Hesperidin as a Neuroprotective Agent: A Review of Animal and Clinical Evidence

Marziyeh Hajialyani, Mohammad Hosein Farzaei, Javier Echeverría, Seyed Mohammad Nabavi, Eugenio Uriarte, Eduardo Sobarzo-Sánchez, Marziyeh Hajialyani, Mohammad Hosein Farzaei, Javier Echeverría, Seyed Mohammad Nabavi, Eugenio Uriarte, Eduardo Sobarzo-Sánchez

Abstract

Neuroprotection is the preservation of function and networks of neural tissues from damages caused by various agents, as well as neurodegenerative diseases such as Parkinson's, Alzheimer's, Huntington's diseases, and multiple sclerosis. Hesperidin, a flavanone glycoside, is a natural phenolic compound with a wide range of biological effects. Mounting evidence has demonstrated that hesperidin possesses inhibitory effect against development of neurodegenerative diseases. Our review discusses neuropharmacological mechanisms for preventive and therapeutic effects of hesperidin in neurodegenerative diseases. In addition, the review examines clinical evidence confirming its neuroprotective function. Various cellular and animal models specific to neurodegenerative diseases have been conducted to evaluate the underlying neuropharmacological mechanisms of hesperidin. Neuroprotective potential of this flavonoid is mediated by improvement of neural growth factors and endogenous antioxidant defense functions, diminishing neuro-inflammatory and apoptotic pathways. Despite the various preclinical studies on the role of hesperidin in the neurodegenerative diseases, less is known about its definite effect on humans. A limited number of clinical trials showed that hesperidin-enriched dietary supplements can significantly improve cerebral blood flow, cognition, and memory performance. Further clinical trials are also required for confirming neuroprotective efficacy of this natural flavonoid and evaluating its safety profile.

Keywords: Alzheimer’s disease; Huntington’s disease; Parkinson’s disease; hesperidin; neuroprotective mechanisms.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Chemical structures of hesperidin (a) and hesperetin (b).
Figure 2
Figure 2
Theoretical scheme of possible molecular mechanisms underlying the neuroprotective effect of hesperidin.

References

    1. Gao H.-M., Hong J.-S. Why neurodegenerative diseases are progressive: Uncontrolled inflammation drives disease progression. Trend. Immunol. 2008;29:357–365. doi: 10.1016/j.it.2008.05.002.
    1. Uttara B., Singh A.V., Zamboni P., Mahajan R. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Cur. Neuropharmacolo. 2009;7:65–74. doi: 10.2174/157015909787602823.
    1. Dominguez C. Neurodegenerative Diseases. Volume 6 Springer Science & Business Media; Berlin, Germany: 2010.
    1. Kovacs G.G. Concepts and classification of neurodegenerative diseases. Handb. Clin. Neurol. 2017;145:301–307.
    1. Lin M.T., Beal M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443:787–796. doi: 10.1038/nature05292.
    1. Ross C.A., Poirier M.A. Protein aggregation and neurodegenerative disease. Nature Med. 2004;10:S10. doi: 10.1038/nm1066.
    1. Garg A., Garg S., Zaneveld L., Singla A. Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytother. Res. 2001;15:655–669. doi: 10.1002/ptr.1074.
    1. Solanki I., Parihar P., Parihar M.S. Neurodegenerative diseases: From available treatments to prospective herbal therapy. Neurochem. Int. 2016;95:100–108. doi: 10.1016/j.neuint.2015.11.001.
    1. Jellinger K. Cell death mechanisms in neurodegeneration. J. Cell. Molecul. Med. 2001;5:1–17. doi: 10.1111/j.1582-4934.2001.tb00134.x.
    1. Parihar M., Parihar A., Fujita M., Hashimoto M., Ghafourifar P. Mitochondrial association of alpha-synuclein causes oxidative stress. Cell. Mol. Life Sci. 2008;65:1272–1284. doi: 10.1007/s00018-008-7589-1.
    1. Balaban H., Nazıroğlu M., Demirci K., Övey İ.S. The protective role of selenium on scopolamine-induced memory impairment, oxidative stress, and apoptosis in aged rats: The involvement of TRPM2 and TRPV1 channels. Mol. Neurobiol. 2017;54:2852–2868. doi: 10.1007/s12035-016-9835-0.
    1. Prakash J., Chouhan S., Yadav S.K., Westfall S., Rai S.N., Singh S.P. Withania somnifera alleviates parkinsonian phenotypes by inhibiting apoptotic pathways in dopaminergic neurons. Neurochem. Res. 2014;39:2527–2536. doi: 10.1007/s11064-014-1443-7.
