Regulatory T Cells in Pregnancy Adverse Outcomes: A Systematic Review and Meta-Analysis

Samantha Green, Marina Politis, Kathrine S Rallis, Alba Saenz de Villaverde Cortabarria, Athina Efthymiou, Nicoleta Mureanu, Kathryn V Dalrymple, Cristiano Scottà, Giovanna Lombardi, Rachel M Tribe, Kypros H Nicolaides, Panicos Shangaris, Samantha Green, Marina Politis, Kathrine S Rallis, Alba Saenz de Villaverde Cortabarria, Athina Efthymiou, Nicoleta Mureanu, Kathryn V Dalrymple, Cristiano Scottà, Giovanna Lombardi, Rachel M Tribe, Kypros H Nicolaides, Panicos Shangaris

Abstract

Background: Several studies report the role of Regulatory T-cells (Tregs) in the pathophysiology of pregnancy adverse outcomes.

Objective: The aim of this systematic review and meta-analysis was to determine whether there is an association between regulatory T cell levels and pregnancy adverse outcomes (PAOs), including pre-eclampsia and preterm birth (PTB).

Method: Literature searches were conducted in PubMed/MEDLINE, Embase, and Cochrane CENTRAL databases. Inclusion criteria were original articles (clinical trials, case-control studies and cohort studies) comparing Tregs, sampled from the decidua or maternal blood, in healthy pregnant women versus women with pre-eclampsia or PTB. The outcome was standardised mean difference (SMD) in Treg numbers. The tau-squared (Tau²), inconsistency index (I²), and chi-squared (χ²) test quantified heterogeneity among different studies. Analyses were performed in RevMan software V.5.4.0 for Mac using a random-effects model with outcome data reported with 95% confidence intervals (CI). This study was prospectively registered with PROSPERO (CRD42020205469). PRISMA guidelines were followed.

Results: From 4,085 unique studies identified, 36 were included in qualitative synthesis, and 34 were included in quantitative synthesis (meta-analysis). In total, there were 1,783 participants in these studies: healthy controls=964, pre-eclampsia=759, PTB=60. Thirty-two studies compared Tregs in healthy pregnant women and women with pre-eclampsia, and 30 of these sampled Tregs from peripheral blood showing significantly higher Treg numbers in healthy pregnancies (SMD; 1.46; 95% CI, 1.03-1.88; I²=92%). Four studies sampled Tregs from the maternal decidua showing higher Tregs in healthy pregnancies (SMD, 0.76; 95% CI, -0.13-1.65; I²=84%). No difference was found in the number of Tregs between early versus late pre-eclampsia (SMD,-1.17; 95% CI, -2.79-0.44; I²=94%). For PTB, two studies compared Tregs sampled from the peripheral blood with a tendency for higher Tregs in healthy pregnancies but this did not reach significance (SMD, 2.18; 95% CI, -1.34-5.70; I²=96%). Subcohort analysis using Treg analysis (flow cytometry vs. qPCR vs. immunofluorescence tissue staining) showed similar associations.

Conclusion: Lower Tregs in pregnancy, sampled from the maternal peripheral blood, are associated with pre-eclampsia. There is a need for further studies to confirm a relationship between low Tregs and PTB. As the precise mechanisms by which Tregs may mediate pre-eclampsia and PTB remain unclear, further fundamental research is necessary to elucidate the underlying processes and highlight the causative link.

Systematic review registration: PROSPERO, identifier CRD42020205469.

Keywords: high blood pressure (hypertension); pre-eclampsia; pre-term birth (PTB); pregnancy; pregnancy adverse outcomes (PAO); regulatory T cells (Tregs).

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Green, Politis, Rallis, Saenz de Villaverde Cortabarria, Efthymiou, Mureanu, Dalrymple, Scottà, Lombardi, Tribe, Nicolaides and Shangaris.

