Polyamine Homeostasis in Development and Disease

Shima Nakanishi, John L Cleveland, Shima Nakanishi, John L Cleveland

Abstract

Polycationic polyamines are present in nearly all living organisms and are essential for mammalian cell growth and survival, and for development. These positively charged molecules are involved in a variety of essential biological processes, yet their underlying mechanisms of action are not fully understood. Several studies have shown both beneficial and detrimental effects of polyamines on human health. In cancer, polyamine metabolism is frequently dysregulated, and elevated polyamines have been shown to promote tumor growth and progression, suggesting that targeting polyamines is an attractive strategy for therapeutic intervention. In contrast, polyamines have also been shown to play critical roles in lifespan, cardiac health and in the development and function of the brain. Accordingly, a detailed understanding of mechanisms that control polyamine homeostasis in human health and disease is needed to develop safe and effective strategies for polyamine-targeted therapy.

Keywords: aging; cancer; development; metabolism; polyamines.

Conflict of interest statement

The authors declare no conflict of interest. The funding sponsors had no role in the writing or the decision to publish this manuscript.

Figures

Figure 1
Figure 1
Polyamine metabolism and interacting pathways. Enzymes that control central polyamine biosynthesis and catabolism are shown, as well as the metabolic circuits that feed into the control of polyamine homeostasis. Light blue, substrates and products; red, inhibitors of key enzymes. ADC, Arginine decarboxylase; AHCY, S-adenosylhomocysteine hydrolase; AMD1, Adenosylmethionine decarboxylase-1; AGMAT, Agmatinase; Arg, Arginine; ARG, Arginase; ASL, Arginosuccinate lyase; ASS1, Arginosuccinate synthase-1; AZIN1, Antizyme inhibitor-1; Ac-Spd, N1-acetylated Spd; Ac-Spm: N1-acetylated Spm; CBS, Cystathione β-synthase; CSE, Cystathionine γ-lyase; Cys, Cysteine; DFMO, Difluoromethylornithine; DHPS, Deoxyhypusine synthase; DOHH, Deoxyhypusine hydroxylase; eIF5A, Eukaryotic translation initiation factor 5A; GC7, N1-guanyl-1, 7-diamine-heptane; GSH, Glutathione; HS, Homocysteine; Hyp, Hypusine; MATs, Methionine adenosyltransferases -1, -2A and -2B; Met, Methionine; MTA, 5′methylthioadenosine; MTAP, MTA phosphorylase; MTDIA, Methylthio-DaDMe-Immucillin-A; MTOB, 4-Methylthio-2-oxobutanoic acid; MTR: 5′ methylthioribose; MTs, Methyltransferase; MS, Methionine synthase; nor-NOHA, Nω-hydroxy-nor-arginine; ODC, Ornithine decarboxylase; OAZs, ODC antizyme-1, -2 and -3; OTC, Ornithine transcarbamylase; PAOX, Polyamine oxidase; SAH, S-adenosylhomocysteine; SAHH. SAH hydrolase; SAM, S-adenosylmethionine; Ser, Serine; SSAT1, SPD/SPM acetyltransferase 1 (SAT1); SMOX, Spermine oxidase; SMS, Spm synthase; SRS, Spd synthase.

References

    1. Casero R.A., Jr., Marton L.J. Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat. Rev. Drug Discov. 2007;6:373–390. doi: 10.1038/nrd2243.
    1. Tabor C.W., Tabor H. Polyamines. Annu. Rev. Biochem. 1984;53:749–790. doi: 10.1146/annurev.bi.53.070184.003533.
    1. Casero R.A., Jr., Stewart T.M., Pegg A.E. Polyamine metabolism and cancer: Treatments, challenges and opportunities. Nat. Rev. Cancer. 2018;18:681–695. doi: 10.1038/s41568-018-0050-3.
    1. Igarashi K., Kashiwagi K. Modulation of cellular function by polyamines. Int. J. Biochem. Cell Biol. 2010;42:39–51. doi: 10.1016/j.biocel.2009.07.009.
    1. Lightfoot H.L., Hall J. Endogenous polyamine function—The RNA perspective. Nucleic Acids Res. 2014;42:11275–11290. doi: 10.1093/nar/gku837.
    1. Pasini A., Caldarera C.M., Giordano E. Chromatin remodeling by polyamines and polyamine analogs. Amino Acids. 2014;46:595–603. doi: 10.1007/s00726-013-1550-9.
    1. Bachrach U. Naturally occurring polyamines: Interaction with macromolecules. Curr. Protein Pept. Sci. 2005;6:559–566. doi: 10.2174/138920305774933240.
    1. Çelik V.K., Kapancık S., Kaçan T., Kaçan S.B., Kapancık S., Kılıçgün H. Serum levels of polyamine synthesis enzymes increase in diabetic patients with breast cancer. Endocr. Connect. 2017;6:574–579. doi: 10.1530/EC-17-0137.
    1. Dallmann K., Junker H., Balabanov S., Zimmermann U., Giebel J., Walther R. Human agmatinase is diminished in the clear cell type of renal cell carcinoma. Int. J. Cancer. 2004;108:342–347. doi: 10.1002/ijc.11459.
    1. Li G., Regunathan S., Barrow C.J., Eshraghi J., Cooper R., Reis D.J. Agmatine: An endogenous clonidine-displacing substance in the brain. Science. 1994;263:966–969. doi: 10.1126/science.7906055.