    1. Rasool M., Malik A., Qureshi M.S., Manan A., Pushparaj P.N., Asif M., Qazi M.H., Qazi A.M., Kamal M.A., Gan S.H. Recent updates in the treatment of neurodegenerative disorders using natural compounds. Evid. Based. Complement. Alternat. Med. 2014;2014 doi: 10.1155/2014/979730.
    1. Gilgun-Sherki Y., Melamed E., Offen D. Oxidative stress induced-neurodegenerative diseases: The need for antioxidants that penetrate the blood brain barrier. Neuropharmacology. 2001;40:959–975. doi: 10.1016/S0028-3908(01)00019-3.
    1. Andersen J.K. Oxidative stress in neurodegeneration: Cause or consequence? Nat. Med. 2004;10:S18. doi: 10.1038/nrn1434.
    1. Bal-Price A., Matthias A., Brown G.C. Stimulation of the NADPH oxidase in activated rat microglia removes nitric oxide but induces peroxynitrite production. J. Neurochem. 2002;80:73–80. doi: 10.1046/j.0022-3042.2001.00675.x.
    1. Mottay D., Neergheen-Bhujun V.S. Anticholinesterase and antioxidant effects of traditional herbal medicines used in the management of neurodegenerative diseases in mauritius. Arch. Med. Biomed. Res. 2015;2:114–130. doi: 10.4314/ambr.v2i4.2.
    1. Furlan V., Konc J., Bren U. Inverse Molecular Docking as a Novel Approach to Study Anticarcinogenic and Anti-Neuroinflammatory Effects of Curcumin. Molecules. 2018;23:3351. doi: 10.3390/molecules23123351.
    1. Hwang S.L., Shih P.H., Yen G.C. Neuroprotective Effects of Citrus Flavonoids. J. Agric. Food Chem. 2012;60:877–885. doi: 10.1021/jf204452y.
    1. Parhiz H., Roohbakhsh A., Soltani F., Rezaee R., Iranshahi M. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: An updated review of their molecular mechanisms and experimental models. Phytother. Res. 2015;29:323–331. doi: 10.1002/ptr.5256.
    1. Roohbakhsh A., Parhiz H., Soltani F., Rezaee R., Iranshahi M. Neuropharmacological properties and pharmacokinetics of the citrus flavonoids hesperidin and hesperetin—A mini-review. Life Sci. 2014;113:1–6. doi: 10.1016/j.lfs.2014.07.029.
    1. Girdhar S., Girdhar A., Verma S.K., Lather V., Pandita D. Plant derived alkaloids in major neurodegenerative diseases: From animal models to clinical trials. J. Ayurved. Herb. Med. 2015;1:91–100.
    1. Hendriks J.J., de Vries H.E., van der Pol S.M., van den Berg T.K., van Tol E.A., Dijkstra C.D. Flavonoids inhibit myelin phagocytosis by macrophages; a structure–activity relationship study. Biochem. Pharmacol. 2003;65:877–885. doi: 10.1016/S0006-2952(02)01609-X.
    1. Sternberg Z., Chadha K., Lieberman A., Hojnacki D., Drake A., Zamboni P., Rocco P., Grazioli E., Weinstock-Guttman B., Munschauer F. Quercetin and interferon-β modulate immune response (s) in peripheral blood mononuclear cells isolated from multiple sclerosis patients. J. Neuroimmunol. 2008;205:142–147. doi: 10.1016/j.jneuroim.2008.09.008.
    1. Candiracci M., Piatti E., Dominguez-Barragán M.A., García-Antrás D., Morgado B., Ruano D., Gutiérrez J.F., Parrado J., Castaño A. Anti-inflammatory activity of a honey flavonoid extract on lipopolysaccharide-activated N13 microglial cells. J. Agric. Food Chem. 2012;60:12304–12311. doi: 10.1021/jf302468h.
    1. Lau F.C., Bielinski D.F., Joseph J.A. Inhibitory effects of blueberry extract on the production of inflammatory mediators in lipopolysaccharide-activated BV2 microglia. J. Neurosci. Res. 2007;85:1010–1017. doi: 10.1002/jnr.21205.
    1. Park S., Sapkota K., Kim S., Kim H., Kim S. Kaempferol acts through mitogen-activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells. Brit. J. Pharmacol. 2011;164:1008–1025.
    1. Li R., Huang Y.G., Fang D., Le W.D. (−)-Epigallocatechin gallate inhibits lipopolysaccharide-induced microglial activation and protects against inflammation-mediated dopaminergic neuronal injury. J. Neurosci. Res. 2004;78:723–731. doi: 10.1002/jnr.20315.
