b013e31823e71b7
    1. Kentish SJ, Page AJ. The role of gastrointestinal vagal afferent fibres in obesity. J Physiol. (2015) 593:775–86. 10.1113/jphysiol.2014.278226
    1. Blasi C. The role of the vagal nucleus tractus solitarius in the therapeutic effects of obesity surgery and other interventional therapies on type 2 diabetes. Obes Surg. (2016) 26:3045–57. 10.1007/s11695-016-2419-2
    1. Murphy KG, Bloom SR. Gut hormones and the regulation of energy homeostasis. Nature. (2006) 444:854–9. 10.1038/nature05484
    1. Badman MK, Flier JS. The gut and energy balance: visceral allies in the obesity wars. Science. (2005) 307:1909–14. 10.1126/science.1109951
    1. Kassir R, Barthelemy J-C, Roche F, Blanc P, Zufferey P, Galusca B, et al. . Bariatric surgery associated with percutaneous auricular vagal stimulation: a new prospective treatment on weight loss. Int J Surg Lond Engl. (2015) 18:55–6. 10.1016/j.ijsu.2015.04.033
    1. Papasavas P, El Chaar M, Kothari SN, American Society for Metabolic and Bariatric Surgery Clinical Issues Committee . American Society for Metabolic and Bariatric Surgery position statement on vagal blocking therapy for obesity. Surg Obes Relat Dis Off J Am Soc Bariatr Surg. (2016) 12:460–1. 10.1016/j.soard.2015.12.004
    1. de Lartigue G, Diepenbroek C. Novel developments in vagal afferent nutrient sensing and its role in energy homeostasis. Curr Opin Pharmacol. (2016) 31:38–43. 10.1016/j.coph.2016.08.007
    1. Dixon JB, Lambert EA, Lambert GW. Neuroendocrine adaptations to bariatric surgery. Mol Cell Endocrinol. (2015) 418(Pt 2):143–52. 10.1016/j.mce.2015.05.033
    1. Stefanidis A, Oldfield BJ. Neuroendocrine mechanisms underlying bariatric surgery: insights from human studies and animal models. J Neuroendocrinol. (2017) 29:1–7. 10.1111/jne.12534
    1. Ballsmider LA, Vaughn AC, David M, Hajnal A, Di Lorenzo PM, Czaja K. Sleeve gastrectomy and Roux-en-Y gastric bypass alter the gut-brain communication. Neural Plast. (2015) 2015:601985. 10.1155/2015/601985
    1. Gautron L, Zechner JF, Aguirre V. Vagal innervation patterns following Roux-en-Y gastric bypass in the mouse. Int J Obes 2005. (2013) 37:1603–7. 10.1038/ijo.2013.48
    1. Stefanidis A, Forrest N, Brown WA, Dixon JB, O'Brien PB, Juliane Kampe null, et al. . An investigation of the neural mechanisms underlying the efficacy of the adjustable gastric band. Surg Obes Relat Dis Off J Am Soc Bariatr Surg. (2016) 12:828–38. 10.1016/j.soard.2015.11.020
    1. Dixon AFR, Dixon JB, O'Brien PE. Laparoscopic adjustable gastric banding induces prolonged satiety: a randomized blind crossover study. J Clin Endocrinol Metab. (2005) 90:813–9. 10.1210/jc.2004-1546
    1. Björklund P, Laurenius A, Een E, Olbers T, Lönroth H, Fändriks L. Is the Roux limb a determinant for meal size after gastric bypass surgery? Obes Surg. (2010) 20:1408–14. 10.1007/s11695-010-0192-1
    1. Sundbom M, Holdstock C, Engström BE, Karlsson FA. Early changes in ghrelin following Roux-en-Y gastric bypass: influence of vagal nerve functionality? Obes Surg. (2007) 17:304–10. 10.1007/s11695-007-9056-8
    1. Tamboli RA, Antoun J, Sidani RM, Clements A, Harmata EE, Marks-Shulman P, et al. . Metabolic responses to exogenous ghrelin in obesity and early after Roux-en-Y gastric bypass in humans. Diabetes Obes Metab. (2017) 19:1267–75. 10.1111/dom.12952
    1. Perathoner A, Weiss H, Santner W, Brandacher G, Laimer E, Höller E, et al. . Vagal nerve dissection during pouch formation in laparoscopic Roux-Y-gastric bypass for technical simplification: does it matter? Obes Surg. (2009) 19:412–7. 10.1007/s11695-008-9657-x
    1. Ochner CN, Kwok Y, Conceição E, Pantazatos SP, Puma LM, Carnell S, et al. . Selective reduction in neural responses to high calorie foods following gastric bypass surgery. Ann Surg. (2011) 253:502–7. 10.1097/SLA.0b013e318203a289
    1. Ten Kulve JS, Veltman DJ, Gerdes VEA, van Bloemendaal L, Barkhof F, Deacon CF, et al. . Elevated postoperative endogenous GLP-1 levels mediate effects of Roux-en-Y gastric bypass on neural responsivity to food cues. Diabetes Care. (2017) 40:1522–9. 10.2337/dc16-2113
    1. Korner J, Inabnet W, Conwell IM, Taveras C, Daud A, Olivero-Rivera L, et al. . Differential effects of gastric bypass and banding on circulating gut hormone and leptin levels. Obesity. (2006) 14:1553–61. 10.1038/oby.2006.179
    1. Kalinowski P, Paluszkiewicz R, Wróblewski T, Remiszewski P, Grodzicki M, Bartoszewicz Z, et al. . Ghrelin, leptin, and glycemic control after sleeve gastrectomy versus Roux-en-Y gastric bypass-results of a randomized clinical trial. Surg Obes Relat Dis Off J Am Soc Bariatr Surg. (2017) 13:181–8. 10.1016/j.soard.2016.08.025
    1. DiGiorgi M, Rosen DJ, Choi JJ, Milone L, Schrope B, Olivero-Rivera L, et al. . Re-emergence of diabetes after gastric bypass in patients with mid- to long-term follow-up. Surg Obes Relat Dis. (2010) 6:249–53. 10.1016/j.soard.2009.09.019
    1. Chikunguwo SM, Wolfe LG, Dodson P, Meador JG, Baugh N, Clore JN, et al. . Analysis of factors associated with durable remission of diabetes after Roux-en-Y gastric bypass. Surg Obes Relat Dis. (2010) 6:254–9. 10.1016/j.soard.2009.11.003
    1. Mittempergher F, Pat G, Crea N, Di Betta E, Vilardi A, Chiesa D, et al. . Preoperative prediction of Growth Hormone (GH)/Insulin-Like Growth Factor-1 (IGF-1) axis modification and postoperative changes in candidates for bariatric surgery. Obes Surg. (2013) 23:594–601. 10.1007/s11695-012-0820-z
    1. Camastra S, Manco M, Frascerra S, Iaconelli A, Mingrone G, Ferrannini F. Daylong pituitary hormones in morbid obesity: effects of bariatric surgery. Int J Obes. (2009) 33:166–72. 10.1038/ijo.2008.226
    1. De Marinis L, Bianchi A, Mancini A, Gentilella R, Perrelli M, Giampietro A, et al. . Growth hormone secretion and leptin in morbid obesity before and after biliopancreatic diversion: relationships with insulin and body composition. J Clin Endocrinol Metab. (2004) 89:174–80. 10.1210/jc.2002-021308
    1. Mancini MC, Costa AP, deMelo M-E, Cercato C, Giannella-Neto D, Garrido AB, Jr, et al. . Effect of gastric bypass on spontaneous growth hormone and ghrelin release profiles. Obesity. (2006) 14:383–7. 10.1038/oby.2006.51
