Coexpression of Helios in Foxp3+ Regulatory T Cells and Its Role in Human Disease

Wen-Qing Yu, Ning-Fei Ji, Cheng-Jing Gu, Yan-Li Wang, Mao Huang, Ming-Shun Zhang, Wen-Qing Yu, Ning-Fei Ji, Cheng-Jing Gu, Yan-Li Wang, Mao Huang, Ming-Shun Zhang

Abstract

Regulatory T cells (Tregs) expressing the Foxp3 transcription factor are indispensable for the maintenance of immune system homeostasis. Tregs may lose Foxp3 expression or be reprogrammed into cells that produce proinflammatory cytokines, for example, Th1-like Tregs, Th2-like Tregs, Th17-like Tregs, and Tfh-like Tregs. Accordingly, selective therapeutic molecules that manipulate Treg lineage stability and/or functional activity might have the potential to improve aberrant immune responses in human disorders. In particular, the transcription factor Helios has emerged as an important marker and modulator of Tregs. Therefore, the current review focuses on recent findings on the expression, function, and mechanisms of Helios, as well as the patterns of Foxp3+ Tregs coexpressing Helios in various human disorders, in order to explore the potential of Helios for the improvement of many immune-related diseases. The studies were selected from PubMed using the library of the Nanjing Medical University in this review. The findings of the included studies indicate that Helios expression stabilizes the phenotype and function of Foxp3+ Tregs in certain inflammatory environments. Further, Tregs coexpressing Helios and Foxp3 were identified as a specific phenotype of stronger suppressor immune cells in both humans and animal models. Importantly, there is ample evidence that Helios-expressing Foxp3+ Tregs are relevant to various human disorders, including connective tissue diseases, infectious diseases, solid organ transplantation-related immunity, and cancer. Thus, Helios+Foxp3+CD4+ Tregs could be a valuable target in human diseases, and their potential should be explored further in the clinical setting.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Copyright © 2021 Wen-qing Yu et al.

References

    1. Gershon R. K., Kondo K. Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology. 1970;18(5):723–737. doi: 10.1586/17474124.2.3.357.
    1. Lopez-Pastrana J., Shao Y., Chernaya V., Wang H., Yang X. F. Epigenetic enzymes are the therapeutic targets for CD4+CD25+/highFoxp3+ regulatory T cells. Translational Research. 2015;165(1):221–240. doi: 10.1016/j.trsl.2014.08.001.
    1. Whibley N., Tucci A., Powrie F. Regulatory T cell adaptation in the intestine and skin. Nature Immunology. 2019;20(4):386–396. doi: 10.1038/s41590-019-0351-z.
    1. Downs-Canner S., Berkey S., Delgoffe G. M., et al. Suppressive IL-17A+Foxp3+ and ex-Th17 IL-17AnegFoxp3+ Treg cells are a source of tumour-associated Treg cells. Nature Communications. 2017;8(1):p. 14649. doi: 10.1038/ncomms14649.
    1. Stockis J., Roychoudhuri R., Halim T. Y. F. Regulation of regulatory T cells in cancer. Immunology. 2019;157(3):219–231. doi: 10.1111/imm.13064.
    1. Hori S., Nomura T., Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299(5609):1057–1061. doi: 10.1126/science.1079490.
    1. Fontenot J. D., Gavin M. A., Rudensky A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunology. 2003;4(4):330–336. doi: 10.1038/ni904.
    1. Dominguez-Villar M., Hafler D. A. Regulatory T cells in autoimmune disease. Nature Immunology. 2018;19(7):665–673. doi: 10.1038/s41590-018-0120-4.
    1. Shevach E. M. Foxp3(+) T regulatory cells: still many unanswered questions-a perspective after 20 years of study. Frontiers in Immunology. 2018;9:p. 1048. doi: 10.3389/fimmu.2018.01048.
    1. Hai Z., Xuelian L., Yan K. Tregs: where we are and what comes next? Frontiers in Immunology. 2017;8:p. 1578. doi: 10.3389/fimmu.2017.01578.
    1. Wang S., Xia P., Chen Y., et al. Regulatory innate lymphoid cells control innate intestinal inflammation. Cell. 2017;171(1):201–216.e18. doi: 10.1016/j.cell.2017.07.027.