    1. Vafeiadou K., Vauzour D., Lee H.Y., Rodriguez-Mateos A., Williams R.J., Spencer J.P. The citrus flavanone naringenin inhibits inflammatory signalling in glial cells and protects against neuroinflammatory injury. Arch. Biochem. Biophys. 2009;484:100–109. doi: 10.1016/j.abb.2009.01.016.
    1. Kim H.G., Ju M.S., Ha S.K., Lee H., Lee H., Kim S.Y., Oh M.S. Acacetin protects dopaminergic cells against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neuroinflammation in vitro and in vivo. Biol. Pharm. Bull. 2012;35:1287–1294. doi: 10.1248/bpb.b12-00127.
    1. Farooqui T., Farooqui A.A. Neuroprotective Effects of Phytochemicals in Neurological Disorders. John Wiley & Sons; Hoboken, NJ, USA: 2017.
    1. Okello E.J., Leylabi R., McDougall G.J. Inhibition of acetylcholinesterase by green and white tea and their simulated intestinal metabolites. Food Funct. 2012;3:651–661. doi: 10.1039/c2fo10174b.
    1. Jung M., Park M. Acetylcholinesterase inhibition by flavonoids from Agrimonia pilosa. Molecules. 2007;12:2130–2139. doi: 10.3390/12092130.
    1. Menichini F., Tundis R., Loizzo M.R., Bonesi M., Marrelli M., Statti G.A., Menichini F., Conforti F. Acetylcholinesterase and butyrylcholinesterase inhibition of ethanolic extract and monoterpenes from Pimpinella anisoides V Brig.(Apiaceae) Fitoterapia. 2009;80:297–300. doi: 10.1016/j.fitote.2009.03.008.
    1. Kivrak İ., Duru M.E., Öztürk M., Mercan N., Harmandar M., Topçu G. Antioxidant, anticholinesterase and antimicrobial constituents from the essential oil and ethanol extract of Salvia potentillifolia. Food Chem. 2009;116:470–479. doi: 10.1016/j.foodchem.2009.02.069.
    1. Ahmed F., Ghalib R.M., Sasikala P., Ahmed K.M. Cholinesterase inhibitors from botanicals. Pharmacog. Rev. 2013;7:121.
    1. Orhan I., Şener B. Sustainable Use of Various Amaryllidaceae Plants Against Alzheimer’s Disease. Volume 678. III WOCMAP Congress on Medicinal and Aromatic Plants-Volume 4: Targeted Screening of Medicinal and Aromatic Plants, Economics; Chiang Mai, Thailand: 2003. pp. 59–64.
    1. Jiménez-Aliaga K., Bermejo-Bescós P., Benedí J., Martín-Aragón S. Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life. Sci. 2011;89:939–945. doi: 10.1016/j.lfs.2011.09.023.
    1. Currais A., Prior M., Dargusch R., Armando A., Ehren J., Schubert D., Quehenberger O., Maher P. Modulation of p25 and inflammatory pathways by fisetin maintains cognitive function in Alzheimer’s disease transgenic mice. Aging cell. 2014;13:379–390. doi: 10.1111/acel.12185.
    1. Qin X.-Y., Cheng Y., Yu L.-C. Potential protection of green tea polyphenols against intracellular amyloid beta-induced toxicity on primary cultured prefrontal cortical neurons of rats. Neurosci. Let. 2012;513:170–173. doi: 10.1016/j.neulet.2012.02.029.
    1. Ikan R. Natural Products: A Laboratory Guide. Elsevier; Amsterdam, The Netherlands: 2013.
    1. Kawaguchi K., Kikuchi S., Takayanagi K., Yoshikawa T., Kumazawa Y. Colony stimulating factor-inducing activity of hesperidin. Planta Med. 1999;65:365–366. doi: 10.1055/s-2006-960788.
    1. Bhalla N., Dakwale R. Chemotaxonomy of Indigofera Linn. J. Indian Bot. Soc. 1978;57:180–185.
    1. Pawloska L. Flavonoids of B. pendula Roth and B. obscura Kot leaves. Acta. Soc. Bot. Pol. 1980;493:281–296.
    1. Kokkalou E., Kapetanidis I. Flavonoids of the aerial parts of Acinos suaveolens. Pharm. Acta Helv. 1988;636:170–173.
    1. Arthur H.R., Hui W., Ma C. 127. An examination of the rutaceae of Hong Kong. Part I. Flavonoid glycosides from Zanthoxylum species and the occurrence of optically active hesperetin. J. Chem. Soc. 1956:632–635. doi: 10.1039/jr9560000632.
