Dysfunction of the Glymphatic System as a Potential Mechanism of Perioperative Neurocognitive Disorders

Xuli Ren, Shan Liu, Chuang Lian, Haixia Li, Kai Li, Longyun Li, Guoqing Zhao, Xuli Ren, Shan Liu, Chuang Lian, Haixia Li, Kai Li, Longyun Li, Guoqing Zhao

Abstract

Perioperative neurocognitive disorder (PND) frequently occurs in the elderly as a severe postoperative complication and is characterized by a decline in cognitive function that impairs memory, attention, and other cognitive domains. Currently, the exact pathogenic mechanism of PND is multifaceted and remains unclear. The glymphatic system is a newly discovered glial-dependent perivascular network that subserves a pseudo-lymphatic function in the brain. Recent studies have highlighted the significant role of the glymphatic system in the removal of harmful metabolites in the brain. Dysfunction of the glymphatic system can reduce metabolic waste removal, leading to neuroinflammation and neurological disorders. We speculate that there is a causal relationship between the glymphatic system and symptomatic progression in PND. This paper reviews the current literature on the glymphatic system and some perioperative factors to discuss the role of the glymphatic system in PND.

Keywords: glymphatic system; perioperative neurocognitive disorders; postoperative cognitive dysfunction; postoperative complications; postoperative neuropathy.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Ren, Liu, Lian, Li, Li, Li and Zhao.

Figures

Figure 1
Figure 1
(A) The glymphatic system is a perivascular channel formed by astrocyte end-feet throughout the brain. CSF enters the brain parenchyma through the periarterial space, exchanges with ISF, and finally exits through the perivenous space. Rapid exchange of CSF within ISF is facilitated by AQP4, which is anchored to the astrocytic end-feet. Interstitial solutes, including protein waste, are drained from the brain with CSF through the perivenous space and via the meninges and cervical lymphatics. (B) Dysfunction of the perioperative glymphatic system. Perioperative anesthetic drugs can cause hemodynamic changes that reduce arterial pulsation mechanism change and decrease the inflow of the glymphatic system. Surgically induced systemic inflammation can cause blood-brain barrier opening and glymphatic system damage, leading to neuroinflammation and decreased waste clearance. Both the entry of peripheral inflammatory substances and the accumulation of protein wastes in the brain, such as Aβ accumulation and folding, can activate astrocytes and microglia and trigger neuroinflammation. Neuroinflammation can worsen the damage to the function and structure of the glymphatic system. Forceful expiration, positive pressure ventilation, and prone position can cause a decrease in venous return, leading to a decrease in CSF clearance. Pain, preoperative stress, and sleep disturbances can affect both CSF inflow and clearance. Glymphatic dysfunction can lead to a more significant accumulation of protein and waste products, which can trigger neuroinflammation and lead to PND. PVC, Perivascular space.
Figure 2
Figure 2
In this model, the glymphatic system resides at the intersection of a broad scope of perioperative risk factors, which share an association with diminished brain waste clearance. Individual factors are preexisting impairments in glymphatic function prior to surgery; anesthetic and surgical factors are associated with a dramatic decline in perioperative glymphatic function, compromising the glymphatic system and exacerbating the progression of preexisting disease. Glymphatic system dysfunction, in turn, contributes to protein aggregation and misfolding, leading to neuroinflammation, neurodegeneration, and ultimately PND.

References

    1. Abbott N. J., Pizzo M. E., Preston J. E., Janigro D., Thorne R. G. (2018). The role of brain barriers in fluid movement in the CNS: is there a ‘glymphatic' system? Acta Neuropatol. 135, 387–407. 10.1007/s00401-018-1812-4
    1. Abrahamov D., Levran O., Naparstek S., Refaeli Y., Kaptson S., Abu Salah M., et al. . (2017). Blood-brain barrier disruption after cardiopulmonary bypass: diagnosis and correlation to cognition. Ann. Thorac. Surg. 104, 161–169. 10.1016/j.athoracsur.2016.10.043
    1. Alawieh A., Langley E. F., Tomlinson S. (2018). Targeted complement inhibition salvages stressed neurons and inhibits neuroinflammation after stroke in mice. Sci. Transl. Med. 10:eaao6459. 10.1126/scitranslmed.aao6459