    1. Edén Engström B, Burman P, Holdstock C, Ohrvall M, Sundbom M, Karlsson FA. Effects of gastric bypass on the GH/IGF-I axis in severe obesity–and a comparison with GH deficiency. Eur J Endocrinol. (2006) 154:53–9. 10.1530/eje.1.02069
    1. Savastano S, Angrisani L, Di Somma C, Rota F, Savanelli MC, Cascella T, et al. . Relationship between growth hormone/insulin-like growth factor-1 axis integrity and voluntary weight loss after gastric banding surgery for severe obesity. Obes Surg. (2010) 20:211–20. 10.1007/s11695-009-9926-3
    1. Di Somma C, Angrisani L, Rota F, Savanelli MC, Cascella T, Belfiore A, et al. . GH and IGF-I deficiency are associated with reduced loss of fat mass after laparoscopic-adjustable silicone gastric banding. Clin Endocrinol. (2008) 69:393–9. 10.1111/j.1365-2265.2008.03183.x
    1. Manco M, Fernández-Real JM, Valera-Mora ME, Déchaud H, Nanni G, Tondolo V, et al. . Massive weight loss decreases corticosteroid-binding globulin levels and increases free cortisol in healthy obese patients: an adaptive phenomenon? Diabetes Care. (2007) 30:1494–500. 10.2337/dc06-1353
    1. Morrow J, Gluck M, Lorence M, Flancbaum L, Geliebter A. Night eating status and influence on body weight, body image, hunger, and cortisol pre- and post- Roux-en-Y Gastric Bypass (RYGB) surgery. Eat Weight Disord. (2008) 13:e96–9. 10.1007/BF03327512
    1. Larsen JK, van Ramshorst B, van Doornen LJ, Geenen R. Salivary cortisol and binge eating disorder in obese women after surgery for morbid obesity. Int J Behav Med. (2009) 16:311–5. 10.1007/s12529-009-9036-6
    1. Guldstrand M, Bo A, Wredling R, Backman L, Lins PE, Adamson U. Alteration of the counterregulatory responses to insulin-induced hypoglycemia and of cognitive function after massive weight reduction in severely obese subjects. Metabolism. (2003) 52:900–7. 10.1016/S0026-0495(03)00103-3
    1. Ruiz-Tovar J, Oller I, Galindo I, Llavero C, Arroyo A, Calero A, et al. . Change in levels of C-reactive protein (CRP) and serum cortisol in morbidly obese patients after laparoscopic sleeve gastrectomy. Obes Surg. (2013) 23:764–9. 10.1007/s11695-013-0865-7
    1. Valentine AR, Raff H, Liu H, Ballesteros M, Rose JM, Jossart GH, et al. . Salivary cortisol increases after bariatric surgery in women. Hormone Metab Res. (2011) 43:587–90. 10.1055/s-0031-1279777
    1. Hulme PA, McBride CL, Kupzyk KA, French JA. Pilot study on childhood sexual abuse, diurnal cortisol secretion, and weight loss in bariatric surgery patients. J Child Sex Abus. (2015) 24:385–400. 10.1080/10538712.2015.1022293
    1. Sarwer DB, Spitzer JC, Wadden TA, Mitchell JE, Lancaster K, Courcoulas A, et al. . Changes in sexual functioning and sex hormone levels in women following bariatric surgery. JAMA Surg. (2014) 149:26–33. 10.1001/jamasurg.2013.5022
    1. Jamal M, Gunay Y, Capper A, Eid A, Heitshusen D, Samuel I. Roux-en-Y gastric bypass ameliorates polycystic ovary syndrome and dramatically improves conception rates: a 9-year analysis. Surg Obes Relat Dis. (2012) 8:440–4. 10.1016/j.soard.2011.09.022
    1. Eid GM, Cottam DR, Velcu LM, Mattar SG, Korytkowski MT, Gosman G, et al. . Effective treatment of polycystic ovarian syndromewith Roux-en-Y gastric bypass. Surg Obes Relat Dis. (2005) 1:77–80. 10.1016/j.soard.2005.02.008
    1. George K, Azeez H. Resolution of gynaecological issues after bariatric surgery—a retrospective analysis. Obes Surg. (2013) 23:1043 10.1007/s11695-013-0986-z
    1. Skubleny D, Switzer NJ, Gill RS, Dykstra M, Shi X, Sagle MA, et al. . The impact of bariatric surgery on polycystic ovary syndrome: a systematic review and meta-analysis. Obesity Surg. (2016) 26:169–76. 10.1007/s11695-015-1902-5
    1. Shekelle PG, Newberry S, Maglione M, Li Z, Yermilov I, Hilton L, et al. . Bariatric surgery in women of reproductive age: special concerns for pregnancy. Evid Rep Technol Assess. (2008) 1–51. Available online at:
    1. Reis LO, Favaro WJ, Barreiro GC, de Oliveira LC, Chaim EA, Fregonesi A, et al. . Erectile dysfunction and hormonal imbalance in morbidly obese male is reversed after gastric bypass surgery: a prospective randomized controlled trial. Int J Androl. (2010) 33:736–44. 10.1111/j.1365-2605.2009.01017.x
    1. Mora M, Aranda GB, de Hollanda A, Flores L, Puig-Domingo M, Vidal J. Weight loss is a major contributor to improved sexual function after bariatric surgery. Surg Endosc. (2013) 27:3197–204. 10.1007/s00464-013-2890-y
    1. Sarwer DB, Spitzer JC, Wadden TA, Rosen RC, Mitchell JE, Lancaster K, et al. . Sexual functioning and sex hormones in men who underwent bariatric surgery. Surg Obes Relat Dis. (2015) 11:643–51. 10.1016/j.soard.2014.12.014
    1. Facchiano E, Scaringi S, Veltri M, Samavat J, Maggi M, Forti G, et al. . Age as a predictive factor of testosterone improvement in male patients after bariatric surgery: preliminary results of a monocentric prospective study. Obes Surg. (2013) 23:167–72. 10.1007/s11695-012-0753-6
    1. Luconi M, Samavat J, Seghieri G, Iannuzzi G, Lucchese M, Rotella C, et al. . Determinants of testosterone recovery after bariatric surgery: is it only a matter of reduction of body mass index? Fertil Steril. (2013) 99:1872–9.e1. 10.1016/j.fertnstert.2013.02.039
    1. Aarts E, van Wageningen B, Loves S, Janssen I, Berends F, Sweep F, et al. . Gonadal status and outcome of bariatric surgery in obese men. Clin Endocrinol. (2014) 81:378–86. 10.1111/cen.12366
    1. Samavat J, Facchiano E, Lucchese M, Forti G, Mannucci E, Maggi M, et al. . Hypogonadism as an additional indication for bariatric surgery in male morbid obesity? Eur J Endocrinol. (2014) 171:555–60. 10.1530/EJE-14-0596
    1. Rasmussen MH. Obesity, growth hormone and weight loss. Mol Cell Endocrinol. (2010) 316:147–53. 10.1016/j.mce.2009.08.017
    1. Alvarez P, Isidro L, Leal-Cerro A, Casanueva FF, Dieguez C, Cordido F. Effect of withdrawal of somatostatin plus GH-releasing hormone stimulus of GH secretion in obesity. Clin Endocrinol. (2002) 56: 487–92. 10.1046/j.1365-2265.2002.01487.x
    1. Cordido F, Alvarez-Castro P, Isidro MI, Casanueva FF, Dieguez C. Comparison between insulin tolerance test, growth hormone releasing hormone (GHRH), GHRH plus acipimox and GHRH plus GH-releasing peptide-6 for the diagnosis of adult GH deficiency in normal subjects, obese and hypopituitary patients. Eur J Endocrinol. (2003) 149:117–22. 10.1530/eje.0.1490117