Figures

Figure 1
Figure 1
PRISMA flowchart of study selection.
Figure 2
Figure 2
Standardized mean difference of T regulatory cell numbers in the peripheral blood of healthy pregnant women and women with pre-eclampsia, in subgroups according to ethnicity, age and method of analysis. CI, confidence interval; SD, standard deviation; Std. Mean Difference, standardised mean difference; IV, inverse variance.
Figure 3
Figure 3
Standardized mean difference of T regulatory cell numbers in the decidua of healthy pregnant women and women with pre-eclampsia. CI, confidence interval; SD, standard deviation; Std. Mean Difference, standardised mean difference; IV, inverse variance.
Figure 4
Figure 4
Standardized mean difference of T regulatory cell numbers in the maternal blood of women with early and late pre-eclampsia. CI, confidence interval; SD, standard deviation; Std. Mean Difference, standardised mean difference; IV, inverse variance.
Figure 5
Figure 5
Standardized mean difference of T regulatory cell numbers in the peripheral blood of healthy pregnant women and women who underwent preterm birth (PTB). PTB, preterm birth; CI, confidence interval; SD, standard deviation; Std. Mean Difference, standardised mean difference; IV, inverse variance.
Figure 6
Figure 6
Funnel plot for studies looking at the number of Tregs in the maternal blood included in the subgroup meta-analysis (n=30). SE, standard error; SMD, standardised mean difference.

