Foundations of circadian medicine

Achim Kramer, Tanja Lange, Claudia Spies, Anna-Marie Finger, Daniela Berg, Henrik Oster, Achim Kramer, Tanja Lange, Claudia Spies, Anna-Marie Finger, Daniela Berg, Henrik Oster

Abstract

The circadian clock is an evolutionarily highly conserved endogenous timing program that structures physiology and behavior according to the time of day. Disruption of circadian rhythms is associated with many common pathologies. The emerging field of circadian medicine aims to exploit the mechanisms of circadian physiology and clock-disease interaction for clinical diagnosis, treatment, and prevention. In this Essay, we outline the principle approaches of circadian medicine, highlight the development of the field in selected areas, and point out open questions and challenges. Circadian medicine has unambiguous health benefits over standard care but is rarely utilized. It is time for clock biology to become an integrated part of translational research.

Conflict of interest statement

I have read the journal’s policy and the authors of this manuscript have the following competing interests: AK’s institution has issued patents (PCT/EP2018/066771) and is preparing patents related to biomarkers for detecting the clock. This intellectual property has been licensed by BodyClock GmbH, in which AK is a shareholder. AK receives editor’s honoraria from Springer Verlag and Georg Thieme Verlag. AK is a paid consultant to Circadian Therapeutics, and Stanford University. AK is member of the Editorial Board of PLoS Biology. In addition, he and his research program have received financial, material and travel support from a range of federal, industrial, legal and philanthropic organizations in the past and present. CS reports grants from Deutsche Forschungsgemeinschaft / German Research Society, grants from Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) /German Aerospace Center, grants from Einstein Stiftung Berlin/ Einstein Foundation Berlin, grants from Gemeinsamer Bundesausschuss / Federal Joint Committee (G-BA), grants from Inneruniversitäre Forschungsförderung / Inner University Grants, grants from Projektträger im DLR / Project Management Agency, grants from Stifterverband/Non-Profit Society Promoting Science and Education, grants from European Society of Anaesthesiology and Intensive Care, grants from Baxter Deutschland GmbH, grants from Cytosorbents Europe GmbH, grants from Edwards Lifesciences Germany GmbH, grants from Fresenius Medical Care, grants from Grünenthal GmbH, grants from Masimo Europe Ltd., grants from Pfizer Pharma PFE GmbH, personal fees from Georg Thieme Verlag, grants from Dr. F. Köhler Chemie GmbH, grants from Sintetica GmbH, grants from Stifterverband für die deutsche Wissenschaft e.V. / Philips grants from Stiftung Charité, grants from AGUETTANT Deutschland GmbH, grants from AbbVie Deutschland GmbH & Co. KG, grants from Amomed Pharma GmbH, grants from InTouch Health, grants from Copra System GmbH, grants from Correvio GmbH, grants from Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., grants from Deutsche Gesellschaft für Anästhesiologie & Intensivmedizin (DGAI, grants from Stifterverband für die deutsche Wissenschaft Þ.V. / Metronic, grants from Philips ElectronicsNederland BV, grants from BMG, grants from BMBF, grants from BMBF, grants from Drägerwerk AG & Co. KGaA, outside the submitted work; In addition, CS has a patent 10 2014 215 211.9 licensed, a patent 10 2018 114 364.8 licensed, a patent 10 2018 110 275.5 licensed, a patent 50 2015 010 534.8 licensed, a patent 50 2015 010 347.7 licensed, and a patent 10 2014 215 212.7 licensed.