    1. Ligocki A. J., Niederkorn J. Y. Advances on non-CD4+ Foxp3+ T regulatory cells: CD8+, type 1, and double negative T regulatory cells in organ transplantation. Transplantation. 2015;99(8):1553–1559. doi: 10.1097/TP.0000000000000813.
    1. Min B. Heterogeneity and stability in Foxp3+ regulatory T cells. Journal of Interferon & Cytokine Research. 2017;37(9):386–397. doi: 10.1089/jir.2017.0027.
    1. Lin S., Wu H., Wang C., Xiao Z., Xu F. Regulatory T cells and acute lung injury: cytokines, uncontrolled inflammation, and therapeutic implications. Frontiers in Immunology. 2018;9:p. 1545. doi: 10.3389/fimmu.2018.01545.
    1. Komatsu N., Mariotti-Ferrandiz M. E., Wang Y., Malissen B., Waldmann H., Hori S. Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(6):1903–1908. doi: 10.1073/pnas.0811556106.
    1. Yano H., Andrews L. P., Workman C. J., Vignali D. A. A. Intratumoral regulatory T cells: markers, subsets and their impact on anti-tumor immunity. Immunology. 2019;157(3):232–247. doi: 10.1111/imm.13067.
    1. Paluskievicz C. M., Cao X., Abdi R., Zheng P., Liu Y., Bromberg J. S. T regulatory cells and priming the suppressive tumor microenvironment. Frontiers in immunology. 2019;10:p. 2453. doi: 10.3389/fimmu.2019.02453.
    1. Akimova T., Beier U. H., Wang L., Levine M. H., Hancock W. W. Helios expression is a marker of T cell activation and proliferation. PLoS One. 2011;6(8, article e24226) doi: 10.1371/journal.pone.0024226.
    1. Sugita K., Hanakawa S., Honda T., et al. Generation of Helios reporter mice and an evaluation of the suppressive capacity of Helios(+) regulatory T cells in vitro. Experimental Dermatology. 2015;24(7):554–556. doi: 10.1111/exd.12711.
    1. Kelley C. M., Ikeda T., Koipally J., et al. Helios, a novel dimerization partner of Ikaros expressed in the earliest hematopoietic progenitors. Current Biology. 1998;8(9):508–5S1. doi: 10.1016/s0960-9822(98)70202-7.
    1. Hahm K., Cobb B. S., McCarty A. S., et al. Helios, a T cell-restricted Ikaros family member that quantitatively associates with Ikaros at centromeric heterochromatin. Genes & Development. 1998;12(6):782–796. doi: 10.1101/gad.12.6.782.
    1. Powell M. D., Read K. A., Sreekumar B. K., Oestreich K. J. Ikaros zinc finger transcription factors: regulators of cytokine signaling pathways and CD4(+) T helper cell differentiation. Frontiers in Immunology. 2019;10:p. 1299. doi: 10.3389/fimmu.2019.01299.
    1. Thornton A. M., Shevach E. M. Helios: still behind the clouds. Immunology. 2019;158(3):161–170. doi: 10.1111/imm.13115.
    1. Alinikula J., Kohonen P., Nera K. P., Lassila O. Concerted action of Helios and Ikaros controls the expression of the inositol 5-phosphatase SHIP. European Journal of Immunology. 2010;40(9):2599–2607. doi: 10.1002/eji.200940002.
    1. Dovat S., Montecino-Rodriguez E., Schuman V., Teitell M. A., Dorshkind K., Smale S. T. Transgenic expression of Helios in B lineage cells alters B cell properties and promotes lymphomagenesis. Journal of Immunology. 2005;175(6):3508–3515. doi: 10.4049/jimmunol.175.6.3508.
    1. Kikuchi H., Nakayama M., Takami Y., Kuribayashi F., Nakayama T. Possible involvement of Helios in controlling the immature B cell functions via transcriptional regulation of protein kinase Cs. Results in immunology. 2011;1(1):88–94. doi: 10.1016/j.rinim.2011.11.002.
    1. Mitchell J. L., Seng A., Yankee T. M. Expression and splicing of Ikaros family members in murine and human thymocytes. Molecular Immunology. 2017;87:1–11. doi: 10.1016/j.molimm.2017.03.014.