    1. Savastano S, Di Somma C, Barrea L, Colao A. The complex relationship between obesity and the somatropic axis: the long and winding road. Growth Horm IGF Res. (2014) 24:221–6. 10.1016/j.ghir.2014.09.002
    1. Park MJ, Kim HS, Kang JH, Kim DH, Chung CY. Serum levels of insulin-like growth factor (IGF)-I, free IGF-I, IGF binding (IGFBP)-1, IGFBP-3 and insulin in obese children. J Pediatr Endocrinol Metab. (1999) 12:139–44. 10.1515/JPEM.1999.12.2.139
    1. Ballerini MG, Ropelato MG, Domene HM, Pennisi P, Heinrich JJ, Jasper HG. Differential impact of simple childhood obesity on the components of the hormone-insulin-like growth factor (IGF)-IGF binding proteins axis. J Pediatr Endocrinol Metab. (2004) 17:749–57. 10.1515/JPEM.2004.17.5.749
    1. Attia N, Tamborlane WV, Heptulla R, Maggs D, Grozman A, Sherwin RS, et al. The metabolic syndrome and insulinlike growth factor I regulation in adult obesity. J Clin Endocrinol Metab. (1998) 83:1467–71. 10.1210/jcem.83.5.4827
    1. Street ME, Ziveri MA, Spaggiari C, Viani I, Volta C, Grzincich GL, et al. . Inflammation is a modulator of the insulin-like growth factor (IGF)/IGF-binding protein system inducing reduced bioactivity of IGFs in cystic fibrosis. Eur J Endocrinol. (2006) 154:47–52. 10.1530/eje.1.02064
    1. Rasmussen MH, Juul A, Hilsted J. Effect of weight loss on free insulin-like growth factor-I in obese women with hyposomatotropism. Obesity. (2007) 15:879–86. 10.1038/oby.2007.607
    1. Johnsen SP, Hundborg HH, Sorensen HT, Schumacher H, Lichtinghagen R, Eschenfelder CC, et al. . Insulin-like growth factor (IGF) I, -II, and IGF binding protein-3 and risk of ischemic stroke. J Clin Endocrinol Metab. (2005) 90: 5937–41. 10.1210/jc.2004-2088
    1. Maccario M, Grottoli S, Procopio M, Oleandri SE, Rossetto E, Gauna C, et al. . The GH/IGF-I axis in obesity: influence of neuro-endocrine and metabolic factors. Int J. Obes Relat Metab Disord. (2000) 24:S96–9. 10.1038/sj.ijo.0801289
    1. Berryman DE, Gla CA, List EO, Johannsson G. The GH/IGF-1 axis in obesity: pathophysiology and therapeutic considerations, Nat Rev Endocrinol. (2013) 9:346–56. 10.1038/nrendo.2013.64
    1. Savastano S, Di Somma C, Belfiore A, Guida B, Orio F, Jr, Rota F, et al. . Growth hormone status in morbidly obese subjects and correlation with body composition. J Endocrinol Invest. (2006) 29:536–43. 10.1007/BF03344144
    1. Galli G, Pinchera A, Piaggi P, Fierabracci P, Giannetti M, Querci G, et al. . Serum insulin-like growth factor-1 concentrations are reduced in severely obese women and raise after weight loss induced by laparoscopic adjustable gastric banding. Obes Surg. (2012) 22:1276–80. 10.1007/s11695-012-0669-1
    1. Maccario M, Tassone F, Gauna C, Oleandri SE, Aimaretti G, Procopio M, et al. . Effects of short-term administration of low-dose rhGH on IGF-I levels in obesity and Cushing's syndrome: indirect evaluation of the sensitivity to GH. Eur J Endocrinol. (2001) 144:251–6. 10.1530/eje.0.1440251
    1. Gianotti L, Pivetti S, Lanfranco F, Tassone F, Vittori E, Rossetto R, et al. Concomitant impairment of growth hormone secretion and peripheral sensitivity in obese patients with obstructive sleep apnoea syndrome. J Clin Endocrinol Metab. (2002) 87:5052–7. 10.1210/jc.2001-011441
    1. Buijs MM, Romijn JA, Burggraaf J, De Kam MI, Cohen AF, Frolich M, et al. . Growth hormone blunts protein oxidation and promotes protein turnover to a similar extent in abdominally obese and normal-weight women. J Clin Endocrinol Metab. (2002) 87:5668–74. 10.1210/jc.2002-020927
    1. Biondi M, Picardi A. Psychological stress and neuroendocrine function in humans: the last two decades of research. Psychother Psychosom. (1999) 68:114–50. 10.1159/000012323
    1. Anagnostis P, Athyros VG, Tziomalos K, Karagiannis A, Mikhailidis DP. Clinical review: the pathogenetic role of cortisol in the metabolic syndrome: a hypothesis. J Clin Endocrinol Metab. (2009) 94:2692–701. 10.1210/jc.2009-0370
    1. Constantinopoulos P, Michalaki M, Kottorou A, Habeos I, Psyrogiannis A, Kalfarentzos F, et al. . Cortisol in tissue and systemic level as a contributing factor to the development of metabolic syndrome in severely obese patients. Eur J Endocrinol. (2015) 172:69–78. 10.1530/EJE-14-0626
    1. Rosmond R, Holm G, Bjorntorp P. Food-induced cortisol secretion in relation to anthropometric, metabolic and haemodynamic variables in men. Int J Obes Relat Metab Disord. (2000) 24:416–22. 10.1038/sj.ijo.0801173
    1. Clow A. Cortisol as a biomarker of stress. J Holist Healthc. (2004) 1:10–14.
    1. De Kloet ER. Hormones and the stressed brain. Ann N YAcad Sci. (2004) 1018:1–15. 10.1196/annals.1296.001
    1. Kumari M, Chandola T, Brunner E, Kivimaki M. A nonlinear relationship of generalized and central obesity with diurnal cortisol secretion in the Whitehall II study. J Clin Endocr Metab. (2010) 95:4415–23. 10.1210/jc.2009-2105
    1. Lasikiewicz N, Hendrickx H, Talbot D, Dye L. Exploration of basal diurnal salivary cortisol profiles in middle-aged adults: associations with sleep quality and metabolic parameters. Psychoneuroendocrinology. (2008) 33:143–51. 10.1016/j.psyneuen.2007.10.013
    1. De Kloet ER, Joels M, Holsboer F, Joëls M. Stress and the brain: from adaptation to disease. Nat Rev Neurosci. (2005) 6:463–75. 10.1038/nrn1683
    1. Kumari M, Shipley M, Stafford M, Kivimaki M. Association of diurnal patterns in salivary cortisol with all-cause and cardiovascular mortality: findings from the Whitehall II study. J Clin Endocrinol Metab. (2011) 96:1478–85. 10.1210/jc.2010-2137
    1. McEwen BS. The neurobiology of stress: from serendipity to clinical relevance. Brain Res. (2000) 886:172–89. 10.1016/S0006-8993(00)02950-4
    1. Dallman MF, Akana SF, Strack AM, Hanson ES, Sebastian RJ. The neural network that regulates energy balance is responsive to glucocorticoids and insulin and also regulates HPA axis responsivity at a site proximal to CRF neurons. Ann N Y Acad Sci. (1995) 771:730–42. 10.1111/j.1749-6632.1995.tb44724.x
    1. Jayo JM, Shively CA, Kaplan JR, Manuck SB. Effects of exercise and stress on body fat distribution in male cynomolgus monkeys. Int J Obes Relat Metab Disord. (1993) 17:597–604.
