Relationship Between Circadian Strain, Light Exposure, and Body Mass Index in Rural and Urban Quilombola Communities

Débora Barroggi Constantino, Nicoli Bertuol Xavier, Rosa Levandovski, Till Roenneberg, Maria Paz Hidalgo, Luísa K Pilz, Débora Barroggi Constantino, Nicoli Bertuol Xavier, Rosa Levandovski, Till Roenneberg, Maria Paz Hidalgo, Luísa K Pilz

Abstract

Industrialization has greatly changed human lifestyle; work and leisure activities have been moved indoors, and artificial light has been used to illuminate the night. As cyclic environmental cues such as light and feeding become weak and/or irregular, endogenous circadian systems are increasingly being disrupted. These disruptions are associated with metabolic dysfunction, possibly contributing to increased rates of overweight and obesity worldwide. Here, we aimed to investigate how activity-rest rhythms, patterns of light exposure, and levels of urbanization may be associated with body mass index (BMI) in a sample of rural and urban Quilombola communities in southern Brazil. These are characterized as remaining social groups who resisted the slavery regime that prevailed in Brazil. Quilombola communities were classified into five groups according to their stage of urbanization: from rural areas with no access to electricity to highly urbanized communities. We collected anthropometric data to calculate BMI, which was categorized as follows: from ≥ 18.5 kg/m2 to < 25 kg/m2 = normal weight; from ≥ 25 kg/m2 to < 30 kg/m2 = overweight; and ≥ 30 kg/m2 = obese. Subjects were asked about their sleep routines and light exposure on workdays and work-free days using the Munich Chronotype Questionnaire (N = 244 included). In addition, we analyzed actimetry data from 121 participants with seven consecutive days of recordings. Living in more urbanized areas and higher intradaily variability (IV) of activity-rest rhythms were associated with an increased risk of belonging to the overweight or obese group, when controlling for age and sex. These findings are consistent with preclinical data and point to potential strategies in obesity prevention and promotion of healthy metabolic profiles.

Keywords: actimetry; chronobiology; intradaily variability; levels of urbanization; obesity; relative amplitude; rest-activity rhythms.

Conflict of interest statement

TR is the founder and CSO at Chronosulting UG. None of his consulting activities in this context had any relationship with the current study. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Constantino, Xavier, Levandovski, Roenneberg, Hidalgo and Pilz.

Figures

FIGURE 1
FIGURE 1
Flowchart of the participants recruitment and selection process. White squares represent final sample size.
FIGURE 2
FIGURE 2
Mean activity (A) and light (B) profiles of each group. The means (bold line) and standard error (shadow) are presented for the normal-weight group (orange), overweight group (light blue), and obese group (dark blue).
FIGURE 3
FIGURE 3
Activity IS (A), activity IV (C), light IS (B), and light IV (D) in normal-weight, overweight, and obese groups. Analyses were performed using the Kruskal–Wallis test followed by Dunn’s test. IS, Interdaily stability; IV, intradaily variability; p-values according to Dunn’s test for multiple comparisons, adjusted with Sidak method.
FIGURE 4
FIGURE 4
Activity M10 (A), activity L5 (C), activity RA (E), light M10 (B), light L5 (D), and light RA (F) in normal-weight, overweight, and obese groups. Analyses were performed using the Kruskal–Wallis test followed by Dunn’s test. M10: mean activity or light exposure of the 10 consecutive hours with the highest values of a daily profile; L5: average activity or light exposure of the 5 consecutive hours with the lowest values of a daily profile; RA, relative amplitude; p-values according to Dunn’s test for multiple comparisons, adjusted with Sidak method.

