The Effect of an Active Break Intervention on Nonspecific Low Back Pain and Musculoskeletal Discomfort during Prolonged Sitting among Young People-Protocol for a Randomized Controlled Trial

Magdalena Plandowska, Marta Kinga Labecka, Aleksandra Truszczyńska-Baszak, Maciej Płaszewski, Reza Rajabi, Beata Makaruk, Dorota Różańska, Magdalena Plandowska, Marta Kinga Labecka, Aleksandra Truszczyńska-Baszak, Maciej Płaszewski, Reza Rajabi, Beata Makaruk, Dorota Różańska

Abstract

Background: The most recent evidence has shown that the pandemic of COVID-19 caused an increasing problem with spinal pain in the population of teenagers and young adults. This may be explained by prolonged sitting times in flexed positions with electronic devices. Positions maintained for a prolonged time cause overloading of soft tissue and discogenic symptoms. This study aims to evaluate the effectiveness of the active break program in reducing musculoskeletal discomfort and LBP (low back pain) among young people.

Methods: This will be a randomized controlled study. The participants will be recruited from Bachelor's course students of the Physical Education Department aged 18-25 years. The participants will be assigned to an experimental group (with an active break) and a control group. The group with an active break with lumbar and hip extension exercises will be recommended to take a break for every 30 min of sitting. The control group will receive self-care recommendations. The primary outcomes will be pain intensity (Visual Analogue Scale), disability index (Oswestry Disability Index), and perceived musculoskeletal discomfort during prolonged sitting (Borg scale), assessed at baseline and after the intervention, and the Global Perceived Effect, only assessed after the 12-week intervention. The secondary outcome will be a Post-Intervention Questionnaire (a 5-item self-completed questionnaire), only assessed after the 12-week intervention.

Results: Our main research outcome-exercise protocols and interventions-will lead to the development of recommendations and protocols for the LBP population. It is important to determine the effect of interventions that are feasible and effective in addressing LBP and perceived musculoskeletal discomfort in young people.

Conclusions: This is the first study examining the effect of active breaks with proposed lumbar and hip extension exercises on reducing or decreasing LBP in students based on a search of the literature. Exercises and recommendations will be the basis for developing proprietary preventative and therapeutic programs, which will be implemented in selected educational institutions.

Keywords: exercise; pain; posture; spine; students; treatment.

Conflict of interest statement

The authors declare no conflicts of interest.