    1. Mistry S.K., Burwell T.J., Chambers R.M., Rudolph-Owen L., Spaltmann F., Cook W.J., Morris S.M., Jr. Cloning of human agmatinase. An alternate path for polyamine synthesis induced in liver by hepatitis B virus. Am. J. Physiol. Gastrointest. Liver Physiol. 2002;282:G375–G381. doi: 10.1152/ajpgi.00386.2001.
    1. Zhu H.E., Yin J.Y., Chen D.X., He S., Chen H. Agmatinase promotes the lung adenocarcinoma tumorigenesis by activating the NO-MAPKs-PI3K/Akt pathway. Cell Death Dis. 2019;10:854. doi: 10.1038/s41419-019-2082-3.
    1. Pegg A.E. Mammalian polyamine metabolism and function. IUBMB Life. 2009;61:880–894. doi: 10.1002/iub.230.
    1. Miller-Fleming L., Olin-Sandoval V., Campbell K., Ralser M. Remaining Mysteries of Molecular Biology: The Role of Polyamines in the Cell. J. Mol. Biol. 2015;427:3389–3406. doi: 10.1016/j.jmb.2015.06.020.
    1. Matsufuji S., Matsufuji T., Miyazaki Y., Murakami Y., Atkins J.F., Gesteland R.F., Hayashi S. Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell. 1995;80:51–60. doi: 10.1016/0092-8674(95)90450-6.
    1. Kitani T., Fujisawa H. Purification and characterization of antizyme inhibitor of ornithine decarboxylase from rat liver. Biochim. Biophys. Acta. 1989;991:44–49. doi: 10.1016/0304-4165(89)90026-3.
    1. Murakami Y., Matsufuji S., Nishiyama M., Hayashi S. Properties and fluctuations in vivo of rat liver antizyme inhibitor. Biochem. J. 1989;259:839–845. doi: 10.1042/bj2590839.
    1. Shantz L.M., Holm I., Jänne O.A., Pegg A.E. Regulation of S-adenosylmethionine decarboxylase activity by alterations in the intracellular polyamine content. Biochem. J. 1992;288:511–518. doi: 10.1042/bj2880511.
    1. Asher G., Bercovich Z., Tsvetkov P., Shaul Y., Kahana C. 20S proteasomal degradation of ornithine decarboxylase is regulated by NQO1. Mol. Cell. 2005;17:645–655. doi: 10.1016/j.molcel.2005.01.020.
    1. Iwami K., Wang J.Y., Jain R., McCormack S., Johnson L.R. Intestinal ornithine decarboxylase: Half-life and regulation by putrescine. Am. J. Physiol. 1990;258:G308–G315. doi: 10.1152/ajpgi.1990.258.2.G308.
    1. Zwighaft Z., Aviram R., Shalev M., Rousso-Noori L., Kraut-Cohen J., Golik M., Brandis A., Reinke H., Aharoni A., Kahana C., et al. Circadian Clock Control by Polyamine Levels through a Mechanism that Declines with Age. Cell Metab. 2015;22:874–885. doi: 10.1016/j.cmet.2015.09.011.
    1. Madeo F., Eisenberg T., Pietrocola F., Kroemer G. Spermidine in health and disease. Science. 2018:359. doi: 10.1126/science.aan2788.
    1. Park M.H., Igarashi K. Polyamines and their metabolites as diagnostic markers of human diseases. Biomol. Ther. 2013;21:1–9. doi: 10.4062/biomolther.2012.097.
    1. Auvinen M., Laine A., Paasinen-Sohns A., Kangas A., Kangas L., Saksela O., Andersson L.C., Hölttä E. Human ornithine decarboxylase-overproducing NIH3T3 cells induce rapidly growing, highly vascularized tumors in nude mice. Cancer Res. 1997;57:3016–3025.
    1. Clifford A., Morgan D., Yuspa S.H., Soler A.P., Gilmour S. Role of ornithine decarboxylase in epidermal tumorigenesis. Cancer Res. 1995;55:1680–1686.
    1. Mamont P.S., Duchesne M.C., Grove J., Bey P. Anti-proliferative properties of DL-α-difluoromethyl ornithine in cultured cells. A consequence of the irreversible inhibition of ornithine decarboxylase. Biochem. Biophys. Res. Commun. 1978;81:58–66. doi: 10.1016/0006-291X(78)91630-3.
    1. Nilsson J.A., Keller U.B., Baudino T.A., Yang C., Norton S., Old J.A., Nilsson L.M., Neale G., Kramer D.L., Porter C.W., et al. Targeting ornithine decarboxylase in Myc-induced lymphomagenesis prevents tumor formation. Cancer Cell. 2005;7:433–444. doi: 10.1016/j.ccr.2005.03.036.
    1. Hogarty M.D., Norris M.D., Davis K., Liu X., Evageliou N.F., Hayes C.S., Pawel B., Guo R., Zhao H., Sekyere E., et al. ODC1 is a critical determinant of MYCN oncogenesis and a therapeutic target in neuroblastoma. Cancer Res. 2008;68:9735–9745. doi: 10.1158/0008-5472.CAN-07-6866.
    1. Rounbehler R.J., Li W., Hall M.A., Yang C., Fallahi M., Cleveland J.L. Targeting ornithine decarboxylase impairs development of MYCN-amplified neuroblastoma. Cancer Res. 2009;69:547–553. doi: 10.1158/0008-5472.CAN-08-2968.