References

    1. Preterm Birth. Available at: (Accessed April 26, 2021).
    1. Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and Causes of Preterm Birth. Lancet (2008) 371:75–84. doi: 10.1016/S0140-6736(08)60074-4
    1. Moutquin J. Classification and Heterogeneity of Preterm Birth. BJOG Int J Obstet Gynaecol (2003) 110:30–3. doi: 10.1016/S1470-0328(03)00021-1
    1. Agrawal V, Hirsch E. Intrauterine Infection and Preterm Labor. Semin Fetal Neonatal Med (2012) 17:12–9. doi: 10.1016/j.siny.2011.09.001
    1. Lockwood CJ. The Diagnosis of Preterm Labor and the Prediction of Preterm Delivery. Clin Obstet Gynecol (1995) 38:675–87. doi: 10.1097/00003081-199538040-00002
    1. Romero R, Espinoza J, Kusanovic J, Gotsch F, Hassan S, Erez O, et al. . The Preterm Parturition Syndrome. BJOG Int J Obstet Gynaecol (2006) 113:17–42. doi: 10.1111/j.1471-0528.2006.01120.x
    1. Sibai B, Dekker G, Kupferminc M. Pre-Eclampsia. Lancet (2005) 365:785–99. doi: 10.1016/S0140-6736(05)17987-2
    1. Duley L. The Global Impact of Pre-Eclampsia and Eclampsia. Semin Perinatol (2009) 33:130–7. doi: 10.1053/j.semperi.2009.02.010
    1. Lisonkova S, Joseph KS. Incidence of Preeclampsia: Risk Factors and Outcomes Associated With Early- Versus Late-Onset Disease. Am J Obstet Gynecol (2013) 209:544.e1–e12. doi: 10.1016/j.ajog.2013.08.019
    1. Brown MA, Magee LA, Kenny LC, Karumanchi SA, McCarthy FP, Saito S, et al. . Hypertensive Disorders of Pregnancy. Hypertension (2018) 72:24–43. doi: 10.1161/HYPERTENSIONAHA.117.10803
    1. Phipps E, Prasanna D, Brima W, Jim B. Preeclampsia: Updates in Pathogenesis, Definitions, and Guidelines. Clin J Am Soc Nephrol (2016) 11:1102–13. doi: 10.2215/CJN.12081115
    1. Steegers EA, von Dadelszen P, Duvekot JJ, Pijnenborg R. Pre-Eclampsia. Lancet (2010) 376:631–44. doi: 10.1016/S0140-6736(10)60279-6
    1. Rolnik DL, Wright D, Poon LC, O’Gorman N, Syngelaki A, de Paco Matallana C, et al. . Aspirin Versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia. N Engl J Med (2017) 377:613–22. doi: 10.1056/NEJMoa1704559
    1. American College of Obstetricians and Gynecologists . Gestational Hypertension and Preeclampsia. Obstet Gynecol (2020) 135:1492–5. doi: 10.1097/AOG.0000000000003892
    1. Rackaityte E, Halkias J. Mechanisms of Fetal T Cell Tolerance and Immune Regulation. Front Immunol (2020) 11:588. doi: 10.3389/fimmu.2020.00588
    1. Miller D, Gershater M, Slutsky R, Romero R, Gomez-Lopez N. Maternal and Fetal T Cells in Term Pregnancy and Preterm Labor. Cell Mol Immunol (2020) 17:693–704. doi: 10.1038/s41423-020-0471-2
    1. Burt TD. Fetal Regulatory T Cells and Peripheral Immune Tolerance In Utero : Implications for Development and Disease. Am J Reprod Immunol (2013) 69:346–58. doi: 10.1111/aji.12083
    1. Velásquez-Lopera MM, Eaton VL, Lerret NM, Correa LA, Decresce RP, García LF, et al. . Induction of Transplantation Tolerance by Allogeneic Donor-Derived CD4(+)CD25(+)Foxp3(+) Regulatory T Cells. Transpl Immunol (2008) 19:127–35. doi: 10.1016/j.trim.2008.02.003
    1. van der Net JB, Bushell A, Wood KJ, Harden PN. Regulatory T Cells: First Steps of Clinical Application in Solid Organ Transplantation. Transpl Int (2016) 29:3–11. doi: 10.1111/tri.12608
    1. Romano M, Tung SL, Smyth LA, Lombardi G. Treg Therapy in Transplantation: A General Overview. Transpl Int (2017) 30:745–53. doi: 10.1111/tri.12909