    1. Devi K.P., Rajavel T., Nabavi S.F., Setzer W.N., Ahmadi A., Mansouri K., Nabavi S.M. Hesperidin: A promising anticancer agent from nature. Ind. Crop Prod. 2015;76:582–589. doi: 10.1016/j.indcrop.2015.07.051.
    1. Roohbakhsh A., Parhiz H., Soltani F., Rezaee R., Iranshahi M. Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sci. 2015;124(Suppl. C):64–74. doi: 10.1016/j.lfs.2014.12.030.
    1. Bartoszewski R., Hering A., Marszałł M., Hajduk J.S., Bartoszewska S., Kapoor N., Kochan K., Ochocka R. Mangiferin has an additive effect on the apoptotic properties of hesperidin in Cyclopia sp. tea extracts. PLoS ONE. 2014;9:e92128. doi: 10.1371/journal.pone.0092128.
    1. Park H., Kim M.-J., Ha E., Chung J.-H. Apoptotic effect of hesperidin through caspase3 activation in human colon cancer cells, SNU-C4. Phytomedicine. 2008;15:147–151. doi: 10.1016/j.phymed.2007.07.061.
    1. Etcheverry S.B., Ferrer E.G., Naso L., Rivadeneira J., Salinas V., Williams P.A.M. Antioxidant effects of the VO (IV) hesperidin complex and its role in cancer chemoprevention. JBIC J. Biol. Inorgan. Chem. 2008;13:435. doi: 10.1007/s00775-007-0332-9.
    1. Lee C.J., Wilson L., Jordan M.A., Nguyen V., Tang J., Smiyun G. Hesperidin suppressed proliferations of both Human breast cancer and androgen-dependent prostate cancer cells. Phytother. Res. 2010;24 doi: 10.1002/ptr.2856.
    1. Park H.J., Ra J., Han M.Y., Chung J.H. Hesperidin induces apoptosis in SNU-668, human gastric cancer cells. Mol. Cell. Toxicol. 2007;3:31–35.
    1. Cincin Z.B., Unlu M., Kiran B., Bireller E.S., Baran Y., Cakmakoglu B. Anti-proliferative, apoptotic and signal transduction effects of hesperidin in non-small cell lung cancer cells. Cell Oncol. 2015;38:195–204. doi: 10.1007/s13402-015-0222-z.
    1. Al-Jasabi S., Abdullah M. The role of antioxidant hesperidin in the attenuation of lung cancer caused by benzo [a] pyrene in Balb/c mice. World Appl. Sci. J. 2013;22:1106–1110.
    1. Julius A., Vedasendiyar R., Devakannan A., Rajaraman S., Rangasamy B., Saravanan V. Effect of Hesperidin for its Anti-Proliferative Activity on Liver Cancer and Cardio Vascular Diseases. Res. J. Pharm. Technol. 2017;10:307–308. doi: 10.5958/0974-360X.2017.00062.2.
    1. Nandakumar N., Balasubramanian M.P. Hesperidin protects renal and hepatic tissues against free radical-mediated oxidative stress during DMBA-induced experimental breast cancer. J. Environ. Pathol. Toxicol. Oncol. 2011;30 doi: 10.1615/JEnvironPatholToxicolOncol.v30.i4.20.
    1. Febriansah R., Dyaningtyas D.P., Nurulita N.A., Meiyanto E., Nugroho A.E. Hesperidin as a preventive resistance agent in MCF–7 breast cancer cells line resistance to doxorubicin. Asia. Pac. J. Trop. Biomed. 2014;4:228–233. doi: 10.1016/S2221-1691(14)60236-7.
    1. Tanaka T., Tanaka T., Tanaka M., Kuno T. Cancer chemoprevention by citrus pulp and juices containing high amounts of β-cryptoxanthin and hesperidin. BioMed. Res. Int. 2011;2012 doi: 10.1155/2012/516981.
    1. Sakata K., Hirose Y., Qiao Z., Tanaka T., Mori H. Inhibition of inducible isoforms of cyclooxygenase and nitric oxide synthase by flavonoid hesperidin in mouse macrophage cell line. Cancer Let. 2003;199:139–145. doi: 10.1016/S0304-3835(03)00386-0.
    1. Brglez Mojzer E., Knez Hrnčič M., Škerget M., Knez Ž., Bren U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules. 2016;21:901. doi: 10.3390/molecules21070901.
    1. Bisset N., Houghton P., Hylands P. The Medicinal Plant Industry. Medicinal Plant Industry. CRC Press; Boca Raton, FL, USA: 1991.