Figures

Fig 1. Circadian misalignment and disruption are…
Fig 1. Circadian misalignment and disruption are associated with disease.
Circadian rhythms are present at the level of the individual cell, tissue, and system and contribute to the optimal temporal coordination of physiological organ functions with environmental entrainment signals (left). It is therefore not surprising that misalignment of endogenous circadian and exogenous environmental cycles, as well as disruption of endogenous circadian rhythmicity is associated with or increases the risk for many diseases (right). Moreover, by contributing to circadian disruption or by altering behavioral rhythms, disease may in turn aggravate pathologies related to dysfunction of the circadian system (created with biorender.com).
Fig 2. The future of circadian medicine.
Fig 2. The future of circadian medicine.
Our vision for the future of circadian medicine is to firmly integrate it into medical guidelines so that, for each patient, the circadian aspect is always taken into consideration and incorporated into the treatment plan as appropriate. Circadian medicine has many facets and to sustain its development, they all need to be advanced. They include treatment and diagnosis at the right time of day (exploiting), realigning and strengthening the circadian system (targeting), and diagnosing the patient’s circadian characteristics to develop personalized treatment plans (detecting). To achieve this goal, more evidence, especially on overarching principles of circadian medicine, needs to be gathered. To do this, on the one hand, we need a transdisciplinary approach to research, but we also need to train a new generation of physicians and communicate our findings more to the public and decision makers. TRE, time-restricted eating.
Fig 3. Circadian medicine in ICUs.
Fig 3. Circadian medicine in ICUs.
Critically ill patients frequently exhibit disturbed or absent diurnal rhythms. This is likely to be a result of their illness and sedative measures but could also be related to the often-arrhythmic environment of an ICU (inadequate light exposure, parenteral nutrition, etc.). At the same time, they are arguably the best monitored patients, and vast amounts of routine clinical data are available with time courses for a variety of physiological parameters. We propose evaluating this treasure trove of information much more systematically with data science methods to detect the clock and improving light settings in the ICUs to target the clock. The analysis of clinical source data will help to characterize patients in the ICU in terms of their circadian rhythms, to identify predictors of circadian disruption as well as therapy-based improvements, and to associate circadian rhythms with clinical parameters (for example, delirium). In addition, since current ICUs do not provide adequate light settings, we have implemented a novel concept at Charité –Universitätsmedizin Berlin, consisting of a light ceiling for each experimental ICU bed that extends from the head above the patient to the patient’s feet [67]. Each light ceiling consists of multiple layers of light-emitting diodes designed to target the patient’s circadian clock. ICU, intensive care unit. Photos can be used with kind permission of GRAFT; photo credit is given to Tobias Hein.