    1. Sholler G.L.S., Ferguson W., Bergendahl G., Bond J.P., Neville K., Eslin D., Brown V., Roberts W., Wada R.K., Oesterheld J., et al. Maintenance DFMO Increases Survival in High Risk Neuroblastoma. Sci. Rep. 2018;8:14445. doi: 10.1038/s41598-018-32659-w.
    1. Minois N., Carmona-Gutierrez D., Madeo F. Polyamines in aging and disease. Aging. 2011;3:716–732. doi: 10.18632/aging.100361.
    1. Cerrada-Gimenez M., Pietilä M., Loimas S., Pirinen E., Hyvönen M.T., Keinänen T.A., Jänne J., Alhonen L. Continuous oxidative stress due to activation of polyamine catabolism accelerates aging and protects against hepatotoxic insults. Transgenic Res. 2011;20:387–396. doi: 10.1007/s11248-010-9422-5.
    1. Murray Stewart T., Dunston T.T., Woster P.M., Casero R.A., Jr. Polyamine catabolism and oxidative damage. J. Biol. Chem. 2018;293:18736–18745. doi: 10.1074/jbc.TM118.003337.
    1. Nishimura K., Shiina R., Kashiwagi K., Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J. Biochem. 2006;139:81–90. doi: 10.1093/jb/mvj003.
    1. Eisenberg T., Knauer H., Schauer A., Buttner S., Ruckenstuhl C., Carmona-Gutierrez D., Ring J., Schroeder S., Magnes C., Antonacci L., et al. Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 2009;11:1305–1314. doi: 10.1038/ncb1975.
    1. Eisenberg T., Abdellatif M., Schroeder S., Primessnig U., Stekovic S., Pendl T., Harger A., Schipke J., Zimmermann A., Schmidt A., et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med. 2016;22:1428–1438. doi: 10.1038/nm.4222.
    1. Gerner E.W., Bruckheimer E., Cohen A. Cancer pharmacoprevention: Targeting polyamine metabolism to manage risk factors for colon cancer. J. Biol. Chem. 2018;293:18770–18778. doi: 10.1074/jbc.TM118.003343.
    1. Pegg A.E. Functions of Polyamines in Mammals. J. Biol. Chem. 2016;291:14904–14912. doi: 10.1074/jbc.R116.731661.
    1. Wallace H.M., Fraser A.V. Inhibitors of polyamine metabolism: Review article. Amino Acids. 2004;26:353–365. doi: 10.1007/s00726-004-0092-6.
    1. Uemura T., Akasaka Y., Ikegaya H. Correlation of polyamines, acrolein-conjugated lysine and polyamine metabolic enzyme levels with age in human liver. Heliyon. 2020;6:e05031. doi: 10.1016/j.heliyon.2020.e05031.
    1. Holbert C.E., Dunworth M., Foley J.R., Dunston T.T., Stewart T.M., Casero R.A., Jr. Autophagy induction by exogenous polyamines is an artifact of bovine serum amine oxidase activity in culture serum. J. Biol. Chem. 2020;295:9061–9068. doi: 10.1074/jbc.RA120.013867.
    1. Morrison L.D., Becker L., Ang L.C., Kish S.J. Polyamines in human brain: Regional distribution and influence of aging. J. Neurochem. 1995;65:636–642. doi: 10.1046/j.1471-4159.1995.65020636.x.
    1. Gupta V.K., Scheunemann L., Eisenberg T., Mertel S., Bhukel A., Koemans T.S., Kramer J.M., Liu K.S., Schroeder S., Stunnenberg H.G., et al. Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner. Nat. Neurosci. 2013;16:1453–1460. doi: 10.1038/nn.3512.
    1. Gupta V.K., Pech U., Bhukel A., Fulterer A., Ender A., Mauermann S.F., Andlauer T.F., Antwi-Adjei E., Beuschel C., Thriene K., et al. Spermidine Suppresses Age-Associated Memory Impairment by Preventing Adverse Increase of Presynaptic Active Zone Size and Release. PLoS Biol. 2016;14:e1002563. doi: 10.1371/journal.pbio.1002563.
    1. Maglione M., Kochlamazashvili G., Eisenberg T., Rácz B., Michael E., Toppe D., Stumpf A., Wirth A., Zeug A., Müller F.E., et al. Spermidine protects from age-related synaptic alterations at hippocampal mossy fiber-CA3 synapses. Sci. Rep. 2019;9:19616. doi: 10.1038/s41598-019-56133-3.
    1. Schroeder S., Hofer S.J., Zimmermann A., Pechlaner R., Dammbrueck C., Pendl T., Marcello G.M., Pogatschnigg V., Bergmann M., Muller M., et al. Dietary spermidine improves cognitive function. Cell Rep. 2021;35:108985. doi: 10.1016/j.celrep.2021.108985.
    1. Snyder R.D., Robinson A. Recessive sex-linked mental retardation in the absence of other recognizable abnormalities. Report of a family. Clin. Pediatr. 1969;8:669–674. doi: 10.1177/000992286900801114.
    1. Schwartz C.E., Wang X., Stevenson R.E., Pegg A.E. Spermine synthase deficiency resulting in X-linked intellectual disability (Snyder-Robinson syndrome) Methods Mol. Biol. 2011;720:437–445. doi: 10.1007/978-1-61779-034-8_28.