    1. Morii S. Research for vitamin P. J. Biochem. 1939;29:487–501.
    1. Son H.-S., Kim H.-S., Ju J.-S. Effects of rutin and hesperidin on total cholesterol concentration, transaminase and alkaline phosphatase activity in CCl4 treated rats. Appl. Biol. Chem. 1991;34:318–326.
    1. Choi J.S., Yokozawa T., Oura H. Antihyperlipidemic effect of flavonoids from Prunus davidiana. J. Nat. Prod. 1991;54:218–224. doi: 10.1021/np50073a022.
    1. Galati E., Monforte M., Kirjavainen S., Forestieri A., Trovato A., Tripodo M. Biological effects of hesperidin, a citrus flavonoid.(Note I): Antiinflammatory and analgesic activity. Farmaco (Societa Chimica Italiana: 1989) 1994;40:709–712.
    1. Morita O., Sasaki H., Sato S. Calcium antagonists containing phenols. Pat. Jpn. Kokai Tokkyo Koho. 1992;4:822.
    1. Thompson R., Sturtevant M., Bird O. Effect of phosphorylated hesperidin and other flavonoids on fertility in mice. Science. 1953;118:657. doi: 10.1126/science.118.3074.657.
    1. Millman N., Rosen F. Failure of phosphorylated hesperidin to influence fertility in rodents. Science. 1953;118:212–213. doi: 10.1126/science.118.3060.212.
    1. Filho C.B., Fabbro L.D., de Gomes M.G., Goes A.T.R., Souza L.C., Boeira S.P., Jesse C.R. Kappa-opioid receptors mediate the antidepressant-like activity of hesperidin in the mouse forced swimming test. Eur. J. Pharmacol. 2013;698:286–291. doi: 10.1016/j.ejphar.2012.11.003.
    1. Thenmozhi A.J., Raja T.R.W., Janakiraman U., Manivasagam T. Neuroprotective effect of hesperidin on aluminium chloride induced Alzheimer’s disease in Wistar rats. Neurochem. Res. 2015;40:767–776. doi: 10.1007/s11064-015-1525-1.
    1. Cho J. Antioxidant and neuroprotective effects of hesperidin and its aglycone hesperetin. Arch. Pharmacal. Res. 2006;29:699–706. doi: 10.1007/BF02968255.
    1. Tamilselvam K., Braidy N., Manivasagam T., Essa M.M., Prasad N.R., Karthikeyan S., Thenmozhi A.J., Selvaraju S., Guillemin G.J. Neuroprotective effects of hesperidin, a plant flavanone, on rotenone-induced oxidative stress and apoptosis in a cellular model for Parkinson’s disease. Oxid. Med. Cell Longev. 2013;2013 doi: 10.1155/2013/102741.
    1. Kumar A., Chaudhary T., Mishra J. Minocycline modulates neuroprotective effect of hesperidin against quinolinic acid induced Huntington’s disease like symptoms in rats: Behavioral, biochemical, cellular and histological evidences. Eur. J. Pharmacol. 2013;720:16–28. doi: 10.1016/j.ejphar.2013.10.057.
    1. Meyer O.C. Safety and security of Daflon 500 mg in venous insufficiency and in hemorrhoidal disease. Angiology. 1994;45:579–584. doi: 10.1177/000331979404500614.
    1. Knez Hrnčič M., Španinger E., Košir I.J., Knez Ž., Bren U. Hop Compounds: Extraction Techniques, Chemical Analyses, Antioxidative, Antimicrobial, and Anticarcinogenic Effects. Nutrients. 2019;11:257. doi: 10.3390/nu11020257.
    1. Antunes M.S., Goes A.T.R., Boeira S.P., Prigol M., Jesse C.R. Protective effect of hesperidin in a model of Parkinson’s disease induced by 6-hydroxydopamine in aged mice. Nutrition. 2014;30:1415–1422. doi: 10.1016/j.nut.2014.03.024.
    1. Souza L.C., de Gomes M.G., Goes A.T., Del Fabbro L., Carlos Filho B., Boeira S.P., Jesse C.R. Evidence for the involvement of the serotonergic 5-HT 1A receptors in the antidepressant-like effect caused by hesperidin in mice. Prog. Neuro-Psychoph. 2013;40:103–109. doi: 10.1016/j.pnpbp.2012.09.003.
    1. Salem H.R.A., El-Raouf A., Saleh E.M., Shalaby K.A. Influence of hesperidin combined with Sinemet on genetical and biochemical abnormalities in rats suffering from Parkinson’s disease. Life. Sci. J. 2012;9:930–945.