    1. Alonso-Lana S., Marquié M., Ruiz A., Boada M. (2020). Cognitive and neuropsychiatric manifestations of COVID-19 and effects on elderly individuals with dementia. Front. Aging Neurosci. 12:588872. 10.3389/fnagi.2020.588872
    1. Amiry-Moghaddam M., Otsuka T., Hurn P. D., Traystman R. J., Haug F. M., Froehner S. C., et al. . (2003). An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc. Natl. Acad. Sci. U.S.A. 100, 2106–2111. 10.1073/pnas.0437946100
    1. Bedford P. D. (1955). Adverse cerebral effects of anaesthesia on old people. Lancet 269, 259–263. 10.1016/S0140-6736(55)92689-1
    1. Benveniste H., Heerdt P. M., Fontes M., Rothman D. L., Volkow N. D. (2019a). Glymphatic system function in relation to anesthesia and sleep states. Anesth. Analg. 128, 747–758. 10.1213/ANE.0000000000004069
    1. Benveniste H., Lee H., Volkow N. D. (2017). The glymphatic pathway: waste removal from the CNS via cerebrospinal fluid transport. Neuroscientist 23, 454–465. 10.1177/1073858417691030
    1. Benveniste H., Liu X., Koundal S., Sanggaard S., Lee H., Wardlaw J. (2019b). The glymphatic system and waste clearance with brain aging: a review. Gerontology 65, 106–119. 10.1159/000490349
    1. Berger M., Nadler J. W., Browndyke J., Terrando N., Ponnusamy V., Cohen H. J., et al. . (2015). Postoperative cognitive dysfunction: minding the gaps in our knowledge of a common postoperative complication in the elderly. Anesthesiol. Clin. 33, 517–550. 10.1016/j.anclin.2015.05.008
    1. Berger M., Oyeyemi D., Olurinde M. O., Whitson H. E., Weinhold K. J., Woldorff M. G., et al. . (2019). The INTUIT study: investigating neuroinflammation underlying postoperative cognitive dysfunction. J. Am. Geriatr. Soc. 67, 794–798. 10.1111/jgs.15770
    1. Bi J., Shan W., Luo A., Zuo Z. (2017). Critical role of matrix metallopeptidase 9 in postoperative cognitive dysfunction and age-dependent cognitive decline. Oncotarget 8, 51817–51829. 10.18632/oncotarget.15545
    1. Bilotta F., Giordano G., Sergi P. G., Pugliese F. (2019). Harmful effects of mechanical ventilation on neurocognitive functions. Crit. Care 23:273. 10.1186/s13054-019-2546-y
    1. Bolte A. C., Dutta A. B., Hurt M. E., Smirnov I., Kovacs M. A., McKee C. A., et al. . (2020). Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis. Nat. Commun. 11:4524. 10.1038/s41467-020-18113-4
    1. Brown E. N., Lydic R., Schiff N. D. (2010). General anesthesia, sleep, and coma. N. Engl. J. Med. 363, 2638–2650. 10.1056/NEJMra0808281
    1. Calsolaro V., Edison P. (2016). Neuroinflammation in Alzheimer's disease: current evidence and future directions. Alzheimers Dement. 12, 719–732. 10.1016/j.jalz.2016.02.010
    1. Campbell I. G. (2009). EEG recording and analysis for sleep research. Curr. Protoc. Neurosci. Chapter 10, Unit10.12. 10.1002/0471142301.ns1002s49
    1. Chen H., Chen K., Xu J. Q., Zhang Y. R., Yu R. G., Zhou J. X. (2018). Intracranial pressure responsiveness to positive end-expiratory pressure is influenced by chest wall elastance: a physiological study in patients with aneurysmal subarachnoid hemorrhage. BMC Neurol. 18:124. 10.1186/s12883-018-1132-2
    1. Chouchou F., Khoury S., Chauny J. M., Denis R., Lavigne G. J. (2014). Postoperative sleep disruptions: a potential catalyst of acute pain? Sleep Med. Rev. 18, 273–282. 10.1016/j.smrv.2013.07.002
    1. Cunningham E. L., McGuinness B., McAuley D. F., Toombs J., Mawhinney T., O'Brien S., et al. . (2019). CSF Beta-amyloid 1-42 concentration predicts delirium following elective arthroplasty surgery in an observational cohort study. Ann. Surg. 269, 1200–1205. 10.1097/SLA.0000000000002684
    1. Damkier H. H., Brown P. D., Praetorius J. (2013). Cerebrospinal fluid secretion by the choroid plexus. Physiol. Rev. 93, 1847–1892. 10.1152/physrev.00004.2013
    1. Deike-Hofmann K., Reuter J., Haase R., Paech D., Gnirs R., Bickelhaupt S., et al. . (2019). Glymphatic pathway of gadolinium-based contrast agents through the brain: overlooked and misinterpreted. Invest. Radiol. 54, 229–237. 10.1097/RLI.0000000000000533
    1. Deschamps A., Saha T., El-Gabalawy R., Jacobsohn E., Overbeek C., Palermo J., et al. . (2019). Protocol for the electroencephalography guidance of anesthesia to alleviate geriatric syndromes (ENGAGES-Canada) study: a pragmatic, randomized clinical trial. F1000Res. 8:1165. 10.12688/f1000research.19213.1