References

    1. Abarca-Gómez L., Abdeen Z. A., Hamid Z. A., Abu-Rmeileh N. M., Acosta-Cazares B., Acuin C., et al. (2017). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128. 9 million children, adolescents, and adults. Lancet 390 2627–2642. 10.1016/S0140-6736(17)32129-3
    1. Astiz M., Heyde I., Oster H. (2019). Mechanisms of communication in the mammalian circadian timing system. Int. J. Mole. Sci. 20:343. 10.3390/ijms20020343
    1. Bandin C., Martinez-Nicolas A., Ordovas J. M., Madrid J. A., Garaulet M. (2014). Circadian rhythmicity as a predictor of weight-loss effectiveness. Int. J. Obesity 38 1083–1088. 10.1038/ijo.2013.211
    1. Benedito-Silva A. A., Evans S., Viana Mendes J., Castro J., Gonçalves B. D. S. B., Ruiz F. S., et al. (2020). Association between light exposure and metabolic syndrome in a rural Brazilian town. PLoS One 15:e0238772. 10.1371/journal.pone.0238772
    1. Blüher M. (2019). Obesity: global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 15 288–298. 10.1038/s41574-019-0176-8
    1. Borniger J. C., Maurya S. K., Periasamy M., Nelson R. J. (2014). Acute dim light at night increases body mass, alters metabolism, and shifts core body temperature circadian rhythms. Chronobiol. Int. 31 917–925. 10.3109/07420528.2014.926911
    1. Buijs R., Salgado R., Sabath E., Escobar C. (2013). Peripheral circadian oscillators: time and food. Progr. Mole. Biol. Transl. Sci. 119 83–103. 10.1016/B978-0-12-396971-2.00004-X
    1. Cespedes Feliciano E. M., Quante M., Weng J., Mitchell J. A., James P., Marinac C. R., et al. (2017). Actigraphy-derived daily rest–activity patterns and body mass index in community-dwelling adults. Sleep 40:zsx168. 10.1093/sleep/zsx168
    1. Cooper A. R., Page A., Fox K. R., Misson J. (2000). Physical activity patterns in normal, overweight and obese individuals using minute-by-minute accelerometry. Europ. J. Clin. Nutr. 54 887–894. 10.1038/sj.ejcn.1601116
    1. Damiola F., Le Minh N., Preitner N., Kornmann B., Fleury-Olela F., Schibler U. (2000). Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Devel. 14 2950–2961. 10.1101/gad.183500
    1. Danilenko K. V., Mustafina S. V., Pechenkina E. A. (2013). Bright light for weight loss: results of a controlled crossover trial. Obesity Facts 6 28–38. 10.1159/000348549
    1. de Oliveira I. G. B., Junior M. D. F., Lopes P. R., Campos D. B. T., Ferreira-Neto M. L., Santos E. H. R., et al. (2019). Forced internal desynchrony induces cardiometabolic alterations in adult rats. J. Endocrinol. 242 25–36. 10.1530/JOE-19-0026
    1. Díez-Noguera A. (2013). Methods for serial analysis of long time series in the study of biological rhythms. J. Circad. Rhythms 11 1–19. 10.1186/1740-3391-11-7
    1. Dowling G. A., Hubbard E. M., Mastick J., Luxenberg J. S., Burr R. L., Van Someren E. J. (2005). Effect of morning bright light treatment for rest–activity disruption in institutionalized patients with severe Alzheimer’s disease. IPA 17:221. 10.1017/s1041610205001584
    1. Dunai A., Novak M., Chung S. A., Kayumov L., Keszei A., Levitan R., et al. (2007). Moderate exercise and bright light treatment in overweight and obese individuals. Obesity 15 1749–1757. 10.1038/oby.2007.208
    1. Fonken L. K., Aubrecht T. G., Meléndez-Fernández O. H., Weil Z. M., Nelson R. J. (2013). Dim light at night disrupts molecular circadian rhythms and increases body weight. J. Biol. Rhythms 28 262–271. 10.1177/0748730413493862