    1. Nagappan P., Krishnamurthy V., Sereen K. Investigation of the neuroprotective effect of hesperidin on behavioural activities in 6-OHDA induced Parkinson model. Int. J. Pharm. Biol. Sci. 2014:570–577.
    1. Tamilselvam K., Nataraj J., Janakiraman U., Manivasagam T., Essa M.M. Antioxidant and anti-inflammatory potential of hesperidin against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced experimental Parkinson’s disease in mice. Int. J. Nutr. Pharm. Neurol. Dis. 2013;3:294.
    1. Nagappan P., Krishnamurthy V. Anti-Parkinson Effect of Hesperidin in Combination with L-DOPA on 6-OHDA Induced Parkinsonism in Wistar Rats-A Neurochemical, Histopathological and Immunohistochemical Analysis. Int. J. Pharm. Tech. Res. 2016;9:266–273.
    1. Santos G., Giraldez-Alvarez L.D., Ávila-Rodriguez M., Capani F., Galembeck E., Neto A.G., Barreto G.E., Andrade B. SUR1 Receptor Interaction with Hesperidin and Linarin Predicts Possible Mechanisms of Action of Valeriana officinalis in Parkinson. Front. Aging Neurosci. 2016;2:97. doi: 10.3389/fnagi.2016.00097.
    1. Wang D., Liu L., Zhu X., Wu W., Wang Y. Hesperidin Alleviates Cognitive Impairment, Mitochondrial Dysfunction and Oxidative Stress in a Mouse Model of Alzheimer’s Disease. Cell Mol. Neurobiol. 2014;34:1209–1221. doi: 10.1007/s10571-014-0098-x.
    1. Badalzadeh R., Mohammadi M., Yousefi B., Farajnia S., Najafi M., Mohammadi S. Involvement of glycogen synthase kinase-3β and oxidation status in the loss of cardioprotection by postconditioning in chronic diabetic male rats. Adv. Pharm. Bull. 2015;5:321. doi: 10.15171/apb.2015.045.
    1. DaRocha-Souto B., Coma M., Perez-Nievas B., Scotton T., Siao M., Sánchez-Ferrer P., Hashimoto T., Fan Z., Hudry E., Barroeta I. Activation of glycogen synthase kinase-3 beta mediates β-amyloid induced neuritic damage in Alzheimer’s disease. Neurobiol. Dis. 2012;45:425–437. doi: 10.1016/j.nbd.2011.09.002.
    1. Justin Thenmozhi A., William Raja T.R., Manivasagam T., Janakiraman U., Essa M.M. Hesperidin ameliorates cognitive dysfunction, oxidative stress and apoptosis against aluminium chloride induced rat model of Alzheimer’s disease. Nutr. Neurosci. 2017;20:360–368. doi: 10.1080/1028415X.2016.1144846.
    1. Li C., Zug C., Qu H., Schluesener H., Zhang Z. Hesperidin ameliorates behavioral impairments and neuropathology of transgenic APP/PS1 mice. Behav. Brain Res. 2015;281(Suppl. C):32–42. doi: 10.1016/j.bbr.2014.12.012.
    1. Ghorbani A., Nazari M., Jeddi-Tehrani M., Zand H. The citrus flavonoid hesperidin induces p53 and inhibits NF-κB activation in order to trigger apoptosis in NALM-6 cells: Involvement of PPARγ-dependent mechanism. Eur. J. Nutr. 2012;51:39–46. doi: 10.1007/s00394-011-0187-2.
    1. Gray C.W., Patel A.J. Regulation of β-amyloid precursor protein isoform mRNAs by transforming growth factor-β1 and interleukin-1β in astrocytes. Mol. Brain Res. 1993;19:251–256. doi: 10.1016/0169-328X(93)90037-P.
    1. Javed H., Vaibhav K., Ahmed M.E., Khan A., Tabassum R., Islam F., Safhi M.M., Islam F. Effect of hesperidin on neurobehavioral, neuroinflammation, oxidative stress and lipid alteration in intracerebroventricular streptozotocin induced cognitive impairment in mice. J. Neurol. Sci. 2015;348:51–59. doi: 10.1016/j.jns.2014.10.044.
    1. Hemanth Kumar B., Dinesh Kumar B., Diwan P.V. Hesperidin, a citrus flavonoid, protects against l-methionine-induced hyperhomocysteinemia by abrogation of oxidative stress, endothelial dysfunction and neurotoxicity in Wistar rats. Pharm. Biol. 2017;55:146–155. doi: 10.1080/13880209.2016.1231695.