    1. Dijk D. J. (1999). Circadian variation of EEG power spectra in NREM and REM sleep in humans: dissociation from body temperature. J. Sleep Res. 8, 189–195. 10.1046/j.1365-2869.1999.00159.x
    1. Ding G., Chopp M., Li L., Zhang L., Davoodi-Bojd E., Li Q., et al. . (2018). MRI investigation of glymphatic responses to Gd-DTPA infusion rates. J. Neurosci. Res. 96, 1876–1886. 10.1002/jnr.24325
    1. Dreha-Kulaczewski S., Joseph A. A., Merboldt K. D., Ludwig H. C., Gärtner J., Frahm J. (2015). Inspiration is the major regulator of human CSF flow. J. Neurosci. 35, 2485–2491. 10.1523/JNEUROSCI.3246-14.2015
    1. Duman R. S., Shinohara R., Fogaça M. V., Hare B. (2019). Neurobiology of rapid-acting antidepressants: convergent effects on GluA1-synaptic function. Mol. Psychiatry 24, 1816–1832. 10.1038/s41380-019-0400-x
    1. Eckenhoff R. G., Maze M., Xie Z., Culley D. J., Goodlin S. J., Zuo Z., et al. . (2020). Perioperative neurocognitive disorder: state of the preclinical science. Anesthesiology 132, 55–68. 10.1097/ALN.0000000000002956
    1. Eide P. K., Ringstad G. (2019). Delayed clearance of cerebrospinal fluid tracer from entorhinal cortex in idiopathic normal pressure hydrocephalus: a glymphatic magnetic resonance imaging study. J. Cereb. Blood Flow Metab. 39, 1355–1368. 10.1177/0271678X18760974
    1. Ekeloef S., Larsen M. H., Schou-Pedersen A. M., Lykkesfeldt J., Rosenberg J., Gögenür I. (2017). Endothelial dysfunction in the early postoperative period after major colon cancer surgery. Br. J. Anaesth. 118, 200–206. 10.1093/bja/aew410
    1. Evered L., Silbert B., Knopman D. S., Scott D. A., DeKosky S. T., Rasmussen L. S., et al. . (2018a). Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery-2018. Anesthesiology 129, 872–879. 10.1097/ALN.0000000000002334
    1. Evered L., Silbert B., Scott D. A., Ames D., Maruff P., Blennow K. (2016). Cerebrospinal fluid biomarker for Alzheimer disease predicts postoperative cognitive dysfunction. Anesthesiology 124, 353–361. 10.1097/ALN.0000000000000953
    1. Evered L., Silbert B., Scott D. A., Zetterberg H., Blennow K. (2018b). Association of changes in plasma neurofilament light and tau levels with anesthesia and surgery: results from the CAPACITY and ARCADIAN studies. JAMA Neurol. 75, 542–547. 10.1001/jamaneurol.2017.4913
    1. Evered L. A., Silbert B. S. (2018). Postoperative cognitive dysfunction and noncardiac surgery. Anesth. Analg. 127, 496–505. 10.1213/ANE.0000000000003514
    1. Ezhevskaya A. A., Ovechkin A. M., Prusakova Z. B., Zagrekov V. I., Mlyavykh S. G., Anderson D. G. (2019). Relationship among anesthesia technique, surgical stress, and cognitive dysfunction following spinal surgery: a randomized trial. J. Neurosurg. Spine. 10.3171/2019.4.SPINE184. [Epub ahead of print].
    1. Foss N. B., Kehlet H. (2019). Perioperative haemodynamics and vasoconstriction: time for reconsideration? Br. J. Anaesth. 123, 100–103. 10.1016/j.bja.2019.04.052
    1. Fultz N. E., Bonmassar G., Setsompop K., Stickgold R. A., Rosen B. R., Polimeni J. R., et al. . (2019). Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science 366, 628–631. 10.1126/science.aax5440
    1. Fuxe K., Agnati L. F., Marcoli M., Borroto-Escuela D. O. (2015). Volume transmission in central dopamine and noradrenaline neurons and its astroglial targets. Neurochem. Res. 40, 2600–2614. 10.1007/s11064-015-1574-5
    1. Gaberel T., Gakuba C., Goulay R., Martinez De Lizarrondo S., Hanouz J. L., Emery E., et al. . (2014). Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis? Stroke 45, 3092–3096. 10.1161/STROKEAHA.114.006617
    1. Gakuba C., Gaberel T., Goursaud S., Bourges J., Di Palma C., Quenault A., et al. . (2018). General anesthesia inhibits the activity of the “glymphatic system”. Theranostics 8, 710–722. 10.7150/thno.19154
    1. Gao X., Ming J., Liu S., Lai B., Fang F., Cang J. (2019). Sevoflurane enhanced the clearance of Aβ1-40 in hippocampus under surgery via up-regulating AQP-4 expression in astrocyte. Life Sci. 221, 143–151. 10.1016/j.lfs.2019.02.024
    1. Gerlach R. M., Chaney M. A. (2018). Postoperative cognitive dysfunction related to Alzheimer disease? J. Thorac. Cardiovasc. Surg. 155, 968–969. 10.1016/j.jtcvs.2017.10.113
    1. Groothuis D. R., Vavra M. W., Schlageter K. E., Kang E. W., Itskovich A. C., Hertzler S., et al. . (2007). Efflux of drugs and solutes from brain: the interactive roles of diffusional transcapillary transport, bulk flow and capillary transporters. J. Cereb. Blood Flow Metab. 27, 43–56. 10.1038/sj.jcbfm.9600315