References

    1. Park J.H., Moon J.H., Kim H.J., Kong M.H., Oh Y.H. Sedentary lifestyle: Overview of updated evidence of potential health risks. Korean J. Fam. Med. 2020;41:365. doi: 10.4082/kjfm.20.0165.
    1. Paterson D.C., Ramage K., Moore S.A., Riazi N., Tremblay M.S., Faulkner G. Exploring the impact of COVID-19 on the movement behaviors of children and youth: A scoping review of evidence after the first year. J. Sport Health Sci. 2021;10:675–689. doi: 10.1016/j.jshs.2021.07.001.
    1. Rossi L., Behme N., Breuer C. Physical activity of children and adolescents during the COVID-19 pandemic—A scoping review. Int. J. Environ. Res. Public Health. 2021;18:11440. doi: 10.3390/ijerph182111440.
    1. Zheng C., Huang W.Y., Sheridan S., Sit C.H.-P., Chen X.-K., Wong S.H.-S. COVID-19 pandemic brings a sedentary lifestyle in young adults: A cross-sectional and longitudinal study. Int. J. Environ. Res. Public Health. 2020;17:6035. doi: 10.3390/ijerph17176035.
    1. Knapp E.A., Dong Y., Dunlop A.L., Aschner J.L., Stanford J.B., Hartert T., Teitelbaum S.L., Hudak M.L., Carroll K., O’Connor T.G., et al. Changes in BMI during the COVID-19 pandemic. Pediatrics. 2022;150:e2022056552. doi: 10.1542/peds.2022-056552.
    1. Yaseen Q.B., Salah H. The impact of e-learning during COVID-19 pandemic on students’ body aches in Palestine. Sci. Rep. 2021;11:1–9. doi: 10.1038/s41598-021-01967-z.
    1. Papalia G.F., Petrucci G., Russo F., Ambrosio L., Vadalà G., Iavicoli S., Papalia R., Denaro V. COVID-19 Pandemic Increases the Impact of Low Back Pain: A Systematic Review and Metanalysis. Int. J. Environ. Res. Public Health. 2022;19:4599. doi: 10.3390/ijerph19084599.
    1. GBD 2021 Low Back Pain Collaborators Global, regional, and national burden of low back pain, 1990–2020, its attributable risk factors, and projections to 2050: A systematic analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023;5:e316–e329. doi: 10.1016/S2665-9913(23)00098-X.
    1. Kędra A., Kolwicz-Gańko A., Sitarski D., Kędra P., Czaprowski D. Prevalence of back pain and the knowledge of preventive measures in a cohort of 11619 Polish school-age children and youth—An epidemiological study. Medicine. 2019;98:e15729. doi: 10.1097/MD.0000000000015729.
    1. Hartvigsen J., Hancock M.J., Kongsted A., Louw Q., Ferreira M.L., Genevay S., Hoy D., Karppinen J., Pransky G., Sieper J. What low back pain is and why we need to pay attention. Lancet. 2018;391:2356–2367. doi: 10.1016/S0140-6736(18)30480-X.
    1. Noll M., Candotti C.T., Rosa B.N.d., Vieira A., Loss J.F. Back pain and its risk factors in Brazilian adolescents: A longitudinal study. Br. J. Pain. 2021;15:16–25. doi: 10.1177/2049463719871751.
    1. Fang K., Mu M., Liu K., He Y. Screen time and childhood overweight/obesity: A systematic review and meta—Analysis. Child Care Health Dev. 2019;45:744–753. doi: 10.1111/cch.12701.
    1. Foster N.E., Anema J.R., Cherkin D., Chou R., Cohen S.P., Gross D.P., Ferreira P.H., Fritz J.M., Koes B.W., Peul W. Prevention and treatment of low back pain: Evidence, challenges, and promising directions. Lancet. 2018;391:2368–2383. doi: 10.1016/S0140-6736(18)30489-6.
    1. Hoogendoorn W.E., Van Poppel M.N.M., Bongers P.M., Koes B.W., Bouter L.M. Physical load during work and leisure time as risk factors for back pain. Scand. J. Work. Environ. Health. 1999;25:387–403. doi: 10.5271/sjweh.451.
    1. Heneweer H., Vanhees L., Picavet H.S.J. Physical activity and low back pain: A U-shaped relation? Pain. 2009;143:21–25. doi: 10.1016/j.pain.2008.12.033.
    1. McGill S.M., Hughson R.L., Parks K. Changes in lumbar lordosis modify the role of the extensor muscles. Clin. Biomech. 2000;15:777–780. doi: 10.1016/S0268-0033(00)00037-1.
    1. Bontrup C., Taylor W.R., Fliesser M., Visscher R., Green T., Wippert P.-M., Zemp R. Low back pain and its relationship with sitting behaviour among sedentary office workers. Appl. Ergon. 2019;81:102894. doi: 10.1016/j.apergo.2019.102894.
    1. Claus A.P., Hides J.A., Moseley G.L., Hodges P.W. Is ‘ideal’sitting posture real?: Measurement of spinal curves in four sitting postures. Man. Ther. 2009;14:404–408. doi: 10.1016/j.math.2008.06.001.
    1. Akkarakittichoke N., Janwantanakul P. Seat pressure distribution characteristics during 1 h sitting in office workers with and without chronic low back pain. Saf. Health Work. 2017;8:212–219. doi: 10.1016/j.shaw.2016.10.005.