    1. Murray-Stewart T., Dunworth M., Foley J.R., Schwartz C.E., Casero R.A., Jr. Polyamine Homeostasis in Snyder-Robinson Syndrome. Med. Sci. 2018;6:112. doi: 10.3390/medsci6040112.
    1. Albert T., Urlbauer B., Kohlhuber F., Hammersen B., Eick D. Ongoing mutations in the N-terminal domain of c-Myc affect transactivation in Burkitt’s lymphoma cell lines. Oncogene. 1994;9:759–763.
    1. Li C., Brazill J.M., Liu S., Bello C., Zhu Y., Morimoto M., Cascio L., Pauly R., Diaz-Perez Z., Malicdan M.C.V., et al. Spermine synthase deficiency causes lysosomal dysfunction and oxidative stress in models of Snyder-Robinson syndrome. Nat. Commun. 2017;8:1257. doi: 10.1038/s41467-017-01289-7.
    1. Matheis F., Muller P.A., Mucida D. Gut macrophages: Key players in intestinal immunity and tissue physiology. Curr. Opin. Immunol. 2020;62:54–61. doi: 10.1016/j.coi.2019.11.011.
    1. Levy M., Thaiss C.A., Zeevi D., Dohnalová L., Zilberman-Schapira G., Mahdi J.A., David E., Savidor A., Korem T., Herzig Y., et al. Microbiota-Modulated Metabolites Shape the Intestinal Microenvironment by Regulating NLRP6 Inflammasome Signaling. Cell. 2015;163:1428–1443. doi: 10.1016/j.cell.2015.10.048.
    1. Shantz L.M., Levin V.A. Regulation of ornithine decarboxylase during oncogenic transformation: Mechanisms and therapeutic potential. Amino Acids. 2007;33:213–223. doi: 10.1007/s00726-007-0531-2.
    1. Bello-Fernandez C., Packham G., Cleveland J.L. The ornithine decarboxylase gene is a transcriptional target of c-Myc. Proc. Natl. Acad. Sci. USA. 1993;90:7804–7808. doi: 10.1073/pnas.90.16.7804.
    1. Bachmann A.S., Geerts D. Polyamine synthesis as a target of MYC oncogenes. J. Biol. Chem. 2018;293:18757–18769. doi: 10.1074/jbc.TM118.003336.
    1. Flynn A.T., Hogarty M.D. Myc, Oncogenic Protein Translation, and the Role of Polyamines. Med. Sci. 2018;6:41. doi: 10.3390/medsci6020041.
    1. Origanti S., Nowotarski S.L., Carr T.D., Sass-Kuhn S., Xiao L., Wang J.Y., Shantz L.M. Ornithine decarboxylase mRNA is stabilized in an mTORC1-dependent manner in Ras-transformed cells. Biochem. J. 2012;442:199–207. doi: 10.1042/BJ20111464.
    1. Ivanov I.P., Loughran G., Atkins J.F. uORFs with unusual translational start codons autoregulate expression of eukaryotic ornithine decarboxylase homologs. Proc. Natl. Acad. Sci. USA. 2008;105:10079–10084. doi: 10.1073/pnas.0801590105.
    1. Pyronnet S., Pradayrol L., Sonenberg N. A cell cycle-dependent internal ribosome entry site. Mol. Cell. 2000;5:607–616. doi: 10.1016/S1097-2765(00)80240-3.
    1. Sammons M.A., Antons A.K., Bendjennat M., Udd B., Krahe R., Link A.J. ZNF9 activation of IRES-mediated translation of the human ODC mRNA is decreased in myotonic dystrophy type 2. PLoS ONE. 2010;5:e9301. doi: 10.1371/journal.pone.0009301.
    1. D’Amico D., Antonucci L., Di Magno L., Coni S., Sdruscia G., Macone A., Miele E., Infante P., Di Marcotullio L., De Smaele E., et al. Non-canonical Hedgehog/AMPK-Mediated Control of Polyamine Metabolism Supports Neuronal and Medulloblastoma Cell Growth. Dev. Cell. 2015;35:21–35. doi: 10.1016/j.devcel.2015.09.008.
    1. Li L., Mao Y., Zhao L., Li L., Wu J., Zhao M., Du W., Yu L., Jiang P. p53 regulation of ammonia metabolism through urea cycle controls polyamine biosynthesis. Nature. 2019;567:253–256. doi: 10.1038/s41586-019-0996-7.
    1. Coffino P. Regulation of cellular polyamines by antizyme. Nat. Rev. Mol. Cell Biol. 2001;2:188–194. doi: 10.1038/35056508.
    1. Wu H.Y., Chen S.F., Hsieh J.Y., Chou F., Wang Y.H., Lin W.T., Lee P.Y., Yu Y.J., Lin L.Y., Lin T.S., et al. Structural basis of antizyme-mediated regulation of polyamine homeostasis. Proc. Natl. Acad. Sci. USA. 2015;112:11229–11234. doi: 10.1073/pnas.1508187112.
    1. Kahana C. Antizyme and antizyme inhibitor, a regulatory tango. Cell Mol. Life Sci. 2009;66:2479–2488. doi: 10.1007/s00018-009-0033-3.
    1. Ivanov I.P., Atkins J.F. Ribosomal frameshifting in decoding antizyme mRNAs from yeast and protists to humans: Close to 300 cases reveal remarkable diversity despite underlying conservation. Nucleic Acids Res. 2007;35:1842–1858. doi: 10.1093/nar/gkm035.