    1. Hablitz L. M., Plá V., Giannetto M., Vinitsky H. S., Stæger F. F., Metcalfe T., et al. . (2020). Circadian control of brain glymphatic and lymphatic fluid flow. Nat. Commun. 11:4411. 10.1038/s41467-020-18115-2
    1. Hablitz L. M., Vinitsky H. S., Sun Q., Stæger F. F., Sigurdsson B., Mortensen K. N., et al. . (2019). Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci. Adv. 5:eaav5447. 10.1126/sciadv.aav5447
    1. Hadjihambi A., Harrison I. F., Costas-Rodríguez M., Vanhaecke F., Arias N., Gallego-Durán R., et al. . (2019). Impaired brain glymphatic flow in experimental hepatic encephalopathy. J. Hepatol. 70, 40–49. 10.1016/j.jhep.2018.08.021
    1. Harrison I. F., Ismail O., Machhada A., Colgan N., Ohene Y., Nahavandi P., et al. . (2020). Impaired glymphatic function and clearance of tau in an Alzheimer's disease model. Brain 143, 2576–2593. 10.1093/brain/awaa179
    1. He H. J., Wang Y., Le Y., Duan K. M., Yan X. B., Liao Q., et al. . (2012). Surgery upregulates high mobility group box-1 and disrupts the blood-brain barrier causing cognitive dysfunction in aged rats. CNS Neurosci. Therap. 18, 994–1002. 10.1111/cns.12018
    1. Helms J., Kremer S., Merdji H., Schenck M., Severac F., Clere-Jehl R., et al. . (2020). Delirium and encephalopathy in severe COVID-19: a cohort analysis of ICU patients. Crit. Care 24:491. 10.1186/s13054-020-03200-1
    1. Herridge M. S., Moss M., Hough C. L., Hopkins R. O., Rice T. W., Bienvenu O. J., et al. . (2016). Recovery and outcomes after the acute respiratory distress syndrome (ARDS) in patients and their family caregivers. Intensive Care Med. 42, 725–738. 10.1007/s00134-016-4321-8
    1. Hu N., Guo D., Wang H., Xie K., Wang C., Li Y., et al. . (2014). Involvement of the blood-brain barrier opening in cognitive decline in aged rats following orthopedic surgery and high concentration of sevoflurane inhalation. Brain Res. 1551, 13–24. 10.1016/j.brainres.2014.01.015
    1. Hu Z., Zhang F., Liao Q., Ouyang W. (2020). The glymphatic system: a potential pathophysiological focus for perioperative neurocognitive disorder. Explor. Res. Hypothesis Med. 6, 24–27. 10.14218/ERHM.2020.00041
    1. Hubbard J. A., Szu J. I., Binder D. K. (2018). The role of aquaporin-4 in synaptic plasticity, memory and disease. Brain Res. Bull. 136, 118–129. 10.1016/j.brainresbull.2017.02.011
    1. Huber-Lang M., Lambris J. D., Ward P. A. (2018). Innate immune responses to trauma. Nat. Immunol. 19, 327–341. 10.1038/s41590-018-0064-8
    1. Hughes C. G., Pandharipande P. P., Thompson J. L., Chandrasekhar R., Ware L. B., Ely E. W., et al. . (2016). Endothelial activation and blood-brain barrier injury as risk factors for delirium in critically ill patients. Crit. Care Med. 44, e809–e817. 10.1097/CCM.0000000000001739
    1. Iliff J. J., Wang M., Liao Y., Plogg B. A., Peng W., Gundersen G. A., et al. . (2012). A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 4:147ra111. 10.1126/scitranslmed.3003748
    1. Iliff J. J., Wang M., Zeppenfeld D. M., Venkataraman A., Plog B. A., Liao Y., et al. . (2013). Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J. Neurosci. 33, 18190–18199. 10.1523/JNEUROSCI.1592-13.2013
    1. Jessen N. A., Munk A. S., Lundgaard I., Nedergaard M. (2015). The glymphatic system: a beginner's guide. Neurochem. Res. 40, 2583–2599. 10.1007/s11064-015-1581-6
    1. Jiang Q. (2019). MRI and glymphatic system. Stroke Vasc. Neurol. 4, 75–77. 10.1136/svn-2018-000197
    1. Jiang Q., Zhang L., Ding G., Davoodi-Bojd E., Li Q., Li L., et al. . (2017). Impairment of the glymphatic system after diabetes. J. Cereb. Blood Flow Metab. 37, 1326–1337. 10.1177/0271678X16654702
    1. Jin W. J., Feng S. W., Feng Z., Lu S. M., Qi T., Qian Y. N. (2014). Minocycline improves postoperative cognitive impairment in aged mice by inhibiting astrocytic activation. Neuroreport 25, 1–6. 10.1097/WNR.0000000000000082
    1. Jo A. O., Ryskamp D. A., Phuong T. T., Verkman A. S., Yarishkin O., MacAulay N., et al. . (2015). TRPV4 and AQP4 channels synergistically regulate cell volume and calcium homeostasis in retinal müller glia. J. Neurosci. 35, 13525–13537. 10.1523/JNEUROSCI.1987-15.2015
    1. Kettenmann H., Hanisch U. K., Noda M., Verkhratsky A. (2011). Physiology of microglia. Physiol. Rev. 91, 461–553. 10.1152/physrev.00011.2010