    1. Garaulet M., Martinez-Nicolas A., Ruiz J. R., Konstabel K., Labayen I., González-Gross M. (2017). Fragmentation of daily rhythms associates with obesity and cardiorespiratory fitness in adolescents: The HELENA study. Clin. Nutr. 36 1558–1566. 10.1016/j.clnu.2016.09.026
    1. Gerhart-Hines Z., Lazar M. A. (2015). Circadian metabolism in the light of evolution. Endocr. Rev. 36 289–304. 10.1210/er.2015-1007
    1. Gonzalez M. (2018). Dim light at night and constant darkness: Two frequently used lighting conditions that jeopardize the health and well-being of laboratory rodents. Front. Neurol. 9:609. 10.3389/fneur.2018.00609
    1. Haslam D. W., James W. P. T. (2005). Obesity. Lancet 366 1197–1209. 10.1016/S0140-6736(05)67483-1
    1. Hsieh M. C., Yang S. C., Tseng H. L., Hwang L. L., Chen C. T., Shieh K. R. (2010). Abnormal expressions of circadian-clock and circadian clock-controlled genes in the livers and kidneys of long-term, high-fat-diet-treated mice. Int. J. Obesity 34 227–239. 10.1038/ijo.2009.228
    1. Karatsoreos I. N., Bhagat S., Bloss E. B., Morrison J. H., McEwen B. S. (2011). Disruption of circadian clocks has ramifications for metabolism, brain, and behavior. Proc. Natl. Acad. Sci. 108 1657–1662. 10.1073/pnas.1018375108
    1. Kassambara A. (2020). rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R package Version 0.6.0. Available online at: (accessed September 10, 2021).
    1. Kelley T. (1935). An unbiased correlation ratio measure. Proc. Natl. Acad. Sci. 21 554–559. 10.1073/pnas.21.9.554
    1. Kutner M., Nachtsheim C., Neter J. (2004). Applied Linear Statistical Models. 4th. Irwin: McGraw-Hill.
    1. LeGates T. A., Fernandez D. C., Hattar S. (2014). Light as a central modulator of circadian rhythms, sleep and affect. Nat. Rev. Neurosci. 15 443–454. 10.1038/nrn3743
    1. Liu Q., Shi J., Duan P., Liu B., Li T., Wang C., et al. (2018). Is shift work associated with a higher risk of overweight or obesity? A systematic review of observational studies with meta-analysis. Int. J. Epidemiol. 47 1956–1971. 10.1093/ije/dyy079
    1. Long J. A. (2019). jtools: Analysis and Presentation of Social Scientific Data. Available online at: (accessed September 10, 2021).
    1. Luik A. I., Zuurbier L. A., Hofman A., Van Someren E. J., Tiemeier H. (2013). Stability and fragmentation of the activity rhythm across the sleep-wake cycle: the importance of age, lifestyle, and mental health. Chronobiol. Int. 30 1223–1230. 10.3109/07420528.2013.813528
    1. Lyall L. M., Wyse C. A., Graham N., Ferguson A., Lyall D. M., Cullen B., et al. (2018). Association of disrupted circadian rhythmicity with mood disorders, subjective wellbeing, and cognitive function: a cross-sectional study of 91 105 participants from the UK Biobank. Lancet Psych. 5 507–514. 10.1016/S2215-0366(18)30139-1
    1. Mangiafico S. (2021). rcompanion: Functions to Support Extension Education Program Evaluation. R package version 2.3.27. Available online at: (accessed September 10, 2021).
    1. Marcheva B., Ramsey K. M., Peek C. B., Affinati A., Maury E., Bass J. (2013). Circadian clocks and metabolism. Circadian Clocks 217 127–155. 10.1007/978-3-642-25950-0_6
    1. Martins A. J., Isherwood C. M., Vasconcelos S. P., Lowden A., Skene D. J., Moreno C. R. (2020). The effect of urbanization on sleep, sleep/wake routine, and metabolic health of residents in the Amazon region of Brazil. Chronobiol. Int. 37 1335–1343. 10.1080/07420528.2020.1802287