    1. BjÖrntorp P, Rosmond R. Neuroendocrine abnormalities in visceral obesity. Int J Obes Relat Metab Disord. (2000) 24(Suppl. 2):S80–5. 10.1038/sj.ijo.0801285
    1. Reinehr T, Kulle A, Wolters B, Knop C, Lass N, Welzel M, et al. . Relationships between 24-hour urinary free cortisol concentrations and metabolic syndrome in obese children. J Clin Endocrinol Metab. (2014) 99:2391–9. 10.1210/jc.2013-4398
    1. Geliebter A. Night-eating syndrome in obesity. Nutrition. (2001) 17:483–4. 10.1016/S0899-9007(01)00550-0
    1. Coutinho WF, Moreira RO, Spagnol C, Appolinario JC. Does binge eating disorder alter cortisol secretion in obese women? Eat Behav. (2007) 8:59–64. 10.1016/j.eatbeh.2006.01.002
    1. Monteleone P, Luisi M, De Filippis G, Colurcio B, Genazzani AR, Maj M. Circulating levels of neuroactive steroids in patients with binge eating disorder: a comparison with nonobese healthy controls and nonbinge eating obese subjects. Int J Eat Disord. (2003) 34:432–40. 10.1002/eat.10199
    1. Gluck ME, Geliebter A, Hung J, Yahav E. Cortisol, hunger, and desire to binge eat following a cold stress test in obese women with binge eating disorder. Psychosom Med. (2004) 66:876–81. 10.1097/01.psy.0000143637.63508.47
    1. Yanovski SZ. Binge eating disorder: current knowledge and future directions. Obes Res. (1993) 1:306–24. 10.1002/j.1550-8528.1993.tb00626.x
    1. Reinher T, Andler W. Cortisol and its relation to insulin resistance before and after weight loss in obese children. Horm Res. (2004) 62:107–12. 10.1159/000079841
    1. Flak JN, Jankord R, Solomon MB, Krause EG, Herman JP. Opposing effects of chronic stress and weight restriction on cardiovascular, neuroendocrine and metabolic function. Physiol Behav. (2011) 104:228–34. 10.1016/j.physbeh.2011.03.002
    1. Pankevich DE, Teegarden SL, Hedin AD, Jensen CL, Bale TL. Caloric restriction experience reprograms stress and orexigenic pathways and promotes binge eating. J Neurosci. (2010) 30:16399–407. 10.1523/JNEUROSCI.1955-10.2010
    1. Ulrich-Lai YM, Ryan KK. Neuroendocrine circuits governing energy balance and stress regulation: functional overlap and therapeutic implications. Cell Metab. (2014) 19:910–25. 10.1016/j.cmet.2014.01.020
    1. Witbracht MG, Laugero KD, Van Loan MD, Adams SH, Keim NL. Performance on the Iowa Gambling Task is related to magnitude of weight loss and salivary cortisol in a diet-induced weight loss intervention in overweight women. Physiol Behav. (2012) 106:291–7. 10.1016/j.physbeh.2011.04.035
    1. Tomiyama AJ, Mann T, Vinas D, Hunger JM, Dejager J, Taylor SE. Low calorie dieting increases cortisol. Psychosom Med. (2010) 72:357–64. 10.1097/PSY.0b013e3181d9523c
    1. Goodwin GM, Fairburn CG, Keenan JC, Cowen PJ. The effects of dieting and weight loss upon the stimulation of thyrotropin (TSH) by thyrotropin-releasing hormone (TRH) and suppression of cortisol secretion by dexamethasone in men and women. J Affect Disord. (1988) 14:137–44. 10.1016/0165-0327(88)90056-0
    1. Nguyen NT, Goldman CD, Ho HS, Gosselin RC, Singh A, Wolfe BM. Systemic stress response after laparoscopic and open gastric bypass. J Am Coll Surg. (2002) 194:557–66. 10.1016/S1072-7515(02)01132-8
    1. Quaroni A, Tian JQ, Goke M, Podolsky DK. Glucocorticoids have pleiotropic effects on small intestinal crypt cells. Am J Physiol. (1999) 277:G1027–40. 10.1152/ajpgi.1999.277.5.G1027
    1. Pasquali R. Obesity, fat distribution and infertility. Maturitas. (2006) 54:363–71. 10.1016/j.maturitas.2006.04.018
    1. Rosen RC, Wing RR, Schneider S, Wadden TA, Foster GD, West DS, et al. . Erectile dysfunction in type 2 diabetic men: relationship to exercise fitness and cardiovascular risk factors in the Look AHEAD trial. J Sex Med. (2009) 6:1414–22. 10.1111/j.1743-6109.2008.01209.x
    1. De Berardis G, Franciosi M, Belfiglio M, Di Nardo B, Greenfield S, Kaplan SH, et al. . Erectile dysfunction and quality of life in type 2 diabetic patients: a serious problem too often overlooked. Diabetes Care. (2002) 25:284–91. 10.2337/diacare.25.2.284
    1. Duncan LE, Lewis C, Jenkins P, Pearson TA. Does hypertension and its pharmacotherapy affect the quality of sexual function in women? Am J Hypertens. (2000) 13:640–7. 10.1016/S0895-7061(99)00288-5
    1. Grimm RH, Jr, Grandits GA, Prineas RJ, McDonald RH, Lewis CE, Flack JM, et al. . Long-term effects on sexual function of five antihypertensive drugs and nutritional hygienic treatment in hypertensive men and women. Treatment of Mild Hypertension Study (TOMHS). Hypertension. (1997) 29:8–14. 10.1161/01.HYP.29.1.8
    1. Dallal RM, Chernoff A, O'Leary MP, Smith JA, Braverman JD, Quebbemann BB. Sexual dysfunction is common in the morbidly obese male and improves after gastric bypass surgery. J Am Coll Surg. (2008) 207:859–64. 10.1016/j.jamcollsurg.2008.08.006