    1. Kim J., Shim J. K., Song J. W., Kim E. K., Kwak Y. L. (2016). Postoperative cognitive dysfunction and the change of regional cerebral oxygen saturation in elderly patients undergoing spinal surgery. Anesth. Analg. 123, 436–444. 10.1213/ANE.0000000000001352
    1. Kiviniemi V., Wang X., Korhonen V., Keinänen T., Tuovinen T., Autio J., et al. . (2016). Ultra-fast magnetic resonance encephalography of physiological brain activity - Glymphatic pulsation mechanisms? J. Cereb. Blood Flow Metab. 36, 1033–1045. 10.1177/0271678X15622047
    1. Koundal S., Elkin R., Nadeem S., Xue Y., Constantinou S., Sanggaard S., et al. . (2020). Optimal mass transport with lagrangian workflow reveals advective and diffusion driven solute transport in the glymphatic system. Sci. Rep. 10:1990. 10.1038/s41598-020-60586-2
    1. Kress B. T., Iliff J. J., Xia M., Wang M., Wei H. S., Zeppenfeld D., et al. . (2014). Impairment of paravascular clearance pathways in the aging brain. Ann. Neurol. 76, 845–861. 10.1002/ana.24271
    1. Kyrtsos C. R., Baras J. S. (2015). Modeling the role of the glymphatic pathway and cerebral blood vessel properties in Alzheimer's disease pathogenesis. PLoS ONE 10:e0139574. 10.1371/journal.pone.0139574
    1. Lazic K., Petrovic J., Ciric J., Kalauzi A., Saponjic J. (2017). REM sleep disorder following general anesthesia in rats. Physiol. Behav. 168, 41–54. 10.1016/j.physbeh.2016.10.013
    1. Lee H., Xie L., Yu M., Kang H., Feng T., Deane R., et al. . (2015). The effect of body posture on brain glymphatic transport. J. Neurosci. 35, 11034–11044. 10.1523/JNEUROSCI.1625-15.2015
    1. Liddelow S. A., Guttenplan K. A., Clarke L. E., Bennett F. C., Bohlen C. J., Schirmer L., et al. . (2017). Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487. 10.1038/nature21029
    1. Lilius T. O., Blomqvist K., Hauglund N. L., Liu G., Stæger F. F., Bærentzen S., et al. . (2019b). Dexmedetomidine enhances glymphatic brain delivery of intrathecally administered drugs. J. Controlled Release 304, 29–38.
    1. Lilius T. O., Blomqvist K., Hauglund N. L., Liu G., Staeger F. F., Baerentzen S., et al. . (2019a). Dexmedetomidine enhances glymphatic brain delivery of intrathecally administered drugs. J. Controlled Release 304, 29–38. 10.1016/j.jconrel.2019.05.005
    1. Liu G., Mestre H., Sweeney A. M., Sun Q., Weikop P., Du T., et al. . (2020). Direct measurement of cerebrospinal fluid production in mice. Cell Rep. 33:108524. 10.1016/j.celrep.2020.108524
    1. Liu L. R., Liu J. C., Bao J. S., Bai Q. Q., Wang G. Q. (2020). Interaction of microglia and astrocytes in the neurovascular unit. Front. Immunol. 11:1024. 10.3389/fimmu.2020.01024
    1. Long J. M., Holtzman D. M. (2019). Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179, 312–339. 10.1016/j.cell.2019.09.001
    1. Lundgaard I., Lu M. L., Yang E., Peng W., Mestre H., Hitomi E., et al. . (2017). Glymphatic clearance controls state-dependent changes in brain lactate concentration. J. Cereb. Blood Flow Metab. 37, 2112–2124. 10.1177/0271678X16661202
    1. Maerz D. A., Beck L. N., Sim A. J., Gainsburg D. M. (2017). Complications of robotic-assisted laparoscopic surgery distant from the surgical site. Br. J. Anaesth. 118, 492–503. 10.1093/bja/aex003
    1. Maneshi M. M., Maki B., Gnanasambandam R., Belin S., Popescu G. K., Sachs F., et al. . (2017). Mechanical stress activates NMDA receptors in the absence of agonists. Sci. Rep. 7:39610. 10.1038/srep39610
    1. Manouchehrian O., Ramos M., Bachiller S., Lundgaard I., Deierborg T. (2021). Acute systemic LPS-exposure impairs perivascular CSF distribution in mice. J. Neuroinflammation 18:34. 10.1186/s12974-021-02082-6
    1. Masters C. L., Bateman R., Blennow K., Rowe C. C., Sperling R. A., Cummings J. L. (2015). Alzheimer's disease. Nat. Rev. Dis. Primers 1:15056. 10.1038/nrdp.2015.56
    1. Meng Y., Abrahao A., Heyn C. C., Bethune A. J., Huang Y., Pople C. B., et al. . (2019). Glymphatics visualization after focused ultrasound-induced blood-brain barrier opening in humans. Ann. Neurol. 86, 975–980. 10.1002/ana.25604
    1. Mentis A. A., Dardiotis E., Chrousos G. P. (2020). Apolipoprotein E4 and meningeal lymphatics in Alzheimer disease: a conceptual framework. Mol. Psychiatry 26, 1075–1097. 10.1038/s41380-020-0731-7
    1. Mestre H., Hablitz L. M., Xavier A. L., Feng W., Zou W., Pu T., et al. . (2018a). Aquaporin-4-dependent glymphatic solute transport in the rodent brain. eLife 7:e40070. 10.7554/eLife.40070