References

    1. Allada R, Bass J. Circadian Mechanisms in Medicine. N Engl J Med. 2021;384(6):550–61. doi: 10.1056/NEJMra1802337
    1. Cederroth CR, Albrecht U, Bass J, Brown SA, Dyhrfjeld-Johnsen J, Gachon F, et al.. Medicine in the Fourth Dimension. Cell Metab. 2019;30(2):238–50. doi: 10.1016/j.cmet.2019.06.019
    1. Finger AM, Kramer A. Mammalian circadian systems: Organization and modern life challenges. Acta Physiol (Oxf). 2021;231(3):e13548. doi: 10.1111/apha.13548
    1. Finger AM, Dibner C, Kramer A. Coupled network of the circadian clocks: a driving force of rhythmic physiology. FEBS Lett. 2020;594(17):2734–69. doi: 10.1002/1873-3468.13898
    1. Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A. 2014;111(45):16219–24. doi: 10.1073/pnas.1408886111
    1. Robles MS, Cox J, Mann M. In-vivo quantitative proteomics reveals a key contribution of post-transcriptional mechanisms to the circadian regulation of liver metabolism. PLoS Genet. 2014;10(1):e1004047. doi: 10.1371/journal.pgen.1004047
    1. Dallmann R, Viola AU, Tarokh L, Cajochen C, Brown SA. The human circadian metabolome. Proc Natl Acad Sci U S A. 2012;109(7):2625–9. doi: 10.1073/pnas.1114410109
    1. Reitmeier S, Kiessling S, Clavel T, List M, Almeida EL, Ghosh TS, et al.. Arrhythmic Gut Microbiome Signatures Predict Risk of Type 2 Diabetes. Cell Host Microbe. 2020;28(2):258–72 e6. doi: 10.1016/j.chom.2020.06.004
    1. Aschoff J. Circadian Rhythms in Man. Science. 1965;148(3676):1427–32. doi: 10.1126/science.148.3676.1427
    1. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000;14(23):2950–61. doi: 10.1101/gad.183500
    1. Konopka RJ, Benzer S. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1971;68(9):2112–6. doi: 10.1073/pnas.68.9.2112
    1. Bargiello TA, Jackson FR, Young MW. Restoration of circadian behavioural rhythms by gene transfer in Drosophila. Nature. 1984;312(5996):752–4. doi: 10.1038/312752a0
    1. Zehring WA, Wheeler DA, Reddy P, Konopka RJ, Kyriacou CP, Rosbash M, et al.. P-element transformation with period locus DNA restores rhythmicity to mutant, arrhythmic Drosophila melanogaster. Cell. 1984;39(2 Pt 1):369–76. doi: 10.1016/0092-8674(84)90015-1
    1. Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 2017;18(3):164–79. doi: 10.1038/nrg.2016.150
    1. Lazzerini Ospri L, Prusky G, Hattar S. Mood, the Circadian System, and Melanopsin Retinal Ganglion Cells. Annu Rev Neurosci. 2017;40:539–56. doi: 10.1146/annurev-neuro-072116-031324
    1. Roenneberg T, Kantermann T, Juda M, Vetter C, Allebrandt KV. Light and the human circadian clock. Handb Exp Pharmacol. 2013;217:311–31. doi: 10.1007/978-3-642-25950-0_13
    1. Roenneberg T, Kuehnle T, Juda M, Kantermann T, Allebrandt K, Gordijn M, et al.. Epidemiology of the human circadian clock. Sleep Med Rev. 2007;11(6):429–38. doi: 10.1016/j.smrv.2007.07.005
    1. Kalmbach DA, Schneider LD, Cheung J, Bertrand SJ, Kariharan T, Pack AI, et al.. Genetic Basis of Chronotype in Humans: Insights From Three Landmark GWAS. Sleep. 2017;40(2). doi: 10.1093/sleep/zsw048
    1. Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, Virshup DM, et al.. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science. 2001;291(5506):1040–3. doi: 10.1126/science.1057499
    1. Foster RG. Sleep, circadian rhythms and health. Interface Focus. 2020;10(3):20190098. doi: 10.1098/rsfs.2019.0098