    1. Kirschner MA, Samojlik E. Sex hormone metabolism in upper and lower body obesity. Int J Obes. (1991) 15:101–8.
    1. Moore RH, Sarwer DB, Lavenberg J, Lane IB, Evans JL, Volger S, et al. . Relationship between sexual function and quality of life in persons seeking weight reduction. Obesity. (2013) 21:1966–74. 10.1002/oby.20398
    1. Steffen KJ, King WC, White GE, Subak LL, Mitchell JE, Courcoulas AP, et al. . Sexual functioning of men and women with severe obesity before bariatric surgery. Surg Obes Relat Dis. (2017) 13:334–43. 10.1016/j.soard.2016.09.022
    1. Escobar-Morreale HF, Santacruz E, Luque-Ramírez M, Botella Carretero JI. Prevalence of “obesity-associated gonadal dysfunction” in severely obese men and women and its resolution after bariatric surgery: a systematic review and meta-analysis. Hum Reprod Update. (2017) 23:390–408. 10.1093/humupd/dmx012
    1. Sarwer DB, Spitzer JC, Wadden TA, Rosen RC, Mitchell JE, Lancaster K, et al. . Sexual functioning and sex hormones in persons with extreme obesity and seeking surgical and nonsurgical weight loss. Surg Obes Relat Dis. (2013) 9:997–1007. 10.1016/j.soard.2013.07.003
    1. Corona G, Rastrelli G, Monami M, Saad F, Luconi M, Lucchese M, et al. . Body weight loss reverts obesity-associated hypogonadotropic hypogonadism: a systematic review and meta-analysis. Eur J Endocrinol. (2013) 168:829–43. 10.1530/EJE-12-0955
    1. Bond DS, Wing RR, Vithiananthan S, Sax HC, Roye GD, Ryder BA, et al. . Significant resolution of female sexual dysfunction after bariatric surgery. Surg Obes Relat Dis. (2011) 7:1–7. 10.1016/j.soard.2010.05.015
    1. Pellitero S, Olaizola I, Alastrue A, Martínez E, Granada ML, Balibrea JM, et al. . Hypogonadotropic hypogonadism in morbidly obese males is reversed after bariatric surgery. Obes Surg. (2012) 22:1835–42. 10.1007/s11695-012-0734-9
    1. Saboor Aftab SA, Kumar S, Barber TM. The role of obesity and type 2 diabetes mellitus in the development of male obesity-associated secondary hypogonadism. Clin Endocrinol. (2013) 78:330–7. 10.1111/cen.12092
    1. Nelson LR, Bulun SE. Estrogen production and action. J Am Acad Dermatol. (2001) 45:S116–24. 10.1067/mjd.2001.117432
    1. Escobar-Morreale HF, Botella-Carretero JI, Alvarez-Blasco F, Sancho J, San Millan JL. The polycystic ovary syndrome associated with morbid obesity may resolve after weight loss induced by bariatric surgery. J Clin Endocrinol Metab. (2005) 90:6364–9. 10.1210/jc.2005-1490
    1. Escobar-Morreale HF, San Millan JL. Abdominal adiposity and the polycystic ovary syndrome. Trends Endocrinol Metab. (2007) 18:266–72. 10.1016/j.tem.2007.07.003
    1. Pasquali R, Diamanti-Kandarakis E, Gambineri A. Secondary polycystic ovary syndrome: theoretical and practical aspects. Eur J Endocrinol. (2016) 175:R157–69. 10.1530/EJE-16-0374
    1. Wing RR, Bond DS, Gendrano IN, III, Wadden T, Bahnson J, Lewis CE, et al. Sexual Dysfunction Subgroup of the Look AHEAD Research Group. Effect of intensive lifestyle intervention on sexual dysfunction in women with type 2 diabetes: results from an ancillary Look AHEAD study. Diabetes Care. (2013) 36:2937–44. 10.2337/dc13-0315
    1. Reis LO, Zani EL, Saad RD, Chaim EA, de Oliveira LC, Fregonesi A. Bariatric surgery does not interfere with sperm quality–a preliminary long-term study. Reprod Sci. (2012) 19:1057–62. 10.1177/1933719112440747
    1. Kaukua J, Pekkarinen T, Sane T, Mustajoki P. Sex hormones and sexual function in obese men losing weight. Obes Res. (2003) 11:689–94. 10.1038/oby.2003.98
    1. Butterworth J, Deguara J, Borg CM. Bariatric surgery, polycystic ovary syndrome, and infertility. J Obes. (2016) 2016:1871594. 10.1155/2016/1871594
    1. Balen AH, Morley LC, Misso M, Franks S, Legro RS, Wijeyaratne CN, et al. . The management of anovulatory infertility in women with polycystic ovary syndrome: an analysis of the evidence to support the development of global WHO guidance. Hum Reprod Update. (2016) 22:687–708. 10.1093/humupd/dmw025
    1. Bonomi M, Vezzoli V, Krausz C, Guizzardi F, Vezzani S, Simoni M, et al. . Characteristics of a nationwide cohort of patients presenting with isolated hypogonadotropic hypogonadism (IHH). Eur J Endocrinol. (2018) 178:23–32. 10.1530/EJE-17-0065
    1. Rao SR, Kini S, Tamler R. Sex hormones and bariatric surgery in men. Gend Med. (2011) 8:300–11. 10.1016/j.genm.2011.05.007
    1. Tajar A, Forti G, O'Neill TW, Lee DM, Silman AJ, Finn JD, et al. . Characteristics of secondary, primary, and compensated hypogonadism in aging men: evidence from the European Male Ageing Study. J ClinEndocrinol Metab. (2010) 95:1810–8. 10.1210/jc.2009-1796
    1. Hofstra J, Loves S, van Wageningen B, Ruinemans-Koerts J, Jansen I, de Boer H. High prevalence of hypogonadotropic hypogonadism in men referred for obesity treatment. Neth J Med. (2008) 66:103–109. Available online at:
    1. Vermeulen A, Kaufman JM, Deslypere JP, Thomas G. Attenuated luteinizing hormone (LH) pulse amplitude but normal LH pulse frequency, and its relation to plasma androgens in hypogonadism of obese men. J Clin Endocrinol Metab. (1993) 76:1140–6. 10.1210/jcem.76.5.8496304
    1. Landry D, Cloutier F, Martin LJ. Implications of leptin in neuroendocrine regulation of male reproduction. Reprod Biol. (2013) 13:1–14. 10.1016/j.repbio.2012.12.001
    1. Bruning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, et al. . Role of brain insulin receptor in control of body weight and reproduction. Science. (2000) 289:2122–5. 10.1126/science.289.5487.2122
    1. Simo R, Saez-Lopez C, Barbosa-Desongles A, Hernandez C, Selva DM. Novel insights in SHBG regulation and clinical implications. Trends Endocrinol Metab. (2015) 26:376–83. 10.1016/j.tem.2015.05.001
    1. Luboshitzky R, Aviv A, Hefetz A, Herer P, Shen-Orr Z, Lavie L, et al. . Decreased pituitary-gonadal secretion in men with obstructive sleep apnea. J Clin Endocrinol Metab. (2002) 87:3394–8. 10.1210/jc.87.7.3394
    1. Michalakis K, Mintziori G, Kaprara A, Tarlatzis BC, Goulis DG. The complex interaction between obesity, metabolic syndrome and reproductive axis: a narrative review. Metabolism. (2013) 62:457–78. 10.1016/j.metabol.2012.08.012