    1. Mestre H., Tithof J., Du T., Song W., Peng W., Sweeney A. M., et al. . (2018b). Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat. Commun. 9:4878. 10.1038/s41467-018-07318-3
    1. Miao M., Xu Y., Sun M., Chang E., Cong X., Zhang J. (2019). BIS index monitoring and perioperative neurocognitive disorders in older adults: a systematic review and meta-analysis. Aging Clin. Exp. Res. 32, 2449–2458. 10.1007/s40520-019-01433-x
    1. Miller D., Lewis S. R., Pritchard M. W., Schofield-Robinson O. J., Shelton C. L., Alderson P., et al. . (2018). Intravenous versus inhalational maintenance of anaesthesia for postoperative cognitive outcomes in elderly people undergoing non-cardiac surgery. Cochrane Database Syst. Rev. 8:Cd012317. 10.1002/14651858.CD012317.pub2
    1. Morrison R. L., Fedgchin M., Singh J., Van Gerven J., Zuiker R., Lim K. S., et al. . (2018). Effect of intranasal esketamine on cognitive functioning in healthy participants: a randomized, double-blind, placebo-controlled study. Psychopharmacology 235, 1107–1119. 10.1007/s00213-018-4828-5
    1. Mortensen K. N., Sanggaard S., Mestre H., Lee H., Kostrikov S., Xavier A. L. R., et al. . (2019). Impaired glymphatic transport in spontaneously hypertensive rats. J. Neurosci. 39, 6365–6377. 10.1523/JNEUROSCI.1974-18.2019
    1. Muehlhan M., Marxen M., Landsiedel J., Malberg H., Zaunseder S. (2014). The effect of body posture on cognitive performance: a question of sleep quality. Front. Hum. Neurosci. 8:171. 10.3389/fnhum.2014.00171
    1. Myllylä T., Harju M., Korhonen V., Bykov A., Kiviniemi V., Meglinski I. (2018). Assessment of the dynamics of human glymphatic system by near-infrared spectroscopy. J. Biophotonics 11:e201700123. 10.1002/jbio.201700123
    1. Nathan N. (2019). Inflamed in the membrane: neuroinflammation and perioperative neurocognitive disorders. Anesth. Analg. 128:604. 10.1213/ANE.0000000000004098
    1. Nedergaard M. (2013). Neuroscience. Garbage truck of the brain. Science 340, 1529–1530. 10.1126/science.1240514
    1. Nedergaard M., Goldman S. A. (2020). Glymphatic failure as a final common pathway to dementia. Science 370, 50–56. 10.1126/science.abb8739
    1. Ni P., Dong H., Wang Y., Zhou Q., Xu M., Qian Y., et al. . (2018). IL-17A contributes to perioperative neurocognitive disorders through blood-brain barrier disruption in aged mice. J. Neuroinflammation 15:332. 10.1186/s12974-018-1374-3
    1. Ologunde R., Ma D. (2011). Do inhalational anesthetics cause cognitive dysfunction? Acta Anaesthesiol. Taiwan. 49, 149–153. 10.1016/j.aat.2011.11.001
    1. Ou M., Kuo F. S., Chen X., Kahanovitch U., Olsen M. L., Du G., et al. . (2020). Isoflurane inhibits a Kir4.1/5.1-like conductance in neonatal rat brainstem astrocytes and recombinant Kir4.1/5.1 channels in a heterologous expression system. J. Neurophysiol. 124, 740–749. 10.1152/jn.00358.2020
    1. Ozturk B. O., Monte B., Koundal S., Dai F., Benveniste H., Lee H. (2021). Disparate volumetric fluid shifts across cerebral tissue compartments with two different anesthetics. Fluids Barriers of the CNS 18:1. 10.1186/s12987-020-00236-x
    1. Plog B. A., Dashnaw M. L., Hitomi E., Peng W., Liao Y., Lou N., et al. . (2015). Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. J. Neurosci. 35, 518–526. 10.1523/JNEUROSCI.3742-14.2015
    1. Plog B. A., Nedergaard M. (2018). The glymphatic system in central nervous system health and disease: past, present, and future. Annu. Rev. Pathol. 13, 379–394. 10.1146/annurev-pathol-051217-111018
    1. Rangroo Thrane V., Thrane A. S., Plog B. A., Thiyagarajan M., Iliff J. J., Deane R., et al. . (2013). Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain. Sci. Rep. 3:2582. 10.1038/srep02582
    1. Ren X., Lv F., Fang B., Liu S., Lv H., He G., et al. . (2014). Anesthetic agent propofol inhibits myeloid differentiation factor 88-dependent and independent signaling and mitigates lipopolysaccharide-mediated reactive oxygen species production in human neutrophils in vitro. Eur. J. Pharmacol. 744, 164–172. 10.1016/j.ejphar.2014.10.030
    1. Riba-Llena I., Jiménez-Balado J., Castañé X., Girona A., López-Rueda A., Mundet X., et al. . (2018). Arterial stiffness is associated with basal ganglia enlarged perivascular spaces and cerebral small vessel disease load. Stroke 49, 1279–1281. 10.1161/STROKEAHA.118.020163
    1. Ringstad G., Valnes L. M., Dale A. M., Pripp A. H., Vatnehol S. S., Emblem K. E., et al. . (2018). Brain-wide glymphatic enhancement and clearance in humans assessed with MRI. JCI Insight 3:e121537. 10.1172/jci.insight.121537