    1. Kim H. J., Barnitz R. A., Kreslavsky T., et al. Stable inhibitory activity of regulatory T cells requires the transcription factor Helios. Science. 2015;350(6258):334–339. doi: 10.1126/science.aad0616.
    1. Serre K., Benezech C., Desanti G., et al. Helios is associated with CD4 T cells differentiating to T helper 2 and follicular helper T cells in vivo independently of Foxp3 expression. PLoS One. 2011;6(6, article e20731) doi: 10.1371/journal.pone.0020731.
    1. Thornton A. M., Lu J., Korty P. E., et al. Helios(+) and Helios(-) Treg subpopulations are phenotypically and functionally distinct and express dissimilar TCR repertoires. European Journal of Immunology. 2019;49(3):398–412. doi: 10.1002/eji.201847935.
    1. Getnet D., Grosso J. F., Goldberg M. V., et al. A role for the transcription factor Helios in human CD4+CD25+ regulatory T cells. Molecular Immunology. 2010;47(7-8):1595–1600. doi: 10.1016/j.molimm.2010.02.001.
    1. Kim Y. C., Bhairavabhotla R., Yoon J., et al. Oligodeoxynucleotides stabilize Helios-expressing Foxp3+ human T regulatory cells during in vitro expansion. Blood. 2012;119(12):2810–2818. doi: 10.1182/blood-2011-09-377895.
    1. Elkord E., Samid M. A. A., Chaudhary B. Helios, and not FoxP3, is the marker of activated Tregs expressing GARP/LAP. Oncotarget. 2015;6:20026–20036. doi: 10.18632/oncotarget.4771.
    1. Baine I., Basu S., Ames R., Sellers R. S., Macian F. Helios induces epigenetic silencing of IL2 gene expression in regulatory T cells. The Journal of Immunology. 2013;190:1008–1016. doi: 10.4049/jimmunol.1200792.
    1. Nakagawa H., Sido J. M., Reyes E. E., Kiers V., Cantor H., Kim H. J. Instability of Helios-deficient Tregs is associated with conversion to a T-effector phenotype and enhanced antitumor immunity. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(22):6248–6253. doi: 10.1073/pnas.1604765113.
    1. Li X., Li D., Huang X., et al. Helios expression in regulatory T cells promotes immunosuppression, angiogenesis and the growth of leukemia cells in pediatric acute lymphoblastic leukemia. Leukemia Research. 2018;67:60–66. doi: 10.1016/j.leukres.2018.02.007.
    1. Takatori H., Kawashima H., Matsuki A., et al. Helios enhances Treg cell function in cooperation with FoxP3. Arthritis & Rhematology. 2015;67(6):1491–1502. doi: 10.1002/art.39091.
    1. Palmer C., Mulligan J. K., Smith S. E., Atkinson C. The role of regulatory T cells in the regulation of upper airway inflammation. American Journal of Rhinology & Allergy. 2017;31(6):345–351. doi: 10.2500/ajra.2017.31.4472.
    1. Elkord E., Sharma S., Burt D. J., Hawkins R. E. Expanded subpopulation of FoxP3+ T regulatory cells in renal cell carcinoma co-express Helios, indicating they could be derived from natural but not induced Tregs. Clinical Immunology. 2011;140(3):218–222. doi: 10.1016/j.clim.2011.04.014.
    1. Fan Y., Lu D. The Ikaros family of zinc-finger proteins. Acta Pharmaceutica Sinica B. 2016;6(6):513–521. doi: 10.1016/j.apsb.2016.06.002.
    1. Chougnet C., Hildeman D. Helios-controller of Treg stability and function. Translational cancer research. 2016;5:S338–S341. doi: 10.21037/tcr.2016.07.37.
    1. Raynor J., Karns R., Almanan M., et al. IL-6 and ICOS antagonize Bim and promote regulatory T cell accrual with age. Journal of Immunology. 2015;195(3):944–952. doi: 10.4049/jimmunol.1500443.
    1. Zhong H., Yazdanbakhsh K. Differential control of Helios(+/-) Treg development by monocyte subsets through disparate inflammatory cytokines. Blood. 2013;121(13):2494–2502. doi: 10.1182/blood-2012-11-469122.
    1. He X., Landman S., Bauland S. C., van den Dolder J., Koenen H. J., Joosten I. A TNFR2-agonist facilitates high purity expansion of human low purity Treg cells. PLoS One. 2016;11(5, article e0156311) doi: 10.1371/journal.pone.0156311.