    1. Burcelin R, Thorens B, Glauser M, Gaillard RC, Pralong FP. Gonadotropin-releasing hormone secretion from hypothalamic neurons: stimulation by insulin and potentiation by leptin. Endocrinology. (2003) 144:4484–91. 10.1210/en.2003-0457
    1. Dandona P, Dhindsa S. Update: hypogonadotropic hypogonadism in type 2 diabetes and obesity. J Clin Endocrinol Metab. (2011) 96: ,2643–51. 10.1210/jc.2010-2724
    1. Escobar-Morreale HF, Alvarez-Blasco F, Botella-Carretero JI, Luque-Ramirez M. The striking similarities in the metabolic associations of female androgen excess and male androgen deficiency. Hum Reprod. (2014) 29:2083–91. 10.1093/humrep/deu198
    1. Lazaros L, Hatzi E, Markoula S, Takenaka A, Sofikitis N, Zikopoulos K, et al. . Dramatic reduction in sperm parameters following bariatric surgery: report of two cases. Andrologia. (2012) 44:428–32. 10.1111/j.1439-0272.2012.01300.x
    1. Sermondade N, Massin N, Boitrelle F, Pfeffer J, Eustache F, Sifer C, et al. . Sperm parameters and male fertility after bariatric surgery: three case series. Reprod Biomed Online. (2012) 24:206–10. 10.1016/j.rbmo.2011.10.014
    1. Legro RS, Kunselman AR, Meadows JW, Kesner JS, Krieg EF, Rogers AM, et al. . Time-related increase in urinary testosterone levels and stable semen analysis parameters after bariatric surgery in men. Reprod Biomed Online. (2015) 30:150–6. 10.1016/j.rbmo.2014.10.014
    1. El Bardisi H, Majzoub A, Arafa M, AlMalki A, Al Said S, Khalafalla K, et al. . Effect of bariatric surgery on semen parameters and sex hormone concentrations: a prospective study. Reprod Biomed Online. (2016) 33:606–11. 10.1016/j.rbmo.2016.08.008
    1. Hammoud A, Gibson M, Hunt SC, Adams TD, Carrell DT, Kolotkin RL, et al. . Effect of Roux-en-Y gastric bypass surgery on the sex steroids and quality of life in obese men. J Clin Endocrinol Metab. (2009) 94:1329–32. 10.1210/jc.2008-1598
    1. Hammoud AO, Gibson M, Peterson CM, Meikle AW, Carrell DT. Impact of male obesity on infertility: a critical review of the current literature. Fertil Steril. (2008) 90:897–904. 10.1016/j.fertnstert.2008.08.026
    1. Leenen R, van der Kooy K, Seidell JC, Deurenberg P, Koppeschaar HP. Visceral fat accumulation in relation to sex hormones in obese men and women undergoing weight loss therapy. J Clin Endocrinol Metab. (1994) 78:1515–20. 10.1210/jcem.78.6.8200956
    1. Rosenblatt A, Faintuch J, Cecconello I. Sexual hormones and erectile function more than 6 years after bariatric surgery. Surg Obes Relat Dis. (2013) 9: 636–40. 10.1016/j.soard.2012.06.010
    1. Oury F, Sumara G, Sumara O, Ferron M, Chang H, Smith CE, et al. . Endocrine regulation of male fertility by the skeleton. Cell. (2011) 144: 796–809. 10.1016/j.cell.2011.02.004
    1. Smith LB, Saunders PT. The skeleton: the new controller of male fertility? Cell. (2011) 144: 642–3. 10.1016/j.cell.2011.02.028
    1. Kirmani S, Atkinson EJ, Melton LJ, III, Riggs BL, Amin S, Khosla S. Relationship of testosterone and osteocalcin levels during growth. J Bone Miner Res. (2011) 26:2212–6. 10.1002/jbmr.421
    1. Bolland MJ, Grey A, Horne AM, Reid IR. Testosterone levels following decreases in serum osteocalcin. Calcif Tissue Int. (2013) 93: 133–6. 10.1007/s00223-013-9730-x
    1. Hannemann A, Breer S, Wallaschofski H, Nauck M, Baumeister SE, Barvencik F, et al. . Osteocalcin is associated with testosterone in the general population and selected patients with bone disorders. Andrology. (2013) 1:469–74. 10.1111/j.2047-2927.2012.00044.x
    1. Foresta C, Strapazzon G, De Toni L, Gianesello L, Calcagno A, Pilon C, et al. . Evidence for osteocalcin production by adipose tissue and its role in human metabolism. J Clin Endocrinol Metab. (2010) 95: 3502–6. 10.1210/jc.2009-2557
    1. Kim SH, Lee JW, Im JA, Hwang HJ. Serum osteocalcin is related to abdominal obesity in Korean obese and overweight men. Clin Chim Acta. (2010) 411:2054–7. 10.1016/j.cca.2010.08.046
    1. Samavat J, Facchiano E, Cantini G, Di Franco A, Alpigiano G, Poli G, et al. . Osteocalcin increase after bariatric surgery predicts androgen recovery in hypogonadal obese males. Int J Obes. (2014) 38:357–63. 10.1038/ijo.2013.228
    1. Oury F, Ferron M, Huizhen W, Confavreux C, Xu L, Lacombe J, et al. . Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. J Clin Invest. (2013) 123:2421–33. 10.1172/JCI65952
    1. Rastrelli G, Carter EL, Ahern T, Finn JD, Antonio L, O'Neill TW, et al. . Development of and recovery from secondary hypogonadism in aging men: prospective results from the EMAS. J Clin Endocrinol Metab. (2015) 100:3172–82. 10.1210/jc.2015-1571
    1. Hoeger KM. Role of lifestyle modification in the management of polycystic ovary syndrome. Best Pract Res Clin Endocrinol Metab. (2006) 20:293–310. 10.1016/j.beem.2006.03.008
    1. Clemente-Postigo M, Muñoz-Garach A, Serrano M, Garrido-Sánchez L, Bernal-López MR, Fernández-García D, et al. . Serum 25-hydroxyvitamin D and adipose tissue vitamin D receptor gene expression: relationship with obesity and type 2 diabetes. J Clin Endocrinol Metab. (2015) 100:E591–5. 10.1210/jc.2014-3016
    1. Hamoui N, Kim K, Anthone G, Crookes PF. The significance of elevated levels of parathyroid hormone in patients with morbid obesity before and after bariatric surgery. Arch Surg Chic Ill. 1960. (2003) 138:891–7. 10.1001/archsurg.138.8.891
    1. Gómez-Ambrosi J, Rodríguez A, Catalán V, Frühbeck G. The bone-adipose axis in obesity and weight loss. Obes Surg. (2008) 18:1134–43. 10.1007/s11695-008-9548-1
    1. Folli F, Sabowitz BN, Schwesinger W, Fanti P, Guardado-Mendoza R, Muscogiuri G. Bariatric surgery and bone disease: from clinical perspective to molecular insights. Int J Obes. 2005. (2012) 36:1373–9. 10.1038/ijo.2012.115
    1. Gómez JM, Vilarrasa N, Masdevall C, Pujol J, Solano E, Soler J, et al. . Regulation of bone mineral density in morbidly obese women: a cross-sectional study in two cohorts before and after bypass surgery. Obes Surg. (2009) 19:345–50. 10.1007/s11695-008-9529-4
    1. Corbeels K, Verlinden L, Lannoo M, Simoens C, Matthys C, Verstuyf A, et al. . Thin bones: Vitamin D and calcium handling after bariatric surgery. Bone Rep. (2018) 8:57–63. 10.1016/j.bonr.2018.02.002