    1. Schenning K. J., Murchison C. F., Mattek N. C., Silbert L. C., Kaye J. A., Quinn J. F. (2016). Surgery is associated with ventricular enlargement as well as cognitive and functional decline. Alzheimers Dement. 12, 590–597. 10.1016/j.jalz.2015.10.004
    1. Schiff N. D. (2020). Central lateral thalamic nucleus stimulation awakens cortex via modulation of cross-regional, laminar-specific activity during general anesthesia. Neuron 106, 1–3. 10.1016/j.neuron.2020.02.016
    1. Scott D. H. T. (2018). Non-invasive blood pressure measurement displays. Anaesthesia 73:1299. 10.1111/anae.14433
    1. Shalbaf R., Behnam H., Jelveh Moghadam H. (2015). Monitoring depth of anesthesia using combination of EEG measure and hemodynamic variables. Cogn. Neurodyn. 9, 41–51. 10.1007/s11571-014-9295-z
    1. Shi Y., Thrippleton M. J., Blair G. W., Dickie D. A., Marshall I., Hamilton I., et al. . (2020). Small vessel disease is associated with altered cerebrovascular pulsatility but not resting cerebral blood flow. J. Cereb. Blood Flow Metab. 40, 85–99. 10.1177/0271678X18803956
    1. Shokri-Kojori E., Wang G. J., Wiers C. E., Demiral S. B., Guo M., Kim S. W., et al. . (2018). β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc. Natl. Acad. Sci. U.S.A. 115, 4483–4488. 10.1073/pnas.1721694115
    1. Simon M. J., Iliff J. J. (2016). Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease. Biochim. Biophys. Acta 1862, 442–451. 10.1016/j.bbadis.2015.10.014
    1. Smith A. J., Yao X., Dix J. A., Jin B. J., Verkman A. S. (2017). Test of the 'glymphatic' hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. eLife 6:e27679 10.7554/eLife.27679.019
    1. Su X., Wang D. X. (2018). Improve postoperative sleep: what can we do? Curr. Opin. Anaesthesiol. 31, 83–88. 10.1097/ACO.0000000000000538
    1. Subramaniyan S., Terrando N. (2019). Neuroinflammation and perioperative neurocognitive disorders. Anesth. Analg. 128, 781–788. 10.1213/ANE.0000000000004053
    1. Sweeney M. D., Zhao Z., Montagne A., Nelson A. R., Zlokovic B. V. (2019). Blood-brain barrier: from physiology to disease and back. Physiol. Rev. 99, 21–78. 10.1152/physrev.00050.2017
    1. Tarasoff-Conway J. M., Carare R. O., Osorio R. S., Glodzik L., Butler T., Fieremans E., et al. . (2015). Clearance systems in the brain-implications for Alzheimer disease. Nat. Rev. Neurol. 11, 457–470. 10.1038/nrneurol.2015.119
    1. Terrando N., Eriksson L. I., Ryu J. K., Yang T., Monaco C., Feldmann M., et al. . (2011). Resolving postoperative neuroinflammation and cognitive decline. Ann. Neurol. 70, 986–995. 10.1002/ana.22664
    1. Thomas J. H. (2019). Fluid dynamics of cerebrospinal fluid flow in perivascular spaces. J. R. Soc. Interface 16:20190572. 10.1098/rsif.2019.0572
    1. Tithof J., Kelley D. H., Mestre H., Nedergaard M., Thomas J. H. (2019). Hydraulic resistance of periarterial spaces in the brain. Fluids Barriers CNS 16:19. 10.1186/s12987-019-0140-y
    1. Vacas S., Degos V., Tracey K. J., Maze M. (2014). High-mobility group box 1 protein initiates postoperative cognitive decline by engaging bone marrow-derived macrophages. Anesthesiology 120, 1160–1167. 10.1097/ALN.0000000000000045
    1. Verheggen I. C. M., Van Boxtel M. P. J., Verhey F. R. J., Jansen J. F. A., Backes W. H. (2018). Interaction between blood-brain barrier and glymphatic system in solute clearance. Neurosci. Biobehav. Rev. 90, 26–33. 10.1016/j.neubiorev.2018.03.028
    1. Voskuhl R. R., Peterson R. S., Song B., Ao Y., Morales L. B., Tiwari-Woodruff S., et al. . (2009). Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J. Neurosci. 29, 11511–11522. 10.1523/JNEUROSCI.1514-09.2009
    1. Wang B., Li S., Cao X., Dou X., Li J., Wang L., et al. . (2017). Blood-brain barrier disruption leads to postoperative cognitive dysfunction. Curr. Neurovasc. Res. 14, 359–367. 10.2174/1567202614666171009105825
    1. Wang P., Velagapudi R., Kong C., Rodriguiz R. M., Wetsel W. C., Yang T., et al. . (2020). Neurovascular and immune mechanisms that regulate postoperative delirium superimposed on dementia. Alzheimers Dement. 16, 734–749. 10.1002/alz.12064
    1. Wang R., Chen J., Wu G. (2015). Variable lung protective mechanical ventilation decreases incidence of postoperative delirium and cognitive dysfunction during open abdominal surgery. Int. J. Clin. Exp. Med. 8, 21208–21214.