    1. Yang G, Chen L, Grant GR, Paschos G, Song WL, Musiek ES, et al.. Timing of expression of the core clock gene Bmal1 influences its effects on aging and survival. Sci Transl Med. 2016;8(324):324ra16. doi: 10.1126/scitranslmed.aad3305
    1. Pan X, Bradfield CA, Hussain MM. Global and hepatocyte-specific ablation of Bmal1 induces hyperlipidaemia and enhances atherosclerosis. Nat Commun. 2016;7:13011. doi: 10.1038/ncomms13011
    1. Dyar KA, Hubert MJ, Mir AA, Ciciliot S, Lutter D, Greulich F, et al.. Transcriptional programming of lipid and amino acid metabolism by the skeletal muscle circadian clock. PLoS Biol. 2018;16(8):e2005886. doi: 10.1371/journal.pbio.2005886
    1. Paschos GK, Ibrahim S, Song WL, Kunieda T, Grant G, Reyes TM, et al.. Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nat Med. 2012;18(12):1768–77. doi: 10.1038/nm.2979
    1. Nguyen KD, Fentress SJ, Qiu Y, Yun K, Cox JS, Chawla A. Circadian gene Bmal1 regulates diurnal oscillations of Ly6C(hi) inflammatory monocytes. Science. 2013;341(6153):1483–8. doi: 10.1126/science.1240636
    1. Godinho-Silva C, Domingues RG, Rendas M, Raposo B, Ribeiro H, da Silva JA, et al.. Light-entrained and brain-tuned circadian circuits regulate ILC3s and gut homeostasis. Nature. 2019;574(7777):254–8. doi: 10.1038/s41586-019-1579-3
    1. Coomans CP, van den Berg SA, Lucassen EA, Houben T, Pronk AC, van der Spek RD, et al.. The suprachiasmatic nucleus controls circadian energy metabolism and hepatic insulin sensitivity. Diabetes. 2013;62(4):1102–8. doi: 10.2337/db12-0507
    1. Filipski E, King VM, Li X, Granda TG, Mormont MC, Liu X, et al.. Host circadian clock as a control point in tumor progression. J Natl Cancer Inst. 2002;94(9):690–7. doi: 10.1093/jnci/94.9.690
    1. Davidson AJ, Sellix MT, Daniel J, Yamazaki S, Menaker M, Block GD. Chronic jet-lag increases mortality in aged mice. Curr Biol. 2006;16(21):R914–6. doi: 10.1016/j.cub.2006.09.058
    1. Wu M, Zeng J, Chen Y, Zeng Z, Zhang J, Cai Y, et al.. Experimental chronic jet lag promotes growth and lung metastasis of Lewis lung carcinoma in C57BL/6 mice. Oncol Rep. 2012;27(5):1417–28. doi: 10.3892/or.2012.1688
    1. Toth LA, Trammell RA, Liberati T, Verhulst S, Hart ML, Moskowitz JE, et al.. Influence of Chronic Exposure to Simulated Shift Work on Disease and Longevity in Disease-Prone Inbred Mice. Comp Med. 2017;67(2):116–26.
    1. Castanon-Cervantes O, Wu M, Ehlen JC, Paul K, Gamble KL, Johnson RL, et al.. Dysregulation of inflammatory responses by chronic circadian disruption. J Immunol. 2010;185(10):5796–805. doi: 10.4049/jimmunol.1001026
    1. Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, et al.. Night-shift work and risk of colorectal cancer in the nurses’ health study. J Natl Cancer Inst. 2003;95(11):825–8. doi: 10.1093/jnci/95.11.825
    1. Papantoniou K, Massa J, Devore E, Munger KL, Chitnis T, Ascherio A, et al.. Rotating night shift work and risk of multiple sclerosis in the Nurses’ Health Studies. Occup Environ Med. 2019;76(10):733–8. doi: 10.1136/oemed-2019-106016
    1. Ha M, Park J. Shiftwork and metabolic risk factors of cardiovascular disease. J Occup Health. 2005;47(2):89–95. doi: 10.1539/joh.47.89
    1. Bishehsari F, Voigt RM, Keshavarzian A. Circadian rhythms and the gut microbiota: from the metabolic syndrome to cancer. Nat Rev Endocrinol. 2020;16(12):731–9. doi: 10.1038/s41574-020-00427-4
    1. Roenneberg T, Allebrandt KV, Merrow M, Vetter C. Social jetlag and obesity. Curr Biol. 2012;22(10):939–43. doi: 10.1016/j.cub.2012.03.038