    1. McFadden E., Jones M. E., Schoemaker M. J., Ashworth A., Swerdlow A. J. (2014). The relationship between obesity and exposure to light at night: cross-sectional analyses of over 100,000 women in the Breakthrough Generations Study. Am. J. Epidemiol. 180 245–250. 10.1093/aje/kwu117
    1. McMahon D. M., Burch J. B., Youngstedt S. D., Wirth M. D., Hardin J. W., Hurley T. G., et al. (2019). Relationships between chronotype, social jetlag, sleep, obesity and blood pressure in healthy young adults. Chronobiol. Int. 36 493–509. 10.1080/07420528.2018.1563094
    1. Mohawk J. A., Green C. B., Takahashi J. S. (2012). Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35 445–462. 10.1146/annurev-neuro-060909-153128
    1. Ng T. H., Chung K. F., Ho F. Y. Y., Yeung W. F., Yung K. P., Lam T. H. (2015). Sleep–wake disturbance in interepisode bipolar disorder and high-risk individuals: A systematic review and meta-analysis. Sleep Med. Rev. 20 46–58. 10.1016/j.smrv.2014.06.006
    1. Panda S., Hogenesch J. B. (2004). It’s all in the timing: many clocks, many outputs. J. Biol. Rhythms 19 374–387. 10.1177/0748730404269008
    1. Papatsimpa C., Schlangen L. J. M., Smolders K. C. H. J., Linnartz J. P., de Kort Y. A. W. (2021). The interindividual variability of sleep timing and circadian phase in humans is influenced by daytime and evening light conditions. Scient. Rep. 11 1–14. 10.1038/s41598-021-92863-z
    1. Parsons M. J., Moffitt T. E., Gregory A. M., Goldman-Mellor S., Nolan P. M., Poulton R., et al. (2015). Social jetlag, obesity and metabolic disorder: investigation in a cohort study. Int. J. Obesity 39 842–848. 10.1038/ijo.2014.201
    1. Patterson F., Malone S. K., Grandner M. A., Lozano A., Perkett M., Hanlon A. (2018). Interactive effects of sleep duration and morning/evening preference on cardiovascular risk factors. Eur. J. Publ. Health 28 155–161. 10.1093/eurpub/ckx029
    1. Pilz L. K., Levandovski R., Oliveira M. A., Hidalgo M. P., Roenneberg T. (2018). Sleep and light exposure across different levels of urbanisation in Brazilian communities. Scientific Rep. 8 1–11. 10.1038/s41598-018-29494-4
    1. Plano S. A., Casiraghi L. P., García Moro P., Paladino N., Golombek D. A., Chiesa J. J. (2017). Circadian and metabolic effects of light: implications in weight homeostasis and health. Front. Neurol. 8:558. 10.3389/fneur.2017.00558
    1. Pot G. K. (2018). Sleep and dietary habits in the urban environment: the role of chrono-nutrition. Proc. Nutr. Soc. 77 189–198. 10.1017/S0029665117003974
    1. Reinke H., Asher G. (2019). Crosstalk between metabolism and circadian clocks. Nat. Rev. Mole. Cell Biol. 20 227–241. 10.1038/s41580-018-0096-9
    1. Revelle W., Condon D. M. (2019). Reliability from alpha to omega: a tutorial. Psychol. Assess. 31, 1395–1411. 10.1037/pas0000754
    1. Roenneberg T., Allebrandt K. V., Merrow M., Vetter C. (2012). Social jetlag and obesity. Curr. Biol. 22 939–943. 10.1016/j.cub.2012.03.038
    1. Roenneberg T., Keller L. K., Fischer D., Matera J. L., Vetter C., Winnebeck E. C. (2015). Human activity and rest in situ. Methods Enzymol. 552, 257–283. 10.1016/bs.mie.2014.11.028
    1. Roenneberg T., Merrow M. (2007). “Entrainment of the human circadian clock,” in Cold Spring Harbor symposia on quantitative biology, Vol. 72 (New York, NY: Cold Spring Harbor Laboratory Press; ), 293–299. 10.1101/sqb.2007.72.043
    1. Roenneberg T., Merrow M. (2016). The circadian clock and human health. Curr. Biol. 26 R432–R443. 10.1016/j.cub.2016.04.011
