Long-term oncological outcomes after oral cancer surgery using propofol-based total intravenous anesthesia versus sevoflurane-based inhalation anesthesia: A retrospective cohort study

Lingju Miao, Xiang Lv, Can Huang, Ping Li, Yu Sun, Hong Jiang, Lingju Miao, Xiang Lv, Can Huang, Ping Li, Yu Sun, Hong Jiang

Abstract

Background: Previous studies have shown that the anesthetic technique may influence long-term outcomes after cancer surgery. However, the association between the anesthetic technique and long-term oncological outcomes after oral cancer surgery remains unclear. Therefore, we conducted this study to address this gap.

Methods: We reviewed the electronic medical records of patients who underwent elective oral cancer surgery between January 2014 and December 2015. The patients were grouped based on the anesthesia maintenance: either propofol or sevoflurane. Propensity score matching in a 1:1 ratio was performed to deal with the potential confounding effects of baseline characteristics. Univariate and multivariate Cox regression analyses were performed to compare hazard ratios (HRs) and identify the risk factors for death and recurrence. Survival analysis was performed using the Kaplan-Meier method, and survival curves were constructed from the date of surgery to death.

Results: In total, 1347 patients were eligible for analysis, with 343 and 1004 patients in the propofol and sevoflurane groups, respectively. After propensity score matching, 302 patients remained in each group. Kaplan-Meier survival curves demonstrated the 5-year overall and recurrence-free survival rates of 59.3% and 56.0% and 62.7% and 56.5% in the propofol and sevoflurane groups, respectively. There was no significant difference in overall survival or recurrence-free survival between the groups. The multivariate Cox analysis verified this conclusion with HRs of 1.10 and 1.11 for overall survival and recurrence-free survival, respectively, in the sevoflurane group. Older age, advanced tumor-node-metastasis (TNM) stage, and American Society of Anesthesiologists class III were associated with poor overall survival. Patients with advanced TNM stage and poorly differentiated squamous cell carcinoma had a higher recurrence risk than their counterparts.

Conclusion: The overall and recurrence-free survival rates were similar between propofol-based intravenous anesthesia and sevoflurane volatile anesthesia in patients who underwent oral cancer surgery.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Flow diagram of the study…
Fig 1. Flow diagram of the study population.
Fig 2
Fig 2
(A). Overall survival curve for total cohort. (B). Recurrence-free survival curve for total cohort.
Fig 3
Fig 3
(A). Overall survival curve for matched cohort. (B). Recurrence-free survival curve for matched cohort.
Fig 4
Fig 4
(A). Overall survival curve by TNM stage. TNM: tumor-node-metastasis. (B). Overall survival curve by recurrence state. RE: recurrence.