    1. Kahana C. The antizyme family for regulating polyamines. J. Biol. Chem. 2018;293:18730–18735. doi: 10.1074/jbc.TM118.003339.
    1. Ivanov I.P., Shin B.S., Loughran G., Tzani I., Young-Baird S.K., Cao C., Atkins J.F., Dever T.E. Polyamine Control of Translation Elongation Regulates Start Site Selection on Antizyme Inhibitor mRNA via Ribosome Queuing. Mol. Cell. 2018;70:254–264.e256. doi: 10.1016/j.molcel.2018.03.015.
    1. Li X., Coffino P. Degradation of ornithine decarboxylase: Exposure of the C-terminal target by a polyamine-inducible inhibitory protein. Mol. Cell. Biol. 1993;13:2377–2383. doi: 10.1128/MCB.13.4.2377.
    1. Bupp C.P., Schultz C.R., Uhl K.L., Rajasekaran S., Bachmann A.S. Novel de novo pathogenic variant in the ODC1 gene in a girl with developmental delay, alopecia, and dysmorphic features. Am. J. Med. Genet. A. 2018;176:2548–2553. doi: 10.1002/ajmg.a.40523.
    1. Schultz C.R., Bupp C.P., Rajasekaran S., Bachmann A.S. Biochemical features of primary cells from a pediatric patient with a gain-of-function ODC1 genetic mutation. Biochem. J. 2019;476:2047–2057. doi: 10.1042/BCJ20190294.
    1. Lange I., Geerts D., Feith D.J., Mocz G., Koster J., Bachmann A.S. Novel interaction of ornithine decarboxylase with sepiapterin reductase regulates neuroblastoma cell proliferation. J. Mol. Biol. 2014;426:332–346. doi: 10.1016/j.jmb.2013.09.037.
    1. Yco L.P., Geerts D., Mocz G., Koster J., Bachmann A.S. Effect of sulfasalazine on human neuroblastoma: Analysis of sepiapterin reductase (SPR) as a new therapeutic target. BMC Cancer. 2015;15:477. doi: 10.1186/s12885-015-1447-y.
    1. Pegg A.E. S-Adenosylmethionine decarboxylase. Essays Biochem. 2009;46:25–45. doi: 10.1042/bse0460003.
    1. Law G.L., Raney A., Heusner C., Morris D.R. Polyamine regulation of ribosome pausing at the upstream open reading frame of S-adenosylmethionine decarboxylase. J. Biol. Chem. 2001;276:38036–38043. doi: 10.1074/jbc.M105944200.
    1. Yordanova M.M., Loughran G., Zhdanov A.V., Mariotti M., Kiniry S.J., O’Connor P.B.F., Andreev D.E., Tzani I., Saffert P., Michel A.M., et al. AMD1 mRNA employs ribosome stalling as a mechanism for molecular memory formation. Nature. 2018;553:356–360. doi: 10.1038/nature25174.
    1. Zabala-Letona A., Arruabarrena-Aristorena A., Martin-Martin N., Fernandez-Ruiz S., Sutherland J.D., Clasquin M., Tomas-Cortazar J., Jimenez J., Torres I., Quang P., et al. mTORC1-dependent AMD1 regulation sustains polyamine metabolism in prostate cancer. Nature. 2017;547:109–113. doi: 10.1038/nature22964.
    1. Su C.Y., Chang Y.C., Chan Y.C., Lin T.C., Huang M.S., Yang C.J., Hsiao M. MTAP is an independent prognosis marker and the concordant loss of MTAP and p16 expression predicts short survival in non-small cell lung cancer patients. Eur. J. Surg. Oncol. 2014;40:1143–1150. doi: 10.1016/j.ejso.2014.04.017.
    1. Wang Y., Xiao L., Thiagalingam A., Nelkin B.D., Casero R.A., Jr. The identification of a cis-element and a trans-acting factor involved in the response to polyamines and polyamine analogues in the regulation of the human spermidine/spermine N1-acetyltransferase gene transcription. J. Biol. Chem. 1998;273:34623–34630. doi: 10.1074/jbc.273.51.34623.
    1. Wang Y., Devereux W., Stewart T.M., Casero R.A., Jr. Cloning and characterization of human polyamine-modulated factor-1, a transcriptional cofactor that regulates the transcription of the spermidine/spermine N(1)-acetyltransferase gene. J. Biol. Chem. 1999;274:22095–22101. doi: 10.1074/jbc.274.31.22095.
    1. Wang Y., Devereux W., Stewart T.M., Casero R.A., Jr. Characterization of the interaction between the transcription factors human polyamine modulated factor (PMF-1) and NF-E2-related factor 2 (Nrf-2) in the transcriptional regulation of the spermidine/spermine N1-acetyltransferase (SSAT) gene. Biochem. J. 2001;355:45–49. doi: 10.1042/bj3550045.
    1. Butcher N.J., Broadhurst G.M., Minchin R.F. Polyamine-dependent regulation of spermidine-spermine N1-acetyltransferase mRNA translation. J. Biol. Chem. 2007;282:28530–28539. doi: 10.1074/jbc.M701265200.
    1. Ivanov I.P., Atkins J.F., Michael A.J. A profusion of upstream open reading frame mechanisms in polyamine-responsive translational regulation. Nucleic Acids Res. 2010;38:353–359. doi: 10.1093/nar/gkp1037.