    1. Tsuda S, Nakashima A, Shima T, Saito S. New Paradigm in the Role of Regulatory T Cells During Pregnancy. Front Immunol (2019) 10:573. doi: 10.3389/fimmu.2019.00573
    1. Krop J, Heidt S, Claas FHJ, Eikmans M. Regulatory T Cells in Pregnancy: It Is Not All About Foxp3. Front Immunol (2020) 11:1182. doi: 10.3389/fimmu.2020.01182
    1. Salvany-Celades M, van der Zwan A, Benner M, Setrajcic-Dragos V, Bougleux Gomes HA, Iyer V, et al. . Three Types of Functional Regulatory T Cells Control T Cell Responses at the Human Maternal-Fetal Interface. Cell Rep (2019) 27:2537–2547.e5. doi: 10.1016/j.celrep.2019.04.109
    1. Miller D, Gershater M, Slutsky R, Romero R, Gomez-Lopez N. Maternal and Fetal T Cells in Term Pregnancy and Preterm Labor. Cell Mol Immunol (2020) 17:693–704. doi: 10.1038/s41423-020-0471-2
    1. Hsu P, Santner-Nanan B, Dahlstrom JE, Fadia M, Chandra A, Peek M, et al. . Altered Decidual DC-SIGN+ Antigen-Presenting Cells and Impaired Regulatory T-Cell Induction in Preeclampsia. Am J Pathol (2012) 181:2149–60. doi: 10.1016/j.ajpath.2012.08.032
    1. Santner-Nanan B, Peek MJ, Khanam R, Richarts L, Zhu E, Fazekas de St Groth B, et al. . Systemic Increase in the Ratio Between Foxp3 + and IL-17-Producing CD4 + T Cells in Healthy Pregnancy But Not in Preeclampsia. J Immunol (2009) 183:7023–30. doi: 10.4049/jimmunol.0901154
    1. Tsuda S, Zhang X, Hamana H, Shima T, Ushijima A, Tsuda K, et al. . Clonally Expanded Decidual Effector Regulatory T Cells Increase in Late Gestation of Normal Pregnancy, But Not in Preeclampsia, in Humans. Front Immunol (2018) 9:1934. doi: 10.3389/fimmu.2018.01934
    1. Sasaki Y, Darmochwal-Kolarz D, Suzuki D, Sakai M, Ito M, Shima T, et al. . Proportion of Peripheral Blood and Decidual CD4+ CD25 Bright Regulatory T Cells in Pre-Eclampsia. Clin Exp Immunol (2007) 149:139–45. doi: 10.1111/j.1365-2249.2007.03397.x
    1. Quinn KH, Parast MM. Decidual Regulatory T Cells in Placental Pathology and Pregnancy Complications. Am J Reprod Immunol (2013) 69:533–8. doi: 10.1111/aji.12077
    1. Robertson SA, Green ES, Care AS, Moldenhauer LM, Prins JR, Louise Hull M, et al. . Therapeutic Potential of Regulatory T Cells in Preeclampsia-Opportunities and Challenges. Front Immunol (2019) 10:478. doi: 10.3389/fimmu.2019.00478
    1. Inada K, Shima T, Ito M, Ushijima A, Saito S. Helios-Positive Functional Regulatory T Cells Are Decreased in Decidua of Miscarriage Cases With Normal Fetal Chromosomal Content. J Reprod Immunol (2015) 107:10–9. doi: 10.1016/j.jri.2014.09.053
    1. Aghaeepour N, Ganio EA, Mcilwain D, Tsai AS, Tingle M, Van Gassen S, et al. . An Immune Clock of Human Pregnancy. Sci Immunol (2017) 2:eaan2946. doi: 10.1126/sciimmunol.aan2946
    1. Rackaityte E, Halkias J. Mechanisms of Fetal T Cell Tolerance and Immune Regulation. Front Immunol (2020) 11:588. doi: 10.3389/fimmu.2020.00588
    1. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. . The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ (2021) 372:n71. doi: 10.1136/bmj.n71
    1. Kapadia MZ, Park CK, Beyene J, Giglia L, Maxwell C, McDonald SD. Weight Loss Instead of Weight Gain Within the Guidelines in Obese Women During Pregnancy: A Systematic Review and Meta-Analyses of Maternal and Infant Outcomes. PloS One (2015) 10:e0132650. doi: 10.1371/journal.pone.0132650