    1. Spanier J. A., Nashold F. E., Mayne C. G., Nelson C. D., Hayes C. E. Vitamin D and estrogen synergy in _Vdr_ -expressing CD4+ T cells is essential to induce Helios+FoxP3+ T cells and prevent autoimmune demyelinating disease. Journal of Neuroimmunology. 2015;286:48–58. doi: 10.1016/j.jneuroim.2015.06.015.
    1. Moore J. R., Hubler S. L., Nelson C. D., Nashold F. E., Spanier J. A., Hayes C. E. 1,25-Dihydroxyvitamin D3 increases the methionine cycle, CD4+ T cell DNA methylation and Helios+Foxp3+ T regulatory cells to reverse autoimmune neurodegenerative disease. Journal of Neuroimmunology. 2018;324:100–114. doi: 10.1016/j.jneuroim.2018.09.008.
    1. Schaer D. A., Budhu S., Liu C., et al. GITR pathway activation abrogates tumor immune suppression through loss of regulatory T cell lineage stability. Cancer Immunology Research. 2013;1(5):320–331. doi: 10.1158/2326-6066.CIR-13-0086.
    1. Li Y., Yang S., Li Z., et al. Soluble glucocorticoid-induced tumor necrosis factor receptor regulates Helios expression in myasthenia gravis. Journal of Translational Medicine. 2019;17(1):p. 168. doi: 10.1186/s12967-019-1916-1.
    1. Kim Y. C., Kim K. K., Yoon J., Scott D. W., Shevach E. M. SAMHD1 posttranscriptionally controls the expression of Foxp3 and Helios in human T regulatory cells. Journal of Immunology. 2018;201(6):1671–1680. doi: 10.4049/jimmunol.1800613.
    1. Marek-Trzonkowska N., Piekarska K., Filipowicz N., et al. Mild hypothermia provides Treg stability. Scientific Reports. 2017;7(1):p. 11915. doi: 10.1038/s41598-017-10151-1.
    1. Golding A., Hasni S., Illei G., Shevach E. M. The percentage of FoxP3+Helios+ Treg cells correlates positively with disease activity in systemic lupus erythematosus. Arthritis and Rheumatism. 2013;65(11):2898–2906. doi: 10.1002/art.38119.
    1. Alexander T., Sattler A., Templin L., et al. Foxp3+Helios+ regulatory T cells are expanded in active systemic lupus erythematosus. Annals of the Rheumatic Diseases. 2013;72(9):1549–1558. doi: 10.1136/annrheumdis-2012-202216.
    1. Zafari P., Yari K., Mostafaei S., et al. Analysis of Helios gene expression and Foxp3 TSDR methylation in the newly diagnosed rheumatoid arthritis patients. Immunological Investigations. 2018;47(6):632–642. doi: 10.1080/08820139.2018.1480029.
    1. Müller M., Herrath J., Malmström V. IL-1R1 is expressed on both Helios(+) and Helios(-) FoxP3(+) CD4(+) T cells in the rheumatic joint. Clinical and Experimental Immunology. 2015;182(1):90–100. doi: 10.1111/cei.12668.
    1. Trojan K., Unterrainer C., Weimer R., et al. Helios expression and Foxp3 TSDR methylation of IFNy+ and IFNy- Treg from kidney transplant recipients with good long-term graft function. PLoS One. 2017;12, article e0173773(3) doi: 10.1371/journal.pone.0173773.
    1. Trojan K., Unterrainer C., Aly M., et al. IFNy+ and IFNy− Treg subsets with stable and unstable Foxp3 expression in kidney transplant recipients with good long-term graft function. Transplant immunology. 2016;39:1–9. doi: 10.1016/j.trim.2016.10.003.
    1. Revilla-Nuin B., de Bejar Á., Martínez-Alarcón L., et al. Differential profile of activated regulatory T cell subsets and microRNAs in tolerant liver transplant recipients. Liver Transplantation. 2017;23(7):933–945. doi: 10.1002/lt.24691.
    1. Levine M. H., Akimova T., Murken D. R., Hancock W. W. Regulatory T cell signatures in liver transplant recipients successfully weaned from immunosuppression: getting from here to there. Liver Transplantation. 2017;23(7):875–877. doi: 10.1002/lt.24786.