    1. Roenneberg T., Wirz-Justice A., Merrow M. (2003). Life between clocks: daily temporal patterns of human chronotypes. J. Biol. Rhythms 18 80–90. 10.1177/0748730402239679
    1. Rumanova V. S., Okuliarova M., Zeman M. (2020). Differential effects of constant light and dim light at night on the circadian control of metabolism and behavior. Int. J. Mole. Sci. 21:5478. 10.3390/ijms21155478
    1. Rybnikova N. A., Haim A., Portnov B. A. (2016). Does artificial light-at-night exposure contribute to the worldwide obesity pandemic? Int. J. Obesity 40 815–823. 10.1038/ijo.2015.255
    1. Sene-Fiorese M., Duarte F. O., de Aquino Junior A. E., Campos R. M. D. S., Masquio D. C. L., Tock L., et al. (2015). The potential of phototherapy to reduce body fat, insulin resistance and “metabolic inflexibility” related to obesity in women undergoing weight loss treatment. Lasers Surg. Med. 47 634–642. 10.1002/lsm.22395
    1. Shi S. Q., Ansari T. S., McGuinness O. P., Wasserman D. H., Johnson C. H. (2013). Circadian disruption leads to insulin resistance and obesity. Curr. Biol. 23 372–381. 10.1016/j.cub.2013.01.048
    1. Sletten T. L., Cappuccio F. P., Davidson A. J., Van Cauter E., Rajaratnam S. M., Scheer F. A. (2020). Health consequences of circadian disruption. Sleep 43:zsz194. 10.1093/sleep/zsz194
    1. Sohail S., Yu L., Bennett D. A., Buchman A. S., Lim A. S. (2015). Irregular 24-hour activity rhythms and the metabolic syndrome in older adults. Chronobiol. Int. 32 802–813. 10.3109/07420528.2015.1041597
    1. Tomczak M., Tomczak E. (2014). The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci. 1, 19–25.
    1. Van den Berg J. F., Neven A. K., Tulen J. H. M., Hofman A., Witteman J. C. M., Miedema H. M. E., et al. (2008). Actigraphic sleep duration and fragmentation are related to obesity in the elderly: the Rotterdam Study. Int. J. Obesity 32 1083–1090. 10.1038/ijo.2008.57
    1. Van Someren E. J., Riemersma-Van Der Lek R. F. (2007). Live to the rhythm, slave to the rhythm. Sleep Med. Rev. 11 465–484. 10.1016/j.smrv.2007.07.003
    1. Van Someren E. J., Swaab D. F., Colenda C. C., Cohen W., McCall W. V., Rosenquist P. B. (1999). Bright light therapy: improved sensitivity to its effects on rest-activity rhythms in Alzheimer patients by application of nonparametric methods. Chronobiol. Int. 16 505–518. 10.3109/07420529908998724
    1. Versteeg R., I, Stenvers D. J., Visintainer D., Linnenbank A., Tanck M. W., Zwanenburg G., et al. (2017). Acute effects of morning light on plasma glucose and triglycerides in healthy men and men with type 2 diabetes. J. Biol. Rhythms 32 130–142. 10.1177/0748730417693480
    1. Wickham H. (2016). ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag.
    1. Wolin K. Y., Carson K., Colditz G. A. (2010). Obesity and cancer. Oncologist 15:556.
    1. World Health Organization [WHO] (2020). World Health Organization. Available online at: [accessed on Mar 31, 2021].
    1. Wright K. P., Jr., McHill A. W., Birks B. R., Griffin B. R., Rusterholz T., Chinoy E. D. (2013). Entrainment of the human circadian clock to the natural light-dark cycle. Curr. Biol. 23 1554–1558. 10.1016/j.cub.2013.06.039
    1. Wyse C. A., Biello S. M., Gill J. M. (2014). The bright-nights and dim-days of the urban photoperiod: implications for circadian rhythmicity, metabolism and obesity. Anna. Med. 46 253–263. 10.3109/07853890.2014.913422

Source: PubMed

3
Se inscrever