    1. Wei F., Song J., Zhang C., Lin J., Xue R., Shan L. D., et al. . (2019). Chronic stress impairs the aquaporin-4-mediated glymphatic transport through glucocorticoid signaling. Psychopharmacology 236, 1367–1384. 10.1007/s00213-018-5147-6
    1. Whitlock E. L., Diaz-Ramirez L. G., Glymour M. M., Boscardin W. J., Covinsky K. E., Smith A. K. (2017). Association between persistent pain and memory decline and dementia in a longitudinal cohort of elders. JAMA Intern. Med. 177, 1146–1153. 10.1001/jamainternmed.2017.1622
    1. Wink J., de Wilde R. B., Wouters P. F., van Dorp E. L., Veering B. T., Versteegh M. I., et al. . (2016). Thoracic epidural anesthesia reduces right ventricular systolic function with maintained ventricular-pulmonary coupling. Circulation 134, 1163–1175. 10.1161/CIRCULATIONAHA.116.022415
    1. Xie L., Kang H., Xu Q., Chen M. J., Liao Y., Thiyagarajan M., et al. . (2013). Sleep drives metabolite clearance from the adult brain. Science 342, 373–377. 10.1126/science.1241224
    1. Xie Z., McAuliffe S., Swain C. A., Ward S. A., Crosby C. A., Zheng H., et al. . (2013). Cerebrospinal fluid aβ to tau ratio and postoperative cognitive change. Ann. Surg. 258, 364–369. 10.1097/SLA.0b013e318298b077
    1. Xiong C., Liu J., Lin D., Zhang J., Terrando N., Wu A. (2018). Complement activation contributes to perioperative neurocognitive disorders in mice. J. Neuroinflammation 15:254. 10.1186/s12974-018-1292-4
    1. Xu T., Wick E. C., Makary M. A. (2016). Sleep deprivation and starvation in hospitalised patients: how medical care can harm patients. BMJ Qual. Saf. 25, 311–314. 10.1136/bmjqs-2015-004395
    1. Xu Z., Dong Y., Wang H., Culley D. J., Marcantonio E. R., Crosby G., et al. . (2014). Age-dependent postoperative cognitive impairment and Alzheimer-related neuropathology in mice. Sci. Rep. 4:3766. 10.1038/srep03766
    1. Yamada S., Miyazaki M., Yamashita Y., Ouyang C., Yui M., Nakahashi M., et al. . (2013). Influence of respiration on cerebrospinal fluid movement using magnetic resonance spin labeling. Fluids Barriers CNS 10:36. 10.1186/2045-8118-10-36
    1. Yang S., Gu C., Mandeville E. T., Dong Y., Esposito E., Zhang Y., et al. . (2017). Anesthesia and surgery impair blood-brain barrier and cognitive function in mice. Front. Immunol. 8:902. 10.3389/fimmu.2017.00902
    1. Yang T., Terrando N. (2019). The evolving role of specialized pro-resolving mediators in modulating neuroinflammation in perioperative neurocognitive disorders. Adv. Exp. Med. Biol. 1161, 27–35. 10.1007/978-3-030-21735-8_4
    1. Yang T., Velagapudi R., Terrando N. (2020). Neuroinflammation after surgery: from mechanisms to therapeutic targets. Nat. Immunol. 21, 1319–1326. 10.1038/s41590-020-00812-1
    1. Yang T., Xu G., Newton P. T., Chagin A. S., Mkrtchian S., Carlström M., et al. . (2019). Maresin 1 attenuates neuroinflammation in a mouse model of perioperative neurocognitive disorders. Br. J. Anaesth. 122, 350–360. 10.1016/j.bja.2018.10.062
    1. Yu P., Venkat P., Chopp M., Zacharek A., Shen Y., Liang L., et al. . (2019). Deficiency of tPA exacerbates white matter damage, neuroinflammation, glymphatic dysfunction and cognitive dysfunction in aging mice. Aging Dis. 10, 770–783. 10.14336/AD.2018.0816
    1. Zeppenfeld D. M., Simon M., Haswell J. D., D'Abreo D., Murchison C., Quinn J. F., et al. . (2017). Association of perivascular localization of Aquaporin-4 with cognition and Alzheimer disease in aging brains. JAMA Neurol. 74, 91–99. 10.1001/jamaneurol.2016.4370
    1. Zhang C., Lin J., Wei F., Song J., Chen W., Shan L., et al. . (2018). Characterizing the glymphatic influx by utilizing intracisternal infusion of fluorescently conjugated cadaverine. Life Sci. 201, 150–160. 10.1016/j.lfs.2018.03.057
    1. Zhang H., Wu Z., Zhao X., Qiao Y. (2018). Role of dexmedetomidine in reducing the incidence of postoperative cognitive dysfunction caused by sevoflurane inhalation anesthesia in elderly patients with esophageal carcinoma. J. Cancer Res. Therap. 14, 1497–1502. 10.4103/jcrt.JCRT_164_18
    1. Zhang X., Yan X., Gorman J., Hoffman S. N., Zhang L., Boscarino J. A. (2014). Perioperative hyperglycemia is associated with postoperative neurocognitive disorders after cardiac surgery. Neuropsychiatr. Dis. Treat. 10, 361–370. 10.2147/NDT.S57761
    1. Zhou B., Chen L., Liao P., Huang L., Chen Z., Liao D., et al. . (2019). Astroglial dysfunctions drive aberrant synaptogenesis and social behavioral deficits in mice with neonatal exposure to lengthy general anesthesia. PLoS Biol. 17:e3000086. 10.1371/journal.pbio.3000086

Source: PubMed

3
Se inscrever