Evaluation of Active Renin Concentration in A Cohort of Adolescents with Primary Hypertension

Anna Deja, Piotr Skrzypczyk, Magdalena Nowak, Małgorzata Wrońska, Michał Szyszka, Anna Ofiara, Justyna Lesiak-Kosmatka, Anna Stelmaszczyk-Emmel, Małgorzata Pańczyk-Tomaszewska, Anna Deja, Piotr Skrzypczyk, Magdalena Nowak, Małgorzata Wrońska, Michał Szyszka, Anna Ofiara, Justyna Lesiak-Kosmatka, Anna Stelmaszczyk-Emmel, Małgorzata Pańczyk-Tomaszewska

Abstract

Our study aimed to assess active renin concentration in children with primary hypertension. Thus, we evaluated active renin concentration, clinical parameters, office and ambulatory blood pressure, and biochemical parameters in 51 untreated adolescents with primary hypertension (median: 14.4 [interquartile range-IQR: 13.8-16.8] years) and 45 healthy adolescents. Active renin concentration did not differ between patients with hypertension and healthy children (median: 28.5 [IQR: 21.9-45.2] vs. 24.9 [IQR: 16.8-34.3] [pg/mL], p = 0.055). In the whole group of 96 children, active renin concentration correlated positively with serum potassium and office and ambulatory systolic and diastolic blood pressures. Among children with hypertension, patients with isolated systolic hypertension had lower renin concentration than patients with systolic-diastolic hypertension (26.2 [IQR: 18.6-34.2] vs. 37.8 [IQR: 27.0-49.6] [pg/mL], p = 0.014). The active renin concentration did not differ between patients with isolated systolic hypertension and healthy children. In multivariate analysis, diastolic blood pressure Z-score (beta = 0.238, 95 confidence interval [0.018-0.458], p = 0.035) was the only predictor of active renin concentration in the studied children. We concluded that active renin concentration is positively associated with blood pressure and potassium in children, and diastolic blood pressure was the strongest predictor of renin level. Patients with isolated systolic hypertension may differ from patients with systolic-diastolic hypertension in less severe activation of the renin-angiotensin-aldosterone system.

Keywords: blood pressure; children; isolated systolic hypertension; primary hypertension; renin; renin-angiotensin-aldosterone system.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Figure 1
Figure 1
Active renin concentration in healthy children, in children with isolated systolic hypertension, and with systolic-diastolic hypertension (ISH—isolated systolic hypertension).
Figure 2
Figure 2
Receiver operating characteristic (ROC) curve for active renin concentration and the presence of primary hypertension (ROC—receiver operating characteristics).
Figure 3
Figure 3
Receiver operating characteristic (ROC) curve for active renin concentration and the presence of systolic-diastolic hypertension (ROC—receiver operating characteristics).