    1. Stein EM, Silverberg SJ. Bone loss after bariatric surgery: causes, consequences, and management. Lancet Diabetes Endocrinol. (2014) 2:165–74. 10.1016/S2213-8587(13)70183-9
    1. Ben-Porat T, Elazary R, Sherf-Dagan S, Goldenshluger A, Brodie R, Mintz Y, et al. . Bone Health following Bariatric Surgery: implications for management strategies to attenuate bone loss. Adv Nutr Bethesda Md. (2018) 9:114–27. 10.1093/advances/nmx024
    1. Schafer AL, Kazakia GJ, Vittinghoff E, Stewart L, Rogers SJ, Kim TY, et al. . Effects of gastric bypass surgery on bone mass and microarchitecture occur early and particularly impact postmenopausal women. J Bone Miner Res Off J Am Soc Bone Miner Res. (2018) 33:975–86. 10.1002/jbmr.3371
    1. Casagrande DS, Repetto G, Mottin CC, Shah J, Pietrobon R, Worni M, et al. . Changes in bone mineral density in women following 1-year gastric bypass surgery. Obes Surg. (2012) 22:1287–92. 10.1007/s11695-012-0687-z
    1. Carrasco F, Ruz M, Rojas P, Csendes A, Rebolledo A, Codoceo J, et al. . Changes in bone mineral density, body composition and adiponectin levels in morbidly obese patients after bariatric surgery. Obes Surg. (2009) 19:41–6. 10.1007/s11695-008-9638-0
    1. Mahdy T, Atia S, Farid M, Adulatif A. Effect of Roux-en Y gastric bypass on bone metabolism in patients with morbid obesity: mansoura experiences. Obes Surg. (2008) 18:1526–31. 10.1007/s11695-008-9653-1
    1. Vilarrasa N, Gómez JM, Elio I, Gómez-Vaquero C, Masdevall C, Pujol J, et al. . Evaluation of bone disease in morbidly obese women after gastric bypass and risk factors implicated in bone loss. Obes Surg. (2009) 19:860–6. 10.1007/s11695-009-9843-5
    1. Fleischer J, Stein EM, Bessler M, Della Badia M, Restuccia N, Olivero-Rivera L, et al. . The decline in hip bone density after gastric bypass surgery is associated with extent of weight loss. J Clin Endocrinol Metab. (2008) 93:3735–40. 10.1210/jc.2008-0481
    1. Shanbhogue VV, Støving RK, Frederiksen KH, Hanson S, Brixen K, Gram J, et al. . Bone structural changes after gastric bypass surgery evaluated by HR-pQCT: a two-year longitudinal study. Eur J Endocrinol. (2017) 176:685–93. 10.1530/EJE-17-0014
    1. Rousseau C, Jean S, Gamache P, Lebel S, Mac-Way F, Biertho L, et al. . Change in fracture risk and fracture pattern after bariatric surgery: nested case-control study. BMJ. (2016) 354:i3794. 10.1136/bmj.i3794
    1. Vilarrasa N, de Gordejuela AGR, Gómez-Vaquero C, Pujol J, Elio I, San José P, et al. . Effect of bariatric surgery on bone mineral density: comparison of gastric bypass and sleeve gastrectomy. Obes Surg. (2013) 23:2086–91. 10.1007/s11695-013-1016-x
    1. Elias E, Casselbrant A, Werling M, Abegg K, Vincent RP, Alaghband-Zadeh J, et al. . Bone mineral density and expression of vitamin D receptor-dependent calcium uptake mechanisms in the proximal small intestine after bariatric surgery. Br J Surg. (2014) 101:1566–75. 10.1002/bjs.9626
    1. Raoof M, Näslund I, Rask E, Szabo E. Effect of gastric bypass on bone mineral density, parathyroid hormone and vitamin D: 5 years follow-up. Obes Surg. (2016) 26:1141–5. 10.1007/s11695-016-2114-3
    1. Compston JE, Vedi S, Gianetta E, Watson G, Civalleri D, Scopinaro N. Bone histomorphometry and vitamin D status after biliopancreatic bypass for obesity. Gastroenterology. (1984) 87:350–6. 10.1016/0016-5085(84)90712-1
    1. Tsiftsis DDA, Mylonas P, Mead N, Kalfarentzos F, Alexandrides TK. Bone mass decreases in morbidly obese women after long limb-biliopancreatic diversion and marked weight loss without secondary hyperparathyroidism. A physiological adaptation to weight loss? Obes Surg. (2009) 19:1497–503. 10.1007/s11695-009-9938-z
    1. Marceau P, Biron S, Lebel S, Marceau S, Hould FS, Simard S, et al. . Does bone change after biliopancreatic diversion? J Gastrointest Surg Off J Soc Surg Aliment Tract. (2002) 6:690–8. 10.1016/S1091-255X(01)00086-5
    1. Nogués X, Goday A, Peña MJ, Benaiges D, de Ramón M, Crous X, et al. . [Bone mass loss after sleeve gastrectomy: a prospective comparative study with gastric bypass]. Cirugia Espanola. (2010) 88:103–9. 10.1016/S2173-5077(10)70015-6
    1. Ivaska KK, Huovinen V, Soinio M, Hannukainen JC, Saunavaara V, Salminen P, et al. Changes in bone metabolism after bariatric surgery by gastric bypass or sleeve gastrectomy. Bone. (2017) 95:47–54. 10.1016/j.bone.2016.11.001
    1. Carrasco F, Basfi-Fer K, Rojas P, Valencia A, Csendes A, Codoceo J, et al. . Changes in bone mineral density after sleeve gastrectomy or gastric bypass: relationships with variations in vitamin D, ghrelin, and adiponectin levels. Obes Surg. (2014) 24:877–84. 10.1007/s11695-014-1179-0
    1. Bredella MA, Greenblatt LB, Eajazi A, Torriani M, Yu EW. Effects of Roux-en-Y gastric bypass and sleeve gastrectomy on bone mineral density and marrow adipose tissue. Bone. (2017) 95:85–90. 10.1016/j.bone.2016.11.014
    1. Pluskiewicz W, BuŽga M, Holéczy P, Bortlík L, Šmajstrla V, Adamczyk P. Bone mineral changes in spine and proximal femur in individual obese women after laparoscopic sleeve gastrectomy: a short-term study. Obes Surg. (2012) 22:1068–76. 10.1007/s11695-012-0654-8
    1. Pugnale N, Giusti V, Suter M, Zysset E, Héraïef E, Gaillard RC, et al. . Bone metabolism and risk of secondary hyperparathyroidism 12 months after gastric banding in obese pre-menopausal women. Int J Obes Relat Metab Disord J Int Assoc Study Obes. (2003) 27:110–6. 10.1038/sj.ijo.0802177
    1. Giusti V, Gasteyger C, Suter M, Heraief E, Gaillard RC, Burckhardt P. Gastric banding induces negative bone remodelling in the absence of secondary hyperparathyroidism: potential role of serum C telopeptides for follow-up. Int J Obes 2005. (2005) 29:1429–35. 10.1038/sj.ijo.0803040
    1. Dixon JB, Strauss BJG, Laurie C, O'Brien PE. Changes in body composition with weight loss: obese subjects randomized to surgical and medical programs. Obes Silver Spring Md. (2007) 15:1187–98. 10.1038/oby.2007.639
    1. von Mach M-A, Stoeckli R, Bilz S, Kraenzlin M, Langer I, Keller U. Changes in bone mineral content after surgical treatment of morbid obesity. Metabolism. (2004) 53:918–21. 10.1016/j.metabol.2004.01.015