    1. Perez-Leal O., Barrero C.A., Clarkson A.B., Casero R.A., Jr., Merali S. Polyamine-regulated translation of spermidine/spermine-N1-acetyltransferase. Mol. Cell. Biol. 2012;32:1453–1467. doi: 10.1128/MCB.06444-11.
    1. Casero R.A., Jr., Celano P., Ervin S.J., Wiest L., Pegg A.E. High specific induction of spermidine/spermine N1-acetyltransferase in a human large cell lung carcinoma. Biochem. J. 1990;270:615–620. doi: 10.1042/bj2700615.
    1. Murray-Stewart T.R., Woster P.M., Casero R.A., Jr. Targeting polyamine metabolism for cancer therapy and prevention. Biochem. J. 2016;473:2937–2953. doi: 10.1042/BCJ20160383.
    1. Pledgie-Tracy A., Billam M., Hacker A., Sobolewski M.D., Woster P.M., Zhang Z., Casero R.A., Davidson N.E. The role of the polyamine catabolic enzymes SSAT and SMO in the synergistic effects of standard chemotherapeutic agents with a polyamine analogue in human breast cancer cell lines. Cancer Chemother. Pharm. 2010;65:1067–1081. doi: 10.1007/s00280-009-1112-8.
    1. Creaven P.J., Perez R., Pendyala L., Meropol N.J., Loewen G., Levine E., Berghorn E., Raghavan D. Unusual central nervous system toxicity in a phase I study of N1N11 diethylnorspermine in patients with advanced malignancy. Investig. New Drugs. 1997;15:227–234. doi: 10.1023/A:1005827231849.
    1. Hahm H.A., Ettinger D.S., Bowling K., Hoker B., Chen T.L., Zabelina Y., Casero R.A., Jr. Phase I study of N(1),N(11)-diethylnorspermine in patients with non-small cell lung cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2002;8:684–690.
    1. Streiff R.R., Bender J.F. Phase 1 study of N1-N11-diethylnorspermine (DENSPM) administered TID for 6 days in patients with advanced malignancies. Investig. New Drugs. 2001;19:29–39. doi: 10.1023/A:1006448516938.
    1. Wolff A.C., Armstrong D.K., Fetting J.H., Carducci M.K., Riley C.D., Bender J.F., Casero R.A., Jr., Davidson N.E. A Phase II study of the polyamine analog N1,N11-diethylnorspermine (DENSpm) daily for five days every 21 days in patients with previously treated metastatic breast cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2003;9:5922–5928.
    1. Ou Y., Wang S.J., Li D., Chu B., Gu W. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc. Natl. Acad. Sci. USA. 2016;113:E6806–E6812. doi: 10.1073/pnas.1607152113.
    1. Goodwin A.C., Shields C.E.D., Wu S., Huso D.L., Wu X., Murray-Stewart T.R., Hacker-Prietz A., Rabizadeh S., Woster P.M., Sears C.L., et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc. Natl. Acad. Sci. USA. 2011;108:15354–15359. doi: 10.1073/pnas.1010203108.
    1. Chaturvedi R., Asim M., Piazuelo M.B., Yan F., Barry D.P., Sierra J.C., Delgado A.G., Hill S., Casero R.A., Jr., Bravo L.E., et al. Activation of EGFR and ERBB2 by Helicobacter pylori results in survival of gastric epithelial cells with DNA damage. Gastroenterology. 2014;146:1739–1751 e1714. doi: 10.1053/j.gastro.2014.02.005.
    1. Goodwin A.C., Jadallah S., Toubaji A., Lecksell K., Hicks J.L., Kowalski J., Bova G.S., De Marzo A.M., Netto G.J., Casero R.A., Jr. Increased spermine oxidase expression in human prostate cancer and prostatic intraepithelial neoplasia tissues. Prostate. 2008;68:766–772. doi: 10.1002/pros.20735.
    1. Hu T., Sun D., Zhang J., Xue R., Janssen H.L.A., Tang W., Dong L. Spermine oxidase is upregulated and promotes tumor growth in hepatocellular carcinoma. Hepatol. Res. 2018;48:967–977. doi: 10.1111/hepr.13206.
    1. Chaturvedi R., de Sablet T., Asim M., Piazuelo M.B., Barry D.P., Verriere T.G., Sierra J.C., Hardbower D.M., Delgado A.G., Schneider B.G., et al. Increased Helicobacter pylori-associated gastric cancer risk in the Andean region of Colombia is mediated by spermine oxidase. Oncogene. 2015;34:3429–3440. doi: 10.1038/onc.2014.273.
    1. Murray-Stewart T., Sierra J.C., Piazuelo M.B., Mera R.M., Chaturvedi R., Bravo L.E., Correa P., Schneider B.G., Wilson K.T., Casero R.A. Epigenetic silencing of miR-124 prevents spermine oxidase regulation: Implications for Helicobacter pylori-induced gastric cancer. Oncogene. 2016;35:5480–5488. doi: 10.1038/onc.2016.91.
    1. Sierra J.C., Piazuelo M.B., Luis P.B., Barry D.P., Allaman M.M., Asim M., Sebrell T.A., Finley J.L., Rose K.L., Hill S., et al. Spermine oxidase mediates Helicobacter pylori-induced gastric inflammation, DNA damage, and carcinogenic signaling. Oncogene. 2020;39:4465–4474. doi: 10.1038/s41388-020-1304-6.
    1. Igarashi K., Uemura T., Kashiwagi K. Acrolein: An Effective Biomarker for Tissue Damage Produced from Polyamines. Methods Mol. Biol. 2018;1694:459–468. doi: 10.1007/978-1-4939-7398-9_38.