References

    1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30. doi: 10.3322/caac.21166
    1. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al.. Cancer statistics in China, 2015. CA: a cancer journal for clinicians. 2016;66(2):115–32. doi: 10.3322/caac.21338
    1. Hiller JG, Perry NJ, Poulogiannis G, Riedel B, Sloan EK. Perioperative events influence cancer recurrence risk after surgery. Nature reviews Clinical oncology. 2018;15(4):205–18. doi: 10.1038/nrclinonc.2017.194
    1. Alkire BC, Raykar NP, Shrime MG, Weiser TG, Bickler SW, Rose JA, et al.. Global access to surgical care: a modelling study. The Lancet Global health. 2015;3(6):e316–23. doi: 10.1016/S2214-109X(15)70115-4
    1. Snyder GL, Greenberg S. Effect of anaesthetic technique and other perioperative factors on cancer recurrence. British journal of anaesthesia. 2010;105(2):106–15. doi: 10.1093/bja/aeq164
    1. Yuki K. The Role of General Anesthetic Drug Selection in Cancer Outcome. Biomed Res Int. 2021;2021:2563093. doi: 10.1155/2021/2563093
    1. Ren XF, Li WZ, Meng FY, Lin CF. Differential effects of propofol and isoflurane on the activation of T-helper cells in lung cancer patients. Anaesthesia. 2010;65(5):478–82. doi: 10.1111/j.1365-2044.2010.06304.x
    1. Mammoto T, Mukai M, Mammoto A, Yamanaka Y, Hayashi Y, Mashimo T, et al.. Intravenous anesthetic, propofol inhibits invasion of cancer cells. Cancer letters. 2002;184(2):165–70. doi: 10.1016/s0304-3835(02)00210-0
    1. Stollings LM, Jia LJ, Tang P, Dou H, Lu B, Xu Y. Immune Modulation by Volatile Anesthetics. Anesthesiology. 2016;125(2):399–411. doi: 10.1097/ALN.0000000000001195
    1. Markovic SN, Knight PR, Murasko DM. Inhibition of interferon stimulation of natural killer cell activity in mice anesthetized with halothane or isoflurane. Anesthesiology. 1993;78(4):700–6. doi: 10.1097/00000542-199304000-00013
    1. Tazawa K, Koutsogiannaki S, Chamberlain M, Yuki K. The effect of different anesthetics on tumor cytotoxicity by natural killer cells. Toxicology letters. 2017;266:23–31. doi: 10.1016/j.toxlet.2016.12.007
    1. Huang H, Benzonana LL, Zhao H, Watts HR, Perry NJ, Bevan C, et al.. Prostate cancer cell malignancy via modulation of HIF-1α pathway with isoflurane and propofol alone and in combination. British journal of cancer. 2014;111(7):1338–49. doi: 10.1038/bjc.2014.426
    1. Rohwer N, Lobitz S, Daskalow K, Jöns T, Vieth M, Schlag PM, et al.. HIF-1alpha determines the metastatic potential of gastric cancer cells. British journal of cancer. 2009;100(5):772–81. doi: 10.1038/sj.bjc.6604919
    1. Benzonana LL, Perry NJ, Watts HR, Yang B, Perry IA, Coombes C, et al.. Isoflurane, a commonly used volatile anesthetic, enhances renal cancer growth and malignant potential via the hypoxia-inducible factor cellular signaling pathway in vitro. Anesthesiology. 2013;119(3):593–605. doi: 10.1097/ALN.0b013e31829e47fd
    1. Zhang T, Fan Y, Liu K, Wang Y. Effects of different general anaesthetic techniques on immune responses in patients undergoing surgery for tongue cancer. Anaesthesia and intensive care. 2014;42(2):220–7. doi: 10.1177/0310057X1404200209
    1. Wigmore TJ, Mohammed K, Jhanji S. Long-term Survival for Patients Undergoing Volatile versus IV Anesthesia for Cancer Surgery: A Retrospective Analysis. Anesthesiology. 2016;124(1):69–79. doi: 10.1097/ALN.0000000000000936
    1. Wu ZF, Lee MS, Wong CS, Lu CH, Huang YS, Lin KT, et al.. Propofol-based Total Intravenous Anesthesia Is Associated with Better Survival Than Desflurane Anesthesia in Colon Cancer Surgery. Anesthesiology. 2018;129(5):932–41. doi: 10.1097/ALN.0000000000002357
    1. Jun IJ, Jo JY, Kim JI, Chin JH, Kim WJ, Kim HR, et al.. Impact of anesthetic agents on overall and recurrence-free survival in patients undergoing esophageal cancer surgery: A retrospective observational study. Scientific reports. 2017;7(1):14020. doi: 10.1038/s41598-017-14147-9
    1. Yoo S, Lee HB, Han W, Noh DY, Park SK, Kim WH, et al.. Total Intravenous Anesthesia versus Inhalation Anesthesia for Breast Cancer Surgery: A Retrospective Cohort Study. Anesthesiology. 2019;130(1):31–40. doi: 10.1097/ALN.0000000000002491
    1. Oh TK, Kim K, Jheon S, Lee J, Do SH, Hwang JW, et al.. Long-Term Oncologic Outcomes for Patients Undergoing Volatile Versus Intravenous Anesthesia for Non-Small Cell Lung Cancer Surgery: A Retrospective Propensity Matching Analysis. Cancer control: journal of the Moffitt Cancer Center. 2018;25(1):1073274818775360. doi: 10.1177/1073274818775360