    1. Luchini C, Stubbs B, Solmi M, Veronese N. Assessing the Quality of Studies in Meta-Analyses: Advantages and Limitations of the Newcastle Ottawa Scale. World J Meta-Analysis (2017) 5:80. doi: 10.13105/wjma.v5.i4.80
    1. Ryan R. Planning the Analysis at Protocol Stage. Cochrane Consum Commun Rev (2013) 2016:2–9.
    1. Begg CB, Mazumdar M. Operating Characteristics of a Rank Correlation Test for Publication Bias. Biometrics (1994) 50:1088–101. doi: 10.2307/2533446
    1. Egger M, Davey Smith G, Schneider M, Minder C. Bias in Meta-Analysis Detected by a Simple, Graphical Test. BMJ (1997) 315:629–34. doi: 10.1136/bmj.315.7109.629
    1. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. . Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 Statement. Syst Rev (2015) 4:1. doi: 10.1186/2046-4053-4-1
    1. Toldi G, Rigó J, Stenczer B, Vásárhelyi B, Molvarec A. Increased Prevalence of IL-17-Producing Peripheral Blood Lymphocytes in Pre-Eclampsia. Am J Reprod Immunol (2011) 66:223–9. doi: 10.1111/j.1600-0897.2011.00987.x
    1. Darmochwal-Kolarz D, Kludka-Sternik M, Tabarkiewicz J, Kolarz B, Rolinski J, Leszczynska-Gorzelak B, et al. . The Predominance of Th17 Lymphocytes and Decreased Number and Function of Treg Cells in Preeclampsia. J Reprod Immunol (2012) 93:75–81. doi: 10.1016/j.jri.2012.01.006
    1. Nguyen TA, Kahn DA, Loewendorf AI. Maternal—Fetal Rejection Reactions Are Unconstrained in Preeclamptic Women. PloS One (2017) 12:e0188250. doi: 10.1371/journal.pone.0188250
    1. Ribeiro VR, Romao-Veiga M, Romagnoli GG, Matias ML, Nunes PR, Borges VTM, et al. . Association Between Cytokine Profile and Transcription Factors Produced by T-Cell Subsets in Early- and Late-Onset Pre-Eclampsia. Immunology (2017) 152:163–73. doi: 10.1111/imm.12757
    1. Zhang Z, Liu H, Shi Y, Xu N, Wang Y, Li A, et al. . Increased Circulating Th22 Cells Correlated With Th17 Cells in Patients With Severe Preeclampsia. Hypertens Pregnancy (2017) 36:100–7. doi: 10.1080/10641955.2016.1239737
    1. Salazar Garcia MD, Mobley Y, Henson J, Davies M, Skariah A, Dambaeva S, et al. . Early Pregnancy Immune Biomarkers in Peripheral Blood may Predict Preeclampsia. J Reprod Immunol (2018) 125:25–31. doi: 10.1016/j.jri.2017.10.048
    1. Chen J, Zhao L, Wang D, Xu Y, Gao H, Tan W, et al. . Contribution of Regulatory T�cells to Immune Tolerance and Association of microRNA−210 and Foxp3 in Preeclampsia. Mol Med Rep (2018) 19:1150–8. doi: 10.3892/mmr.2018.9733
    1. Zare M, Doroudchi M, Gharesi-Fard B. Altered Frequencies of CD4+ CD25+ Foxp3+ and CD8+ CD25+ Foxp3+ Regulatory T Cells in Pre-Eclampsia. Iran J Allergy Asthma Immunol (2018) 17:540–7.
    1. Wang Y, Liu Y, Shu C, Wan J, Shan Y, Zhi X, et al. . Inhibition of Pregnancy-Associated Granulocytic Myeloid-Derived Suppressor Cell Expansion and Arginase-1 Production in Preeclampsia. J Reprod Immunol (2018) 127:48–54. doi: 10.1016/j.jri.2018.05.002
    1. Daraei N, Ghafourian M, Ghadiri A, Amari A, Najafian M, Rokhafrooz S. Evaluation of Exhausted Regulatory T Cells in Preeclampsia. Iran J Immunol (2019) 16:163–9. doi: 10.22034/IJI.2019.80259
    1. Ding H, Dai Y, Lei Y, Wang Z, Liu D, Li R, et al. . Upregulation of CD81 in Trophoblasts Induces an Imbalance of Treg/Th17 Cells by Promoting IL-6 Expression in Preeclampsia. Cell Mol Immunol (2019) 16:302–12. doi: 10.1038/s41423-018-0186-9