    1. Tomitori H., Usui T., Saeki N., Ueda S., Kase H., Nishimura K., Kashiwagi K., Igarashi K. Polyamine oxidase and acrolein as novel biochemical markers for diagnosis of cerebral stroke. Stroke. 2005;36:2609–2613. doi: 10.1161/01.STR.0000190004.36793.2d.
    1. Uemura T., Suzuki T., Ko K., Watanabe K., Dohmae N., Sakamoto A., Terui Y., Toida T., Kashiwagi K., Igarashi K. Inhibition of dendritic spine extension through acrolein conjugation with α-, β-tubulin proteins. Int. J. Biochem. Cell Biol. 2019;113:58–66. doi: 10.1016/j.biocel.2019.05.016.
    1. Uemura T., Suzuki T., Ko K., Nakamura M., Dohmae N., Sakamoto A., Terui Y., Toida T., Kashiwagi K., Igarashi K. Structural change and degradation of cytoskeleton due to the acrolein conjugation with vimentin and actin during brain infarction. Cytoskeleton. 2020;77:414–421. doi: 10.1002/cm.21638.
    1. Igarashi K., Uemura T., Kashiwagi K. Assessing acrolein for determination of the severity of brain stroke, dementia, renal failure, and Sjögren’s syndrome. Amino Acids. 2020;52:119–127. doi: 10.1007/s00726-019-02700-x.
    1. Uemura T., Takasaka T., Igarashi K., Ikegaya H. Spermine oxidase promotes bile canalicular lumen formation through acrolein production. Sci. Rep. 2017;7:14841. doi: 10.1038/s41598-017-14929-1.
    1. Lewandowski N.M., Ju S., Verbitsky M., Ross B., Geddie M.L., Rockenstein E., Adame A., Muhammad A., Vonsattel J.P., Ringe D., et al. Polyamine pathway contributes to the pathogenesis of Parkinson disease. Proc. Natl. Acad. Sci. USA. 2010;107:16970–16975. doi: 10.1073/pnas.1011751107.
    1. Van Veen S., Martin S., Van den Haute C., Benoy V., Lyons J., Vanhoutte R., Kahler J.P., Decuypere J.P., Gelders G., Lambie E., et al. ATP13A2 deficiency disrupts lysosomal polyamine export. Nature. 2020;578:419–424. doi: 10.1038/s41586-020-1968-7.
    1. Cervelli M., Bellavia G., D’Amelio M., Cavallucci V., Moreno S., Berger J., Nardacci R., Marcoli M., Maura G., Piacentini M., et al. A New Transgenic Mouse Model for Studying the Neurotoxicity of Spermine Oxidase Dosage in the Response to Excitotoxic Injury. PLoS ONE. 2013;8:e64810. doi: 10.1371/journal.pone.0064810.
    1. Habib E., Linher-Melville K., Lin H.X., Singh G. Expression of xCT and activity of system xc− are regulated by NRF2 in human breast cancer cells in response to oxidative stress. Redox Biol. 2015;5:33–42. doi: 10.1016/j.redox.2015.03.003.
    1. Pietropaoli S., Leonetti A., Cervetto C., Venturini A., Mastrantonio R., Baroli G., Persichini T., Colasanti M., Maura G., Marcoli M., et al. Glutamate Excitotoxicity Linked to Spermine Oxidase Overexpression. Mol. Neurobiol. 2018;55:7259–7270. doi: 10.1007/s12035-017-0864-0.
    1. Cervetto C., Vergani L., Passalacqua M., Ragazzoni M., Venturini A., Cecconi F., Berretta N., Mercuri N., D’Amelio M., Maura G., et al. Astrocyte-Dependent Vulnerability to Excitotoxicity in Spermine Oxidase-Overexpressing Mouse. Neuromol. Med. 2016;18:50–68. doi: 10.1007/s12017-015-8377-3.
    1. Leonetti A., Baroli G., Fratini E., Pietropaoli S., Marcoli M., Mariottini P., Cervelli M. Epileptic seizures and oxidative stress in a mouse model over-expressing spermine oxidase. Amino Acids. 2020;52:129–139. doi: 10.1007/s00726-019-02749-8.
    1. Bistulfi G., Affronti H.C., Foster B.A., Karasik E., Gillard B., Morrison C., Mohler J., Phillips J.G., Smiraglia D.J. The essential role of methylthioadenosine phosphorylase in prostate cancer. Oncotarget. 2016;7:14380–14393. doi: 10.18632/oncotarget.7486.
    1. Affronti H.C., Rowsam A.M., Pellerite A.J., Rosario S.R., Long M.D., Jacobi J.J., Bianchi-Smiraglia A., Boerlin C.S., Gillard B.M., Karasik E., et al. Pharmacological polyamine catabolism upregulation with methionine salvage pathway inhibition as an effective prostate cancer therapy. Nat. Commun. 2020;11:52. doi: 10.1038/s41467-019-13950-4.
    1. Bergeron R.J., Neims A.H., McManis J.S., Hawthorne T.R., Vinson J.R., Bortell R., Ingeno M.J. Synthetic polyamine analogues as antineoplastics. J. Med. Chem. 1988;31:1183–1190. doi: 10.1021/jm00401a019.