    1. Scibora LM, Ikramuddin S, Buchwald H, Petit MA. Examining the link between bariatric surgery, bone loss, and osteoporosis: a review of bone density studies. Obes Surg. (2012) 22:654–67. 10.1007/s11695-012-0596-1
    1. Lalmohamed A, de Vries F, Bazelier MT, Cooper A, van Staa T-P, Cooper C, et al. . Risk of fracture after bariatric surgery in the United Kingdom: population based, retrospective cohort study. BMJ. (2012) 345:e5085. 10.1136/bmj.e5085
    1. Nakamura KM, Haglind EGC, Clowes JA, Achenbach SJ, Atkinson EJ, Melton LJ, et al. . Fracture risk following bariatric surgery: a population-based study. Osteoporos Int. (2014) 25:151–8. 10.1007/s00198-013-2463-x
    1. Axelsson KF, Werling M, Eliasson B, Szabo E, Näslund I, Wedel H, et al. . Fracture risk after gastric bypass surgery: a retrospective cohort study. J Bone Miner Res. (2018) 33:2122–31. 10.1002/jbmr.3553
    1. Lu C-W, Chang Y-K, Chang H-H, Kuo C-S, Huang C-T, Hsu C-C, et al. . Fracture risk after bariatric surgery: a 12-year nationwide cohort study. Medicine. (2015) 94:e2087. 10.1097/MD.0000000000002087
    1. Zhang Q, Chen Y, Li J, Chen D, Cheng Z, Xu S, et al. . A meta-analysis of the effects of bariatric surgery on fracture risk. Obes Rev. (2018) 19:728–36. 10.1111/obr.12665
    1. Liu C, Wu D, Zhang J-F, Xu D, Xu W-F, Chen Y, et al. . Changes in bone metabolism in morbidly obese patients after bariatric surgery: a meta-analysis. Obes Surg. (2016) 26:91–7. 10.1007/s11695-015-1724-5
    1. Gehrer S, Kern B, Peters T, Christoffel-Courtin C, Peterli R. Fewer nutrient deficiencies after laparoscopic sleeve gastrectomy (LSG) than after laparoscopic Roux-Y-gastric bypass (LRYGB)-a prospective study. Obes Surg. (2010) 20:447–53. 10.1007/s11695-009-0068-4
    1. Schafer AL, Weaver CM, Black DM, Wheeler AL, Chang H, Szefc GV, et al. . Intestinal calcium absorption decreases dramatically after gastric bypass surgery despite optimization of vitamin D status. J Bone Miner Res. (2015) 30:1377–85. 10.1002/jbmr.2467
    1. Riedt CS, Brolin RE, Sherrell RM, Field MP, Shapses SA. True fractional calcium absorption is decreased after Roux-en-Y gastric bypass surgery. Obes Silver Spring Md. (2006) 14:1940–8. 10.1038/oby.2006.226
    1. Youssef Y, Richards WO, Sekhar N, Kaiser J, Spagnoli A, Abumrad N, et al. . Risk of secondary hyperparathyroidism after laparoscopic gastric bypass surgery in obese women. Surg Endosc. (2007) 21:1393–6. 10.1007/s00464-007-9228-6
    1. Tardio V, Blais J-P, Julien A-S, Douville P, Lebel S, Biertho L, et al. . Serum parathyroid hormone and 25-hydroxyvitamin D concentrations before and after biliopancreatic diversion. Obes Surg. (2018) 28:1886–94. 10.1007/s11695-017-3101-z
    1. Wei J-H, Lee W-J, Chong K, Lee Y-C, Chen S-C, Huang P-H, et al. . High incidence of secondary hyperparathyroidism in bariatric patients: comparing different procedures. Obes Surg. (2018) 28:798–804. 10.1007/s11695-017-2932-y
    1. Guglielmi V, Bellia A, Gentileschi P, Lombardo M, D'Adamo M, Lauro D, et al. . Parathyroid hormone in surgery-induced weight loss: no glucometabolic effects but potential adaptive response to skeletal loading. Endocrine. (2018) 59:288–95. 10.1007/s12020-017-1477-0
    1. Chakhtoura MT, Nakhoul NN, Shawwa K, Mantzoros C, El Hajj Fuleihan GA. Hypovitaminosis D in bariatric surgery: a systematic review of observational studies. Metabolism. (2016) 65:574–85. 10.1016/j.metabol.2015.12.004
    1. DiGiorgi M, Daud A, Inabnet WB, Schrope B, Urban-Skuro M, Restuccia N, et al. . Markers of bone and calcium metabolism following gastric bypass and laparoscopic adjustable gastric banding. Obes Surg. (2008) 18:1144–8. 10.1007/s11695-007-9408-4
    1. Fish E, Beverstein G, Olson D, Reinhardt S, Garren M, Gould J. Vitamin D status of morbidly obese bariatric surgery patients. J Surg Res. (2010) 164:198–202. 10.1016/j.jss.2010.06.029
    1. Lanzarini E, Nogués X, Goday A, Benaiges D, de Ramón M, Villatoro M, et al. . High-dose vitamin D supplementation is necessary after bariatric surgery: a prospective 2-year follow-up study. Obes Surg. (2015) 25:1633–8. 10.1007/s11695-015-1572-3
    1. Shetty S, Kapoor N, Bondu JD, Thomas N, Paul TV. Bone turnover markers: emerging tool in the management of osteoporosis. Indian J Endocrinol Metab. (2016) 20:846–52. 10.4103/2230-8210.192914
    1. Crawford MR, Pham N, Khan L, Bena JF, Schauer PR, Kashyap SR. Increased bone turnover in type 2 diabetes patients randomized to bariatric surgery versus medical therapy at 5 years. Endocr Pract. (2018) 24:256–64. 10.4158/EP-2017-0072
    1. Rao RS, Kini S. GIP and bariatric surgery. Obes Surg. (2011) 21:244–52. 10.1007/s11695-010-0305-x
    1. Bollag RJ, Zhong Q, Phillips P, Min L, Zhong L, Cameron R, et al. . Osteoblast-derived cells express functional glucose-dependent insulinotropic peptide receptors. Endocrinology. (2000) 141:1228–35. 10.1210/en.141.3.1228
    1. Zhong Q, Itokawa T, Sridhar S, Ding K-H, Xie D, Kang B, et al. . Effects of glucose-dependent insulinotropic peptide on osteoclast function. Am J Physiol Endocrinol Metab. (2007) 292:E543–8. 10.1152/ajpendo.00364.2006
    1. Maccarinelli G, Sibilia V, Torsello A, Raimondo F, Pitto M, Giustina A, et al. . Ghrelin regulates proliferation and differentiation of osteoblastic cells. J Endocrinol. (2005) 184:249–56. 10.1677/joe.1.05837
    1. Wong IP, Baldock PA, Herzog H. Gastrointestinal peptides and bone health. Curr Opin Endocrinol Diabetes Obes. (2010) 17:44–50. 10.1097/MED.0b013e3283344a05
    1. Nuche-Berenguer B, Moreno P, Esbrit P, Dapía S, Caeiro JR, Cancelas J, et al. . Effect of GLP-1 treatment on bone turnover in normal, type 2 diabetic, and insulin-resistant states. Calcif Tissue Int. (2009) 84:453–61. 10.1007/s00223-009-9220-3
    1. Wucher H, Ciangura C, Poitou C, Czernichow S. Effects of weight loss on bone status after bariatric surgery: association between adipokines and bone markers. Obes Surg. (2008) 18:58–65. 10.1007/s11695-007-9258-0
    1. Hage MP, El-Hajj Fuleihan G. Bone and mineral metabolism in patients undergoing Roux-en-Y gastric bypass. Osteoporos Int. (2014) 25:423–39. 10.1007/s00198-013-2480-9

Source: PubMed

3
Se inscrever