References

    1. Song P., Zhang Y., Yu J., Zha M., Zhu Y., Rahimi K., Rudan I. Global Prevalence of Hypertension in Children: A Systematic Review and Meta-analysis. JAMA Pediatr. 2019;173:1154–1163. doi: 10.1001/jamapediatrics.2019.3310.
    1. Gupta-Malhotra M., Banker A., Shete S., Hashmi S.S., Tyson J.E., Barratt M.S., Hecht J.T., Milewicz D.M., Boerwinkle E. Essential hypertension vs. secondary hypertension among children. Am. J. Hypertens. 2015;28:73–80. doi: 10.1093/ajh/hpu083.
    1. Simões E.S.A.C., Lanza K., Palmeira V.A., Costa L.B., Flynn J.T. 2020 update on the renin-angiotensin-aldosterone system in pediatric kidney disease and its interactions with coronavirus. Pediatr. Nephrol. 2021;36:1407–1426. doi: 10.1007/s00467-020-04759-1.
    1. Reudelhuber T.L., Ramla D., Chiu L., Mercure C., Seidah N.G. Proteolytic processing of human prorenin in renal and non-renal tissues. Kidney Int. 1994;46:1522–1524. doi: 10.1038/ki.1994.435.
    1. Takimoto-Ohnishi E., Murakami K. Renin-angiotensin system research: From molecules to the whole body. J. Physiol. Sci. 2019;69:581–587. doi: 10.1007/s12576-019-00679-4.
    1. Hennrikus M., Gonzalez A.A., Prieto M.C. The prorenin receptor in the cardiovascular system and beyond. Am. J. Physiol. Heart Circ. Physiol. 2018;314:H139–H145. doi: 10.1152/ajpheart.00373.2017.
    1. Rossi G.P., Ceolotto G., Rossitto G., Seccia T.M., Maiolino G., Berton C., Basso D., Plebani M. Prospective validation of an automated chemiluminescence-based assay of renin and aldosterone for the work-up of arterial hypertension. Clin. Chem. Lab. Med. 2016;54:1441–1450. doi: 10.1515/cclm-2015-1094.
    1. Tsutamoto T., Sakai H., Tanaka T., Fujii M., Yamamoto T., Wada A., Ohnishi M., Horie M. Comparison of active renin concentration and plasma renin activity as a prognostic predictor in patients with heart failure. Circ. J. 2007;71:915–921. doi: 10.1253/circj.71.915.
    1. Lurbe E., Agabiti-Rosei E., Cruickshank J.K., Dominiczak A., Erdine S., Hirth A., Invitti C., Litwin M., Mancia G., Pall D., et al. 2016 European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J. Hypertens. 2016;34:1887–1920. doi: 10.1097/HJH.0000000000001039.
    1. Verma S., Gupta M., Holmes D.T., Xu L., Teoh H., Gupta S., Yusuf S., Lonn E.M. Plasma renin activity predicts cardiovascular mortality in the Heart Outcomes Prevention Evaluation (HOPE) study. Eur. Heart J. 2011;32:2135–2142. doi: 10.1093/eurheartj/ehr066.
    1. Shatat I.F., Flynn J.T. Relationships between renin, aldosterone, and 24-hour ambulatory blood pressure in obese adolescents. Pediatr. Res. 2011;69:336–340. doi: 10.1203/PDR.0b013e31820bd148.
    1. Pizoń T., Rajzer M., Wojciechowska W., Wach-Pizoń M., Drożdż T., Wróbel K., Gruszka K., Rojek M., Kameczura T., Jurczyszyn A., et al. The relationship between plasma renin activity and serum lipid profiles in patients with primary arterial hypertension. J. Renin Angiotensin Aldosterone Syst. 2018;19:1470320318810022. doi: 10.1177/1470320318810022.
    1. Liu Y., Lin Y., Zhang M.M., Li X.H., Liu Y.Y., Zhao J., Shi L. The relationship of plasma renin, angiotensin, and aldosterone levels to blood pressure variability and target organ damage in children with essential hypertension. BMC Cardiovasc. Disord. 2020;20:296. doi: 10.1186/s12872-020-01579-x.
    1. De Boer R.A., Schroten N.F., Bakker S.J., Mahmud H., Szymanski M.K., van der Harst P., Gansevoort R.T., van Veldhuisen D.J., van Gilst W.H., Hillege H.L. Plasma renin and outcome in the community: Data from PREVEND. Eur. Heart J. 2012;33:2351–2359. doi: 10.1093/eurheartj/ehs198.
    1. Aeschbacher S., Mongiat M., Bernasconi R., Blum S., Meyre P., Krisai P., Ceylan S., Risch M., Risch L., Conen D. Aldosterone-to-renin ratio and blood pressure in young adults from the general population. Am. Heart J. 2020;222:199–207. doi: 10.1016/j.ahj.2019.11.022.