    1. Eghbal-Fard S, Yousefi M, Heydarlou H, Ahmadi M, Taghavi S, Movasaghpour A, et al. . The Imbalance of Th17/Treg Axis Involved in the Pathogenesis of Preeclampsia. J Cell Physiol (2019) 234:5106–16. doi: 10.1002/jcp.27315
    1. Toldi G, Saito S, Shima T, Halmos A, Veresh Z, Vásárhelyi B, et al. . The Frequency of Peripheral Blood CD4+ CD25high FoxP3+ and CD4+ CD25- FoxP3+ Regulatory T Cells in Normal Pregnancy and Pre-Eclampsia. Am J Reprod Immunol (2012) 68:175–80. doi: 10.1111/j.1600-0897.2012.01145.x
    1. Hu M, Eviston D, Hsu P, Mariño E, Chidgey A, Santner-Nanan B, et al. . Decreased Maternal Serum Acetate and Impaired Fetal Thymic and Regulatory T Cell Development in Preeclampsia. Nat Commun (2019) 10:3031. doi: 10.1038/s41467-019-10703-1
    1. Li J, Huang L, Wang S, Zhang Z. The Prevalence of Regulatory T and Dendritic Cells is Altered in Peripheral Blood of Women With Pre-Eclampsia. Pregnancy Hypertens (2019) 17:233–40. doi: 10.1016/j.preghy.2019.07.003
    1. Zare M, Namavar Jahromi B, Gharesi-Fard B. Analysis of the Frequencies and Functions of CD4+CD25+CD127low/neg, CD4+HLA-G+, and CD8+HLA-G+ Regulatory T Cells in Pre-Eclampsia. J Reprod Immunol (2019) 133:43–51. doi: 10.1016/j.jri.2019.06.002
    1. Meggyes M, Miko E, Lajko A, Csiszar B, Sandor B, Matrai P, et al. . Involvement of the PD-1/PD-L1 Co-Inhibitory Pathway in the Pathogenesis of the Inflammatory Stage of Early-Onset Preeclampsia. Int J Mol Sci (2019) 20:583. doi: 10.3390/ijms20030583
    1. Darmochwal-Kolarz D, Saito S, Tabarkiewicz J, Kolarz B, Rolinski J, Leszczynska-Gorzelak B, et al. . Apoptosis Signaling is Altered in CD4 +CD25 +FoxP3 + T Regulatory Lymphocytes in Pre-Eclampsi. Int J Mol Sci (2012) 13:6548–60. doi: 10.3390/ijms13066548
    1. Zeng B, Kwak-Kim J, Liu Y, Liao A-H. Treg Cells Are Negatively Correlated With Increased Memory B Cells in Pre-Eclampsia While Maintaining Suppressive Function on Autologous B-Cell Proliferation. Am J Reprod Immunol (2013) 70:454–63. doi: 10.1111/aji.12154
    1. Moreno-Eutimio MA, Tovar-Rodríguez JM, Vargas-Avila K, Nieto-Velázquez NG, Frías-De-León MG, Sierra-Martinez M, et al. . Increased Serum Levels of Inflammatory Mediators and Low Frequency of Regulatory T Cells in the Peripheral Blood of Preeclamptic Mexican Women. BioMed Res Int (2014) 2014:1–8. doi: 10.1155/2014/413249
    1. Nagayama S, Ohkuchi A, Shirasuna K, Takahashi K, Suzuki H, Hirashima C, et al. . The Frequency of Peripheral Blood CD4 + FoxP3 + Regulatory T Cells in Women With Pre-Eclampsia and Those With High-Risk Factors for Pre-Eclampsia. Hypertens Pregnancy (2015) 34:443–55. doi: 10.3109/10641955.2015.1065884
    1. Toldi G, Vásárhelyi ZE, Rigó J, Orbán C, Tamássy Z, Bajnok A, et al. . Prevalence of Regulatory T-Cell Subtypes in Preeclampsia. Am J Reprod Immunol (2015) 74:110–5. doi: 10.1111/aji.12380
    1. Wagner MI, Jöst M, Spratte J, Schaier M, Mahnke K, Meuer S, et al. . Differentiation of ICOS + and ICOS – Recent Thymic Emigrant Regulatory T Cells (RTE T Regs ) During Normal Pregnancy, Pre-Eclampsia and HELLP Syndrome. Clin Exp Immunol (2016) 183:129–42. doi: 10.1111/cei.12693
    1. Vianna P, Mondadori AG, Bauer ME, Dornfeld D, Chies JAB. HLA-G and CD8+ Regulatory T Cells in the Inflammatory Environment of Pre-Eclampsia. Reproduction (2016) 152:741–51. doi: 10.1530/REP-15-0608