    1. Dumontet E., Danger R., Vagefi P. A., et al. Peripheral phenotype and gene expression profiles of combined liver-kidney transplant patients. Liver International. 2016;36(3):401–409. doi: 10.1111/liv.12917.
    1. Trojan K., Zhu L., Aly M., et al. Association of peripheral NK cell counts with Helios+IFN-γ-Tregsin patients with good long-term renal allograft function. Clinical and Experimental Immunology. 2017;188(3):467–479. doi: 10.1111/cei.12945.
    1. Chen Y. B., Efebera Y. A., Johnston L., et al. Increased Foxp3+Helios+ regulatory T cells and decreased acute graft-versus-host disease after allogeneic bone marrow transplantation in patients receiving sirolimus and RGI-2001, an activator of invariant natural killer T cells. Biology of Blood and Marrow Transplantation. 2017;23(4):625–634. doi: 10.1016/j.bbmt.2017.01.069.
    1. Bian L. Q., Bi Y., Zhou S. W., et al. T cell responses in senior patients with community-acquired pneumonia related to disease severity. Experimental Cell Research. 2017;361(1):56–62. doi: 10.1016/j.yexcr.2017.09.041.
    1. Neill D. R., Fernandes V. E., Wisby L., et al. T regulatory cells control susceptibility to invasive pneumococcal pneumonia in mice. PLoS Pathogens. 2012;8(4, article e1002660) doi: 10.1371/journal.ppat.1002660.
    1. Khaitan A., Kravietz A., Mwamzuka M., et al. FOXP3+Helios+ regulatory T cells, immune activation, and advancing disease in HIV-infected children. Journal of Acquired Immune Deficiency Syndromes. 2016;72(5):474–484. doi: 10.1097/QAI.0000000000001000.
    1. Costa P. A. C., Figueiredo M. M., Diniz S. Q., et al. Plasmodium vivax infection impairs regulatory T-cell suppressive function during acute malaria. The Journal of Infectious Diseases. 2018;218(8):1314–1323. doi: 10.1093/infdis/jiy296.
    1. Fialová A., Partlová S., Sojka L., et al. Dynamics of T-cell infiltration during the course of ovarian cancer: the gradual shift from a Th17 effector cell response to a predominant infiltration by regulatory T-cells. International Journal of Cancer. 2013;132(5):1070–1079. doi: 10.1002/ijc.27759.
    1. Khaja A. S., Toor S. M., El Salhat H., et al. Preferential accumulation of regulatory T cells with highly immunosuppressive characteristics in breast tumor microenvironment. Oncotarget. 2017;8(20):33159–33171. doi: 10.18632/oncotarget.16565.
    1. Syed Khaja A. S., Toor S. M., El Salhat H., Ali B. R., Elkord E. Intratumoral FoxP3(+)Helios(+) regulatory T cells upregulating immunosuppressive molecules are expanded in human colorectal cancer. Frontiers in Immunology. 2017;8:p. 619. doi: 10.3389/fimmu.2017.00619.
    1. Timperi E., Pacella I., Schinzari V., et al. Regulatory T cells with multiple suppressive and potentially pro-tumor activities accumulate in human colorectal cancer. Oncoimmunology. 2016;5(7, article e1175800) doi: 10.1080/2162402X.2016.1175800.
    1. Muto S., Owada Y., Inoue T., et al. Clinical significance of expanded Foxp3(+) Helios(-) regulatory T cells in patients with non-small cell lung cancer. International Journal of Oncology. 2015;47(6):2082–2090. doi: 10.3892/ijo.2015.3196.
    1. Muroyama Y., Nirschl T. R., Kochel C. M., et al. Stereotactic radiotherapy increases functionally suppressive regulatory T cells in the tumor microenvironment. Cancer Immunology Research. 2017;5(11):992–1004. doi: 10.1158/2326-6066.CIR-17-0040.
    1. Yates K., Bi K., Haining W. N., Cantor H., Kim H. J. Comparative transcriptome analysis reveals distinct genetic modules associated with Helios expression in intratumoral regulatory T cells. Proceedings of the National Academy of Sciences. 2018;115(9):2162–2167. doi: 10.1073/pnas.1720447115.

Source: PubMed

3
Se inscrever