    1. Kułaga Z., Litwin M., Tkaczyk M., Palczewska I., Zajączkowska M., Zwolińska D., Krynicki T., Wasilewska A., Moczulska A., Morawiec-Knysak A., et al. Polish 2010 growth references for school-aged children and adolescents. Eur. J. Pediatr. 2011;170:599–609. doi: 10.1007/s00431-010-1329-x.
    1. Schwartz G.J., Muñoz A., Schneider M.F., Mak R.H., Kaskel F., Warady B.A., Furth S.L. New equations to estimate GFR in children with CKD. J. Am. Soc. Nephrol. 2009;20:629–637. doi: 10.1681/ASN.2008030287.
    1. Kułaga Z., Litwin M., Grajda A., Kułaga K., Gurzkowska B., Góźdź M., Pan H. Oscillometric blood pressure percentiles for Polish normal-weight school-aged children and adolescents. J. Hypertens. 2012;30:1942–1954. doi: 10.1097/HJH.0b013e328356abad.
    1. Flynn J.T., Daniels S.R., Hayman L.L., Maahs D.M., McCrindle B.W., Mitsnefes M., Zachariah J.P., Urbina E.M. Update: Ambulatory blood pressure monitoring in children and adolescents: A scientific statement from the American Heart Association. Hypertension. 2014;63:1116–1135. doi: 10.1161/HYP.0000000000000007.
    1. Funder J.W., Carey R.M., Mantero F., Murad M.H., Reincke M., Shibata H., Stowasser M., Young W.F., Jr. The Management of Primary Aldosteronism: Case Detection, Diagnosis, and Treatment: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2016;101:1889–1916. doi: 10.1210/jc.2015-4061.
    1. Williams B., Mancia G., Spiering W., Agabiti Rosei E., Azizi M., Burnier M., Clement D.L., Coca A., de Simone G., Dominiczak A., et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018;39:3021–3104. doi: 10.1093/eurheartj/ehy339.
    1. Palatini P., Rosei E.A., Avolio A., Bilo G., Casiglia E., Ghiadoni L., Giannattasio C., Grassi G., Jelakovich B., Julius S., et al. Isolated systolic hypertension in the young: A position paper endorsed by the European Society of Hypertension. J. Hypertens. 2018;36:1222–1236. doi: 10.1097/HJH.0000000000001726.
    1. Litwin M., Obrycki Ł., Niemirska A., Sarnecki J., Kułaga Z. Central systolic blood pressure and central pulse pressure predict left ventricular hypertrophy in hypertensive children. Pediatr. Nephrol. 2019;34:703–712. doi: 10.1007/s00467-018-4136-7.
    1. Wolf E., Diaz E.J., Hollis A.N., Hoang T.A., Azad H.A., Bendt K.M., Griffiths R.C., Sparks M.A. Vascular type 1 angiotensin receptors control blood pressure by augmenting peripheral vascular resistance in female mice. Am. J. Physiol. Ren. Physiol. 2018;315:F997–F1005. doi: 10.1152/ajprenal.00639.2017.
    1. Obrycki Ł., Feber J., Brzezińska G., Litwin M. Evolution of isolated systolic hypertension with normal central blood pressure in adolescents-prospective study. Pediatr. Nephrol. 2021;36:361–371. doi: 10.1007/s00467-020-04731-z.
    1. Fujita T., Ando K. Hemodynamic and endocrine changes associated with potassium supplementation in sodium-loaded hypertensives. Hypertension. 1984;6:184–192. doi: 10.1161/01.HYP.6.2.184.
    1. Perez V., Chang E.T. Sodium-to-potassium ratio and blood pressure, hypertension, and related factors. Adv. Nutr. 2014;5:712–741. doi: 10.3945/an.114.006783.
    1. Schütten M.T., Houben A.J., de Leeuw P.W., Stehouwer C.D. The Link Between Adipose Tissue Renin-Angiotensin-Aldosterone System Signaling and Obesity-Associated Hypertension. Physiol. Bethesda. 2017;32:197–209. doi: 10.1152/physiol.00037.2016.
    1. Forrester S.J., Booz G.W., Sigmund C.D., Coffman T.M., Kawai T., Rizzo V., Scalia R., Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol. Rev. 2018;98:1627–1738. doi: 10.1152/physrev.00038.2017.
    1. Zhou M.S., Schulman I.H., Zeng Q. Link between the renin-angiotensin system and insulin resistance: Implications for cardiovascular disease. Vasc. Med. 2012;17:330–341. doi: 10.1177/1358863X12450094.

Source: PubMed

3
Se inscrever