    1. Giuntella O, Mazzonna F. Sunset time and the economic effects of social jetlag: evidence from US time zone borders. J Health Econ. 2019;65:210–26. doi: 10.1016/j.jhealeco.2019.03.007
    1. Mason IC, Qian J, Adler GK, Scheer F. Impact of circadian disruption on glucose metabolism: implications for type 2 diabetes. Diabetologia. 2020;63(3):462–72. doi: 10.1007/s00125-019-05059-6
    1. Chen L, Yang G. Recent advances in circadian rhythms in cardiovascular system. Front Pharmacol. 2015;6:71. doi: 10.3389/fphar.2015.00071
    1. Buttgereit F, Smolen JS, Coogan AN, Cajochen C. Clocking in: chronobiology in rheumatoid arthritis. Nat Rev Rheumatol. 2015;11(6):349–56. doi: 10.1038/nrrheum.2015.31
    1. Buttgereit F, Doering G, Schaeffler A, Witte S, Sierakowski S, Gromnica-Ihle E, et al.. Efficacy of modified-release versus standard prednisone to reduce duration of morning stiffness of the joints in rheumatoid arthritis (CAPRA-1): a double-blind, randomised controlled trial. Lancet. 2008;371(9608):205–14. doi: 10.1016/S0140-6736(08)60132-4
    1. Volicer L, Harper DG, Manning BC, Goldstein R, Satlin A. Sundowning and circadian rhythms in Alzheimer’s disease. Am J Psychiatry. 2001;158(5):704–11. doi: 10.1176/appi.ajp.158.5.704
    1. Kashyap S, Bala R, Behl T. Understanding the Concept of Chronotherapeutics in the Management of Diabetes Mellitus. Curr Diabetes Rev. 2021;17(5):e221020187106. doi: 10.2174/1573399816666201022120825
    1. Fifel K, Videnovic A. Circadian and Sleep Dysfunctions in Neurodegenerative Disorders-An Update. Front Neurosci. 2020;14:627330. doi: 10.3389/fnins.2020.627330
    1. Cosgrave J, Wulff K, Gehrman P. Sleep, circadian rhythms, and schizophrenia: where we are and where we need to go. Curr Opin Psychiatry. 2018;31(3):176–82. doi: 10.1097/YCO.0000000000000419
    1. Xiang K, Xu Z, Hu YQ, He YS, Wu GC, Li TY, et al.. Circadian clock genes as promising therapeutic targets for autoimmune diseases. Autoimmun Rev. 2021;20(8):102866. doi: 10.1016/j.autrev.2021.102866
    1. Stenvers DJ, Scheer F, Schrauwen P, la Fleur SE, Kalsbeek A. Circadian clocks and insulin resistance. Nat Rev Endocrinol. 2019;15(2):75–89. doi: 10.1038/s41574-018-0122-1
    1. Bruzas MB, Allison KC. A Review of the Relationship between Night Eating Syndrome and Body Mass Index. Curr Obes Rep. 2019;8(2):145–55. doi: 10.1007/s13679-019-00331-7
    1. Ruben MD, Smith DF, FitzGerald GA, Hogenesch JB. Dosing time matters. Science. 2019;365(6453):547–9. doi: 10.1126/science.aax7621
    1. Gorbacheva VY, Kondratov RV, Zhang R, Cherukuri S, Gudkov AV, Takahashi JS, et al.. Circadian sensitivity to the chemotherapeutic agent cyclophosphamide depends on the functional status of the CLOCK/BMAL1 transactivation complex. Proc Natl Acad Sci U S A. 2005;102(9):3407–12. doi: 10.1073/pnas.0409897102
    1. Anafi RC, Francey LJ, Hogenesch JB, Kim J. CYCLOPS reveals human transcriptional rhythms in health and disease. Proc Natl Acad Sci U S A. 2017;114(20):5312–7. doi: 10.1073/pnas.1619320114
    1. Henriksson E, Huber AL, Soto EK, Kriebs A, Vaughan ME, Duglan D, et al.. The Liver Circadian Clock Modulates Biochemical and Physiological Responses to Metformin. J Biol Rhythms. 2017;32(4):345–58. doi: 10.1177/0748730417710348
    1. Ruan W, Yuan X, Eltzschig HK. Circadian rhythm as a therapeutic target. Nat Rev Drug Discov. 2021;20(4):287–307. doi: 10.1038/s41573-020-00109-w