    1. Casero R.A., Jr., Celano P., Ervin S.J., Porter C.W., Bergeron R.J., Libby P.R. Differential induction of spermidine/spermine N1-acetyltransferase in human lung cancer cells by the bis(ethyl)polyamine analogues. Cancer Res. 1989;49:3829–3833.
    1. Porter C.W., Bernacki R.J., Miller J., Bergeron R.J. Antitumor activity of N1,N11-bis(ethyl)norspermine against human melanoma xenografts and possible biochemical correlates of drug action. Cancer Res. 1993;53:581–586.
    1. Zhang T., Bauer C., Newman A.C., Uribe A.H., Athineos D., Blyth K., Maddocks O.D.K. Polyamine pathway activity promotes cysteine essentiality in cancer cells. Nat. Metab. 2020;2:1062–1076. doi: 10.1038/s42255-020-0253-2.
    1. Subhi A.L., Diegelman P., Porter C.W., Tang B., Lu Z.J., Markham G.D., Kruger W.D. Methylthioadenosine phosphorylase regulates ornithine decarboxylase by production of downstream metabolites. J. Biol. Chem. 2003;278:49868–49873. doi: 10.1074/jbc.M308451200.
    1. Subhi A.L., Tang B., Balsara B.R., Altomare D.A., Testa J.R., Cooper H.S., Hoffman J.P., Meropol N.J., Kruger W.D. Loss of methylthioadenosine phosphorylase and elevated ornithine decarboxylase is common in pancreatic cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2004;10:7290–7296. doi: 10.1158/1078-0432.CCR-04-0972.
    1. Percudani R., Peracchi A. A genomic overview of pyridoxal-phosphate-dependent enzymes. EMBO Rep. 2003;4:850–854. doi: 10.1038/sj.embor.embor914.
    1. Cheng C.T., Qi Y., Wang Y.C., Chi K.K., Chung Y., Ouyang C., Chen Y.R., Oh M.E., Sheng X., Tang Y., et al. Arginine starvation kills tumor cells through aspartate exhaustion and mitochondrial dysfunction. Commun. Biol. 2018;1:178. doi: 10.1038/s42003-018-0178-4.
    1. Rabinovich S., Adler L., Yizhak K., Sarver A., Silberman A., Agron S., Stettner N., Sun Q., Brandis A., Helbling D., et al. Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis. Nature. 2015;527:379–383. doi: 10.1038/nature15529.
    1. Huang H.Y., Wu W.R., Wang Y.H., Wang J.W., Fang F.M., Tsai J.W., Li S.H., Hung H.C., Yu S.C., Lan J., et al. ASS1 as a novel tumor suppressor gene in myxofibrosarcomas: Aberrant loss via epigenetic DNA methylation confers aggressive phenotypes, negative prognostic impact, and therapeutic relevance. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2013;19:2861–2872. doi: 10.1158/1078-0432.CCR-12-2641.
    1. Bowles T.L., Kim R., Galante J., Parsons C.M., Virudachalam S., Kung H.J., Bold R.J. Pancreatic cancer cell lines deficient in argininosuccinate synthetase are sensitive to arginine deprivation by arginine deiminase. Int. J. Cancer J. 2008;123:1950–1955. doi: 10.1002/ijc.23723.
    1. Li B., Qiu B., Lee D.S., Walton Z.E., Ochocki J.D., Mathew L.K., Mancuso A., Gade T.P., Keith B., Nissim I., et al. Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature. 2014;513:251–255. doi: 10.1038/nature13557.
    1. Szlosarek P.W., Luong P., Phillips M.M., Baccarini M., Stephen E., Szyszko T., Sheaff M.T., Avril N. Metabolic response to pegylated arginine deiminase in mesothelioma with promoter methylation of argininosuccinate synthetase. J. Clin. Oncol. 2013;31:e111–e113. doi: 10.1200/JCO.2012.42.1784.
    1. Long Y., Tsai W.B., Wangpaichitr M., Tsukamoto T., Savaraj N., Feun L.G., Kuo M.T. Arginine deiminase resistance in melanoma cells is associated with metabolic reprogramming, glucose dependence, and glutamine addiction. Mol. Cancer Ther. 2013;12:2581–2590. doi: 10.1158/1535-7163.MCT-13-0302.
    1. Locke M., Ghazaly E., Freitas M.O., Mitsinga M., Lattanzio L., Nigro C.L., Nagano A., Wang J., Chelala C., Szlosarek P., et al. Inhibition of the Polyamine Synthesis Pathway Is Synthetically Lethal with Loss of Argininosuccinate Synthase 1. Cell Rep. 2016;16:1604–1613. doi: 10.1016/j.celrep.2016.06.097.
    1. Ochocki J.D., Khare S., Hess M., Ackerman D., Qiu B., Daisak J.I., Worth A.J., Lin N., Lee P., Xie H., et al. Arginase 2 Suppresses Renal Carcinoma Progression via Biosynthetic Cofactor Pyridoxal Phosphate Depletion and Increased Polyamine Toxicity. Cell Metab. 2018;27:1263–1280.e1266. doi: 10.1016/j.cmet.2018.04.009.
    1. Lou F., Sun Y., Xu Z., Niu L., Wang Z., Deng S., Liu Z., Zhou H., Bai J., Yin Q., et al. Excessive Polyamine Generation in Keratinocytes Promotes Self-RNA Sensing by Dendritic Cells in Psoriasis. Immunity. 2020;53:204–216.e210. doi: 10.1016/j.immuni.2020.06.004.

Source: PubMed

3
Se inscrever