    1. Hemanth Kumar B., Dinesh Kumar B., Diwan P.V. Protective effects of natural dietary antioxidants fisetin and hesperidin on chronic mild hyperhomocysteinemia-induced vascular dementia in wistar rats. J. Neurol. Sci. 2017;381:319. doi: 10.1016/j.jns.2017.08.905.
    1. Habibyar A.F., Sharma N., Khurana N. PASS assisted prediction and pharmacological evaluation of hesperidin against scopolamine induced amnesia in mice. Eur. J. Pharmacol. 2016;789(Suppl. C):385–394. doi: 10.1016/j.ejphar.2016.07.013.
    1. Rosas H.D., Lee S.Y., Bender A.C., Zaleta A.K., Vangel M., Yu P., Fischl B., Pappu V., Onorato C., Cha J.-H. Altered white matter microstructure in the corpus callosum in Huntington’s disease: Implications for cortical “disconnection”. Neuroimage. 2010;49:2995–3004. doi: 10.1016/j.neuroimage.2009.10.015.
    1. Rosas H., Liu A., Hersch S., Glessner M., Ferrante R., Salat D., van Der Kouwe A., Jenkins B., Dale A., Fischl B. Regional and progressive thinning of the cortical ribbon in Huntington’s disease. Neurology. 2002;58:695–701. doi: 10.1212/WNL.58.5.695.
    1. Kumar P., Kumar A. Protective effect of hesperidin and naringin against 3-nitropropionic acid induced Huntington’s like symptoms in rats: Possible role of nitric oxide. Behav. Brain Res. 2010;206:38–46. doi: 10.1016/j.bbr.2009.08.028.
    1. Menze E.T., Tadros M.G., Abdel-Tawab A.M., Khalifa A.E. Potential neuroprotective effects of hesperidin on 3-nitropropionic acid-induced neurotoxicity in rats. Neurotoxicology. 2012;33:1265–1275. doi: 10.1016/j.neuro.2012.07.007.
    1. Coull J.A.M., Beggs S., Boudreau D., Boivin D., Tsuda M., Inoue K., Gravel C., Salter M.W., De Koninck Y. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature. 2005;438:1017–1021. doi: 10.1038/nature04223.
    1. Ontaneda D., Thompson A.J., Fox R.J., Cohen J.A. Progressive multiple sclerosis: Prospects for disease therapy, repair, and restoration of function. Lancet. 2017;389:1357–1366. doi: 10.1016/S0140-6736(16)31320-4.
    1. Farzaei M.H., Shahpiri Z., Bahramsoltani R., Najafi F., Rahimi R. Efficacy and Tolerability of Phytomedicines in Multiple Sclerosis Patients: A Review. CNS Drugs. 2017;31:867–889. doi: 10.1007/s40263-017-0466-4.
    1. Minagar A., Shapshak P., Alexander J.S. Dementia and Multiple Sclerosis: Role of Microglia and Astrocytes. Role Glia Neurotox. 2004;263
    1. Muili K.A., Gopalakrishnan S., Meyer S.L., Eells J.T., Lyons J.-A. Amelioration of experimental autoimmune encephalomyelitis in C57BL/6 mice by photobiomodulation induced by 670 nm light. PLoS ONE. 2012;7:e30655. doi: 10.1371/journal.pone.0030655.
    1. Haghmorad D., Mahmoudi M.B., Salehipour Z., Jalayer Z., Rastin M., Kokhaei P., Mahmoudi M. Hesperidin ameliorates immunological outcome and reduces neuroinflammation in the mouse model of multiple sclerosis. J. Neuroimmun. 2017;302:23–33. doi: 10.1016/j.jneuroim.2016.11.009.
    1. Ciftci O., Ozcan C., Kamisli O., Cetin A., Basak N., Aytac B. Hesperidin, a citrus flavonoid, has the ameliorative effects against experimental autoimmune encephalomyelitis (EAE) in a C57BL/J6 mouse model. Neurochem. Res. 2015;40:1111–1120. doi: 10.1007/s11064-015-1571-8.
    1. Ahtiluoto S., Polvikoski T., Peltonen M., Solomon A., Tuomilehto J., Winblad B., Sulkava R., Kivipelto M. Diabetes, Alzheimer disease, and vascular dementia A population-based neuropathologic study. Neurology. 2010;75:1195–1202. doi: 10.1212/WNL.0b013e3181f4d7f8.