    1. Zadoń H., Nowakowska-Lipiec K., Michnik R. A sitting or standing position-which one exerts more loads on the musculoskeletal system of the lumbar spine? Comparative tests based on the methods of mathematical modelling. Acta Bioeng. Biomech. 2021;23:113–120. doi: 10.37190/ABB-01762-2020-01.
    1. Callaghan J.P., McGill S.M. Low back joint loading and kinematics during standing and unsupported sitting. Ergonomics. 2001;44:280–294. doi: 10.1080/00140130118276.
    1. O’Sullivan P.B., Dankaerts W., Burnett A.F., Farrell G.T., Jefford E., Naylor C.S., O’Sullivan K.J. Effect of different upright sitting postures on spinal-pelvic curvature and trunk muscle activation in a pain-free population. Spine. 2006;31:E707–E712. doi: 10.1097/01.brs.0000234735.98075.50.
    1. Williams M.M., Hawley J.A., McKenzie R.A., van Wijmen P.M. A comparison of the effects of two sitting postures on back and referred pain. Spine. 1991;16:1185–1191. doi: 10.1097/00007632-199110000-00010.
    1. O’Sullivan K., O’Sullivan P., O’Sullivan L., Dankaerts W. What do physiotherapists consider to be the best sitting spinal posture? Man. Ther. 2012;17:432–437. doi: 10.1016/j.math.2012.04.007.
    1. Korakakis V., O’Sullivan K., O’Sullivan P.B., Evagelinou V., Sotiralis Y., Sideris A., Sakellariou K., Karanasios S., Giakas G. Physiotherapist perceptions of optimal sitting and standing posture. Musculoskelet. Sci. Pract. 2019;39:24–31. doi: 10.1016/j.msksp.2018.11.004.
    1. Cho I.Y., Park S.Y., Park J.H., Kim T.K., Jung T.W., Lee H.M. The effect of standing and different sitting positions on lumbar lordosis: Radiographic study of 30 healthy volunteers. Asian Spine J. 2015;9:762. doi: 10.4184/asj.2015.9.5.762.
    1. Lee T.P., Woon C.K., Ching L.Y., Boon O.P. Sitting Behaviour in Home Working Environment and its Association with Back Pain during Pandemic in Malaysia. J. Clin. Health Sci. 2022;7:10–24. doi: 10.24191/jchs.v7i2.15541.
    1. Emerson S., Emerson K., Fedorczyk J. Computer workstation ergonomics: Current evidence for evaluation, corrections, and recommendations for remote evaluation. J. Hand. Ther. 2021;34:166–178. doi: 10.1016/j.jht.2021.04.002.
    1. Waongenngarm P., Areerak K., Janwantanakul P. The effects of breaks on low back pain, discomfort, and work productivity in office workers: A systematic review of randomized and non-randomized controlled trials. Appl. Ergon. 2018;68:230–239. doi: 10.1016/j.apergo.2017.12.003.
    1. Waongenngarm P., van der Beek A.J., Akkarakittichoke N., Janwantanakul P. Effects of an active break and postural shift inter-vention on preventing neck and low-back pain among high-risk office workers: A 3-arm cluster-randomized controlled trial. Scand J. Work Environ. Health. 2021;47:306–317. doi: 10.5271/sjweh.3949.
    1. Gore M., Tai K.S., Sadosky A., Leslie D., Stacey B.R. Use and costs of prescription medications and alternative treatments in patients with osteoarthritis and chronic low back pain in community—Based settings. Pain Pract. 2012;12:550–560. doi: 10.1111/j.1533-2500.2012.00532.x.
    1. Olafsson G., Jonsson E., Fritzell P., Hägg O., Borgström F. A health economic lifetime treatment pathway model for low back pain in Sweden. J. Med. Econ. 2017;20:1281–1289. doi: 10.1080/13696998.2017.1372252.
    1. Chan A.-W., Tetzlaff J.M., Altman D.G., Laupacis A., Gøtzsche P.C., Krleža-Jerić K., Hróbjartsson A., Mann H., Dickersin K., Berlin J.A. SPIRIT 2013 statement: Defining standard protocol items for clinical trials. Ann. Intern. Med. 2013;158:200–207. doi: 10.7326/0003-4819-158-3-201302050-00583.
    1. Butcher N.J., Monsour A., Mew E.J., Chan A.W., Moher D., Mayo-Wilson E., Terwee C.B., Chee-A-Tow A., Baba A., Gavin F., et al. Guidelines for Reporting Outcomes in Trial Reports: The CONSORT-Outcomes 2022 Extension. JAMA. 2022;328:2252–2264. doi: 10.1001/jama.2022.21022.
    1. World Medical Association Declaration of Helsinki Ethical principles for medical research involving human subjects. JAMA J. Am. Med. Assoc. 2013;310:2191–2194. doi: 10.1001/jama.2013.281053.
    1. Delgado D.A., Lambert B.S., Boutris N., McCulloch P.C., Robbins A.B., Moreno M.R., Harris J.D. Validation of digital visual analog scale pain scoring with a traditional paper-based visual analog scale in adults. J. Am. Acad. Orthop. Surgeons. Glob. Res. Rev. 2018;2:e088. doi: 10.5435/JAAOSGlobal-D-17-00088.