    1. Wu WW, Zhang WH, Zhang WY, Liu K, Chen XZ, Zhou ZG, et al.. The long-term survival outcomes of gastric cancer patients with total intravenous anesthesia or inhalation anesthesia: a single-center retrospective cohort study. BMC cancer. 2021;21(1):1193. doi: 10.1186/s12885-021-08946-7
    1. Schmoch T, Jungk C, Bruckner T, Haag S, Zweckberger K, von Deimling A, et al.. The anesthetist’s choice of inhalational vs. intravenous anesthetics has no impact on survival of glioblastoma patients. Neurosurgical review. 2021;44(5):2707–15. doi: 10.1007/s10143-020-01452-7
    1. Chang CY, Wu MY, Chien YJ, Su IM, Wang SC, Kao MC. Anesthesia and Long-term Oncological Outcomes: A Systematic Review and Meta-analysis. Anesthesia and analgesia. 2021;132(3):623–34. doi: 10.1213/ANE.0000000000005237
    1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi: 10.3322/caac.21492
    1. Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral oncology. 2009;45(4–5):309–16. doi: 10.1016/j.oraloncology.2008.06.002
    1. DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, et al.. Cancer treatment and survivorship statistics, 2014. CA: a cancer journal for clinicians. 2014;64(4):252–71. doi: 10.3322/caac.21235
    1. Yap A, Lopez-Olivo MA, Dubowitz J, Hiller J, Riedel B, Global Onco-Anesthesia Research Collaboration G. Anesthetic technique and cancer outcomes: a meta-analysis of total intravenous versus volatile anesthesia. Can J Anaesth. 2019;66(5):546–61. doi: 10.1007/s12630-019-01330-x
    1. Yan T, Zhang GH, Wang BN, Sun L, Zheng H. Effects of propofol/remifentanil-based total intravenous anesthesia versus sevoflurane-based inhalational anesthesia on the release of VEGF-C and TGF-β and prognosis after breast cancer surgery: a prospective, randomized and controlled study. BMC anesthesiology. 2018;18(1):131. doi: 10.1186/s12871-018-0588-3
    1. Luo X, Zhao H, Hennah L, Ning J, Liu J, Tu H, et al.. Impact of isoflurane on malignant capability of ovarian cancer in vitro. British journal of anaesthesia. 2015;114(5):831–9. doi: 10.1093/bja/aeu408
    1. Ferrell JK, Cattano D, Brown RE, Patel CB, Karni RJ. The effects of anesthesia on the morphoproteomic expression of head and neck squamous cell carcinoma: a pilot study. Translational research: the journal of laboratory and clinical medicine. 2015;166(6):674–82. doi: 10.1016/j.trsl.2015.09.001
    1. Liang H, Yang CX, Zhang B, Wang HB, Liu HZ, Lai XH, et al.. Sevoflurane suppresses hypoxia-induced growth and metastasis of lung cancer cells via inhibiting hypoxia-inducible factor-1alpha. J Anesth. 2015;29(6):821–30. doi: 10.1007/s00540-015-2035-7
    1. Yang Y, Hu R, Yan J, Chen Z, Lu Y, Jiang J, et al.. Sevoflurane inhibits the malignant potential of head and neck squamous cell carcinoma via activating the hypoxia‑inducible factor-1α signaling pathway in vitro. International journal of molecular medicine. 2018;41(2):995–1002. doi: 10.3892/ijmm.2017.3306
    1. Lu Y, Wang J, Yan J, Yang Y, Sun Y, Huang Y, et al.. Sevoflurane attenuate hypoxia-induced VEGF level in tongue squamous cell carcinoma cell by upregulating the DNA methylation states of the promoter region. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2015;71:139–45. doi: 10.1016/j.biopha.2015.02.032
    1. Müller-Edenborn B, Roth-Zʼgraggen B, Bartnicka K, Borgeat A, Hoos A, Borsig L, et al.. Volatile anesthetics reduce invasion of colorectal cancer cells through down-regulation of matrix metalloproteinase-9. Anesthesiology. 2012;117(2):293–301. doi: 10.1097/ALN.0b013e3182605df1
    1. Liang H, Gu M, Yang C, Wang H, Wen X, Zhou Q. Sevoflurane inhibits invasion and migration of lung cancer cells by inactivating the p38 MAPK signaling pathway. Journal of anesthesia. 2012;26(3):381–92. doi: 10.1007/s00540-011-1317-y
    1. Liu J, Yang L, Guo X, Jin G, Wang Q, Lv D, et al.. Sevoflurane suppresses proliferation by upregulating microRNA-203 in breast cancer cells. Molecular medicine reports. 2018;18(1):455–60. doi: 10.3892/mmr.2018.8949
    1. Marana E, Russo A, Colicci S, Polidori L, Bevilacqua F, Viviani D, et al.. Desflurane versus sevoflurane: a comparison on stress response. Minerva anestesiologica. 2013;79(1):7–14.
    1. Ricon I, Hanalis-Miller T, Haldar R, Jacoby R, Ben-Eliyahu S. Perioperative biobehavioral interventions to prevent cancer recurrence through combined inhibition of β-adrenergic and cyclooxygenase 2 signaling. Cancer. 2019;125(1):45–56. doi: 10.1002/cncr.31594