    1. Takeda S., Sato N., Uchio-Yamada K., Sawada K., Kunieda T., Takeuchi D., Kurinami H., Shinohara M., Rakugi H., Morishita R. Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Aβ deposition in an Alzheimer mouse model with diabetes. Proc. Natl. Acad. Sci. USA. 2010;107:7036–7041. doi: 10.1073/pnas.1000645107.
    1. Craft S. Alzheimer disease: Insulin resistance and AD--extending the translational path. Nat. Rev. Neurol. 2012;8:360–362. doi: 10.1038/nrneurol.2012.112.
    1. Hsu F.-L., Liu I.-M., Kuo D.-H., Chen W.-C., Su H.-C., Cheng J.-T. Antihyperglycemic effect of puerarin in streptozotocin-induced diabetic rats. J. Nat. Prod. 2003;66:788–792. doi: 10.1021/np0203887.
    1. Ibrahim S.S. Protective effect of hesperidin, a citrus bioflavonoid, on diabetes-induced brain damage in rats. J. Appl. Sci. Res. 2008;4:84.
    1. Khowal S., Mustufa M.M., Chaudhary N.K., Naqvi S.H., Parvez S., Jain S.K., Wajid S. Assessment of the therapeutic potential of hesperidin and proteomic resolution of diabetes-mediated neuronal fluctuations expediting Alzheimer’s disease. RSC Adv. 2015;5:46965–46980. doi: 10.1039/C5RA01977J.
    1. Ashafaq M., Varshney L., Khan M.H.A., Salman M., Naseem M., Wajid S., Parvez S. Neuromodulatory effects of hesperidin in mitigating oxidative stress in streptozotocin induced diabetes. BioMed. Res. Int. 2014;2014 doi: 10.1155/2014/249031.
    1. Visnagri A., Kandhare A.D., Chakravarty S., Ghosh P., Bodhankar S.L. Hesperidin, a flavanoglycone attenuates experimental diabetic neuropathy via modulation of cellular and biochemical marker to improve nerve functions. Pharm. Biol. 2014;52:814–828. doi: 10.3109/13880209.2013.870584.
    1. Miranda H., Sierralta F., Jorquera V., Poblete P., Prieto J., Noriega V. Antinociceptive interaction of gabapentin with minocycline in murine diabetic neuropathy. Inflammopharmacology. 2017;25:91–97. doi: 10.1007/s10787-017-0308-5.
    1. Kakadiya J., Patel D., Shah N. Effect of hesperidin on renal complication in experimentally induced renal damage in diabetic sprague dawley rats. J. Ecobiotech. 2010;2:45–50.
    1. Gustafson-Vickers S.L., Lu V.B., Lai A.Y., Todd K.G., Ballanyi K., Smith P.A. Long-term actions of interleukin-1β on delay and tonic firing neurons in rat superficial dorsal horn and their relevance to central sensitization. Mol. Pain. 2008;4:63. doi: 10.1186/1744-8069-4-63.
    1. Kean R.J., Lamport D.J., Dodd G.F., Freeman J.E., Williams C.M., Ellis J.A., Butler L.T., Spencer J.P. Chronic consumption of flavanone-rich orange juice is associated with cognitive benefits: An 8-wk, randomized, double-blind, placebo-controlled trial in healthy older adults. Am. J. Clin. Nutr. 2015;101:506–514. doi: 10.3945/ajcn.114.088518.
    1. Francis S., Head K., Morris P., Macdonald I. The effect of flavanol-rich cocoa on the fMRI response to a cognitive task in healthy young people. J. Cardiovasc. Pharmacol. 2006;47:2152. doi: 10.1097/00005344-200606001-00018.
    1. Lamport D.J., Pal D., Macready A.L., Barbosa-Boucas S., Fletcher J.M., Williams C.M., Spencer J.P., Butler L.T. The effects of flavanone-rich citrus juice on cognitive function and cerebral blood flow: An acute, randomised, placebo-controlled cross-over trial in healthy, young adults. Br. J. Nutr. 2016;116:2160–2168. doi: 10.1017/S000711451600430X.
    1. Alharbi M.H., Lamport D.J., Dodd G.F., Saunders C., Harkness L., Butler L.T., Spencer J.P. Flavonoid-rich orange juice is associated with acute improvements in cognitive function in healthy middle-aged males. Eur. J. Nutr. 2016;55:2021–2029. doi: 10.1007/s00394-015-1016-9.
    1. Zhang S., Tomata Y., Sugiyama K., Sugawara Y., Tsuji I. Citrus consumption and incident dementia in elderly Japanese: The Ohsaki Cohort 2006 Study. Br. J. Nutr. 2017;117:1174–1180. doi: 10.1017/S000711451700109X.

Source: PubMed

3
Se inscrever