    1. McCaffery M., Beebe A. Pain. Clinical Manual for Nursing Practice. CV Mosby Co.; St. Louis, MI, USA: 1989. p. 2012.
    1. Lamba D., Upadhyay R.K. Comparison between modified oswestry low back pain disability questionnaire and aberdeen low back pain scale taking low back-specific version of the sf-36 physical functioning scale as a gold standard in patients with low back pain. Asian J. Pharm. Clin. Res. 2018;11:97–99. doi: 10.22159/ajpcr.2018.v11i11.27909.
    1. Fairbank J. Revised Oswestry disability questionnaire. Spine. 2000;25:2552. doi: 10.1097/00007632-200010010-00025.
    1. Borg G. Escalamiento psicofísico con aplicaciones en el trabajo físico y la percepción del esfuerzo. Scand J. Work Environ. Health. 1990;16:55–58. doi: 10.5271/sjweh.1815.
    1. Kuorinka I., Jonsson B., Kilbom A., Vinterberg H., Biering-Sørensen F., Andersson G., Jørgensen K. Standardised Nordic questionnaires for the analysis of musculoskeletal symptoms. Appl. Ergon. 1987;18:233–237. doi: 10.1016/0003-6870(87)90010-X.
    1. Dworkin R.H., Turk D.C., Farrar J.T., Haythornthwaite J.A., Jensen M.P., Katz N.P., Kerns R.D., Stucki G., Allen R.R., Bellamy N. Core outcome measures for chronic pain clinical trials: IMMPACT recommendations. Pain. 2005;113:9–19. doi: 10.1016/j.pain.2004.09.012.
    1. Ostelo R.W., de Vet H.C., Vlaeyen J.W., Kerckhoffs M.R., Berfelo W.M., Wolters P.M., van den Brandt P.A. Behavioral graded activity following first-time lumbar disc surgery: 1-year results of a randomized clinical trial. Spine. 2003;28:1757–1765. doi: 10.1097/01.BRS.0000083317.62258.E6.
    1. Meisingset I., Stensdotter A.K., Woodhouse A., Vasseljen O. Predictors for global perceived effect after physiotherapy in patients with neck pain: An observational study. Physiotherapy. 2018;104:400–407. doi: 10.1016/j.physio.2017.01.007.
    1. Nalbandian A., Sehgal K., Gupta A., Madhavan M.V., McGroder C., Stevens J.S., Cook J.R., Nordvig A.S., Shalev D., Sehrawat T.S. Post-acute COVID-19 syndrome. Nat. Med. 2021;27:601–615. doi: 10.1038/s41591-021-01283-z.
    1. Bileviciute-Ljungar I., Norrefalk J.-R., Borg K. Pain burden in post-COVID-19 syndrome following mild COVID-19 infection. J. Clin. Med. 2022;11:771. doi: 10.3390/jcm11030771.
    1. Waongenngarm P., Rajaratnam B.S., Janwantanakul P. Perceived body discomfort and trunk muscle activity in three prolonged sitting postures. J. Phys. Ther. Sci. 2015;27:2183–2187. doi: 10.1589/jpts.27.2183.
    1. Jia B., Nussbaum M.A. Influences of continuous sitting and psychosocial stress on low back kinematics, kinetics, discomfort, and localized muscle fatigue during unsupported sitting activities. Ergonomics. 2018;61:1671–1684. doi: 10.1080/00140139.2018.1497815.
    1. Juraida A. Effects of Netbook and Tablet Usage Postures on the Development of Fatigue, Discomfort and Pain. J. Eng. Technol. Sci. 2016;48:243–253.
    1. Roffey D.M., Wai E.K., Bishop P., Kwon B.K., Dagenais S. Causal assessment of occupational standing or walking and low back pain: Results of a systematic review. Spine J. 2010;10:262–272. doi: 10.1016/j.spinee.2009.12.023.
    1. Lis A.M., Black K.M., Korn H., Nordin M. Association between sitting and occupational LBP. Eur. Spine J. 2007;16:283–298. doi: 10.1007/s00586-006-0143-7.
    1. Gupta N., Christiansen C.S., Hallman D.M., Korshøj M., Carneiro I.G., Holtermann A. Is objectively measured sitting time associated with low back pain? A cross-sectional investigation in the NOMAD study. PLoS ONE. 2015;10:e0121159. doi: 10.1371/journal.pone.0121159.
    1. Kourtis D., Magnusson M.L., Smith F., Hadjipavlou A., Pope M.H. Spine height and disc height changes as the effect of hyperextension using stadiometry and MRI. Iowa Orthop. J. 2004;24:65.
    1. Sheahan P.J., Diesbourg T.L., Fischer S.L. The effect of rest break schedule on acute low back pain development in pain and non-pain developers during seated work. Appl. Ergon. 2016;53:64–70. doi: 10.1016/j.apergo.2015.08.013.
    1. Waongenngarm P., van der Beek A.J., Akkarakittichoke N., Janwantanakul P. Perceived musculoskeletal discomfort and its association with postural shifts during 4-h prolonged sitting in office workers. Appl. Ergon. 2020;89:103225. doi: 10.1016/j.apergo.2020.103225.

Source: PubMed

3
Se inscrever