    1. Qian DC, Kleber T, Brammer B, Xu KM, Switchenko JM, Janopaul-Naylor JR, et al.. Effect of immunotherapy time-of-day infusion on overall survival among patients with advanced melanoma in the USA (MEMOIR): a propensity score-matched analysis of a single-centre, longitudinal study. Lancet Oncol. 2021. doi: 10.1016/S1470-2045(21)00546-5
    1. Montaigne D, Marechal X, Modine T, Coisne A, Mouton S, Fayad G, et al.. Daytime variation of perioperative myocardial injury in cardiac surgery and its prevention by Rev-Erbalpha antagonism: a single-centre propensity-matched cohort study and a randomised study. Lancet. 2018;391(10115):59–69. doi: 10.1016/S0140-6736(17)32132-3
    1. Carroll T, Raff H, Findling JW. Late-night salivary cortisol measurement in the diagnosis of Cushing’s syndrome. Nat Clin Pract Endocrinol Metab. 2008;4(6):344–50. doi: 10.1038/ncpendmet0837
    1. Montes-Villarreal J, Perez-Arredondo LA, Rodriguez-Gutierrez R, Gonzalez-Colmenero AD, Solis RC, Gonzalez-Gonzalez JG, et al.. Serum Morning Cortisol as a Screening Test for Adrenal Insufficiency. Endocr Pract. 2020;26(1):30–5. doi: 10.4158/EP-2019-0327
    1. Panda S. The arrival of circadian medicine. Nat Rev Endocrinol. 2019;15(2):67–9. doi: 10.1038/s41574-018-0142-x
    1. Bais B, Hoogendijk WJG, Lambregtse-van den Berg MP. Light therapy for mood disorders. Handb Clin Neurol. 2021;182:49–61. doi: 10.1016/B978-0-12-819973-2.00004-6
    1. Liu YL, Gong SY, Xia ST, Wang YL, Peng H, Shen Y, et al.. Light therapy: a new option for neurodegenerative diseases. Chin Med J (Engl). 2020;134(6):634–45. doi: 10.1097/CM9.0000000000001301
    1. Adafer R, Messaadi W, Meddahi M, Patey A, Haderbache A, Bayen S, et al.. Food Timing, Circadian Rhythm and Chrononutrition: A Systematic Review of Time-Restricted Eating’s Effects on Human Health. Nutrients. 2020;12(12). doi: 10.3390/nu12123770
    1. Lewis P, Korf HW, Kuffer L, Gross JV, Erren TC. Exercise time cues (zeitgebers) for human circadian systems can foster health and improve performance: a systematic review. BMJ Open Sport Exerc Med. 2018;4(1):e000443. doi: 10.1136/bmjsem-2018-000443
    1. Deota S, Panda S. New Horizons: Circadian Control of Metabolism Offers Novel Insight Into the Cause and Treatment of Metabolic Diseases. J Clin Endocrinol Metab. 2021;106(3):e1488–e93. doi: 10.1210/clinem/dgaa691
    1. Hirota T, Lee JW, St John PC, Sawa M, Iwaisako K, Noguchi T, et al.. Identification of small molecule activators of cryptochrome. Science. 2012;337(6098):1094–7. doi: 10.1126/science.1223710
    1. Li SS, Dong YH, Liu ZP. Recent Advances in the Development of Casein Kinase 1 Inhibitors. Curr Med Chem. 2021;28(8):1585–604. doi: 10.2174/0929867327666200713185413
    1. Luetz A, Piazena H, Weiss B, Finke A, Willemeit T, Spies C. Patient-centered lighting environments to improve health care in the intensive care unit. Clin Health Prom. 2016;6:5–12.
    1. Reiter AM, Sargent C, Roach GD. Finding DLMO: estimating dim light melatonin onset from sleep markers derived from questionnaires, diaries and actigraphy. Chronobiol Int 2020;37(9–10):1412–24. doi: 10.1080/07420528.2020.1809443
    1. Wittenbrink N, Ananthasubramaniam B, Munch M, Koller B, Maier B, Weschke C, et al.. High-accuracy determination of internal circadian time from a single blood sample. J Clin Invest 2018;128(9):3826–39. doi: 10.1172/JCI120874
    1. Selfridge JM, Gotoh T, Schiffhauer S, Liu J, Stauffer PE, Li A, et al.. Chronotherapy: Intuitive, Sound, Founded. . .But Not Broadly Applied. Drugs 2016;76(16):1507–21. doi: 10.1007/s40265-016-0646-4

Source: PubMed

3
Se inscrever