    1. Jianjun Z, Yali H, Zhiqun W, Mingming Z, Xia Z. ORIGINAL ARTICLE: Imbalance of T-Cell Transcription Factors Contributes to the Th1 Type Immunity Predominant in Pre-Eclampsia. Am J Reprod Immunol (2009) 63:38–45. doi: 10.1111/j.1600-0897.2009.00763.x
    1. Cao W, Wang X, Chen T, Zhu H, Xu W, Zhao S, et al. . The Expression of Notch/Notch Ligand, IL-35, IL-17, and Th17/Treg in Preeclampsia. Dis Markers (2015) 2015:1–9. doi: 10.1155/2015/316182
    1. Wang J, Wen ZQ, Cheng X-Y, Mei TY, Chen Z-F, Su L-X. siRNA-Mediated Knockdown of T-Bet and Rorγt Contributes to Decreased Inflammation in Pre-Eclampsia. Mol Med Rep (2017) 16:6368–75. doi: 10.3892/mmr.2017.7348
    1. Yu J, Qian L, Wu F, Li M, Chen W, Wang H. Decreased Frequency of Peripheral Blood CD8 + CD25 + FoxP3 + Regulatory T Cells Correlates With IL-33 Levels in Pre-Eclampsia. Hypertens Pregnancy (2017) 36:217–25. doi: 10.1080/10641955.2017.1302470
    1. Jianjun Z, Yali H, Zhiqun W, Mingming Z, Xia Z. ORIGINAL ARTICLE: Imbalance of T-Cell Transcription Factors Contributes to the Th1 Type Immunity Predominant in Pre-Eclampsia. Am J Reprod Immunol (2009) 63:38–45. doi: 10.1111/j.1600-0897.2009.00763.x
    1. Liu X, Liu Y, Ding M, Wang X. Reduced Expression of Indoleamine 2,3-Dioxygenase Participates in Pathogenesis of Preeclampsia via Regulatory T Cells. Mol Med Rep (2011) 4:53–8. doi: 10.3892/mmr.2010.395
    1. Orlovic Vlaho M, Tomic V, Vukojevic K, Vasilj A, Pejic R, Lesko J, et al. . CD25+FOXP3+ and CD4+CD25+ Cells Distribution in Decidual Departments of Women With Severe and Mild Pre-Eclampsia: Comparison With Healthy Pregnancies. Am J Reprod Immunol (2020) 84:1–8. doi: 10.1111/aji.13281
    1. Xiong H, Zhou C, Qi G. Proportional Changes of CD4+CD25+Foxp3+ Regulatory T Cells in Maternal Peripheral Blood During Pregnancy and Labor at Term and Preterm. Clin Investig Med (2010) 33:422. doi: 10.25011/cim.v33i6.14594
    1. Koucký M, Malíčková K, Cindrová-Davies T, Germanová A, Pařízek A, Kalousová M, et al. . Low Levels of Circulating T-Regulatory Lymphocytes and Short Cervical Length Are Associated With Preterm Labor. J Reprod Immunol (2014) 106:110–7. doi: 10.1016/j.jri.2014.04.001
    1. Han X, Ghaemi MS, Ando K, Peterson LS, Ganio EA, Tsai AS, et al. . Differential Dynamics of the Maternal Immune System in Healthy Pregnancy and Preeclampsia. Front Immunol (2019) 10:1305. doi: 10.3389/fimmu.2019.01305
    1. Schober L, Radnai D, Schmitt E, Mahnke K, Sohn C, Steinborn A. Term and Preterm Labor: Decreased Suppressive Activity and Changes in Composition of the Regulatory T-Cell Pool. Immunol Cell Biol (2012) 90:935–44. doi: 10.1038/icb.2012.33
    1. Whirledge S, Cidlowski JA. Glucocorticoids and Reproduction: Traffic Control on the Road to Reproduction. Trends Endocrinol Metab (2017) 28:399–415. doi: 10.1016/j.tem.2017.02.005
    1. Rolnik DL, Wright D, Poon LC, O’Gorman N, Syngelaki A, de Paco Matallana C, et al. . Aspirin Versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia. N Engl J Med (2017) 377:613–22. doi: 10.1056/NEJMoa1704559
    1. Wagner N-M, Brandhorst G, Czepluch F, Lankeit M, Eberle C, Herzberg S, et al. . Circulating Regulatory T Cells Are Reduced in Obesity and may Identify Subjects at Increased Metabolic and Cardiovascular Risk. Obesity (2013) 21:461–8. doi: 10.1002/oby.20087

Source: PubMed

3
Se inscrever