    1. Haldar R, Ricon-Becker I, Radin A, Gutman M, Cole SW, Zmora O, et al.. Perioperative COX2 and β-adrenergic blockade improves biomarkers of tumor metastasis, immunity, and inflammation in colorectal cancer: A randomized controlled trial. Cancer. 2020;126(17):3991–4001. doi: 10.1002/cncr.32950
    1. Liu S, Gu X, Zhu L, Wu G, Zhou H, Song Y, et al.. Effects of propofol and sevoflurane on perioperative immune response in patients undergoing laparoscopic radical hysterectomy for cervical cancer. Medicine. 2016;95(49):e5479. doi: 10.1097/MD.0000000000005479
    1. Oh CS, Lee J, Yoon TG, Seo EH, Park HJ, Piao L, et al.. Effect of Equipotent Doses of Propofol versus Sevoflurane Anesthesia on Regulatory T Cells after Breast Cancer Surgery. Anesthesiology. 2018;129(5):921–31. doi: 10.1097/ALN.0000000000002382
    1. Li Q, Zhang L, Han Y, Jiang Z, Wang Q. Propofol reduces MMPs expression by inhibiting NF-kappaB activity in human MDA-MB-231 cells. Biomed Pharmacother. 2012;66(1):52–6. doi: 10.1016/j.biopha.2011.10.006
    1. Meng C, Song L, Wang J, Li D, Liu Y, Cui X. Propofol induces proliferation partially via downregulation of p53 protein and promotes migration via activation of the Nrf2 pathway in human breast cancer cell line MDA-MB-231. Oncol Rep. 2017;37(2):841–8. doi: 10.3892/or.2016.5332
    1. Sessler DI, Riedel B. Anesthesia and Cancer Recurrence: Context for Divergent Study Outcomes. Anesthesiology. 2019;130(1):3–5. doi: 10.1097/ALN.0000000000002506
    1. Maezawa Y, Aoyama T, Kano K, Tamagawa H, Numata M, Hara K, et al.. Impact of the Age-adjusted Charlson comorbidity index on the short- and long-term outcomes of patients undergoing curative gastrectomy for gastric cancer. Journal of Cancer. 2019;10(22):5527–35. doi: 10.7150/jca.35465
    1. Takada Y, Kawashima H, Ohno E, Ishikawa T, Mizutani Y, Iida T, et al.. The impact of the age-adjusted Charlson comorbidity index as a prognostic factor for endoscopic papillectomy in ampullary tumors. Journal of gastroenterology. 2022;57(3):199–207. doi: 10.1007/s00535-022-01853-z
    1. Kahl A, du Bois A, Harter P, Prader S, Schneider S, Heitz F, et al.. Prognostic Value of the Age-Adjusted Charlson Comorbidity Index (ACCI) on Short- and Long-Term Outcome in Patients with Advanced Primary Epithelial Ovarian Cancer. Annals of surgical oncology. 2017;24(12):3692–9. doi: 10.1245/s10434-017-6079-9
    1. Singleton PA, Moss J. Effect of perioperative opioids on cancer recurrence: a hypothesis. Future oncology (London, England). 2010;6(8):1237–42. doi: 10.2217/fon.10.99
    1. Patino MA, Ramirez RE, Perez CA, Feng L, Kataria P, Myers J, et al.. The impact of intraoperative opioid use on survival after oral cancer surgery. Oral oncology. 2017;74:1–7. doi: 10.1016/j.oraloncology.2017.09.006
    1. Cadoni G, Giraldi L, Petrelli L, Pandolfini M, Giuliani M, Paludetti G, et al.. Prognostic factors in head and neck cancer: a 10-year retrospective analysis in a single-institution in Italy. Acta otorhinolaryngologica Italica: organo ufficiale della Societa italiana di otorinolaringologia e chirurgia cervico-facciale. 2017;37(6):458–66.
    1. Fenner M, Vairaktaris E, Nkenke E, Weisbach V, Neukam FW, Radespiel-Tröger M. Prognostic impact of blood transfusion in patients undergoing primary surgery and free-flap reconstruction for oral squamous cell carcinoma. Cancer. 2009;115(7):1481–8. doi: 10.1002/cncr.24132
    1. Bao X, Liu F, Lin J, Chen Q, Chen L, Chen F, et al.. Nutritional assessment and prognosis of oral cancer patients: a large-scale prospective study. BMC cancer. 2020;20(1):146. doi: 10.1186/s12885-020-6604-2
    1. Matthias C, Harréus U, Strange R. Influential factors on tumor recurrence in head and neck cancer patients. European archives of oto-rhino-laryngology: official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS): affiliated with the German Society for Oto-Rhino-Laryngology—Head and Neck Surgery. 2006;263(1):37–42. doi: 10.1007/s00405-005-0947-9
    1. Dillekås H, Demicheli R, Ardoino I, Jensen SAH, Biganzoli E, Straume O. The recurrence pattern following delayed breast reconstruction after mastectomy for breast cancer suggests a systemic effect of surgery on occult dormant micrometastases. Breast cancer research and treatment. 2016;158(1):169–78. doi: 10.1007/s10549-016-3857-1
    1. Hsieh TY, Chang KP, Lee SS, Chang CH, Lai CH, Wu YC, et al.. Free flap reconstruction in patients with advanced oral squamous cell carcinoma: analysis of patient survival and cancer recurrence. Microsurgery. 2012;32(8):598–604. doi: 10.1002/micr.22009

Source: PubMed

3
Se inscrever