Wound Healing: A Cellular Perspective

Melanie Rodrigues, Nina Kosaric, Clark A Bonham, Geoffrey C Gurtner, Melanie Rodrigues, Nina Kosaric, Clark A Bonham, Geoffrey C Gurtner

Abstract

Wound healing is one of the most complex processes in the human body. It involves the spatial and temporal synchronization of a variety of cell types with distinct roles in the phases of hemostasis, inflammation, growth, re-epithelialization, and remodeling. With the evolution of single cell technologies, it has been possible to uncover phenotypic and functional heterogeneity within several of these cell types. There have also been discoveries of rare, stem cell subsets within the skin, which are unipotent in the uninjured state, but become multipotent following skin injury. Unraveling the roles of each of these cell types and their interactions with each other is important in understanding the mechanisms of normal wound closure. Changes in the microenvironment including alterations in mechanical forces, oxygen levels, chemokines, extracellular matrix and growth factor synthesis directly impact cellular recruitment and activation, leading to impaired states of wound healing. Single cell technologies can be used to decipher these cellular alterations in diseased states such as in chronic wounds and hypertrophic scarring so that effective therapeutic solutions for healing wounds can be developed.

Conflict of interest statement

No conflicts of interest, financial or otherwise, are declared by the authors.

Figures

FIGURE 1.
FIGURE 1.
Cellular responses during the hemostasis phase of wound healing. A: during hemostasis, platelets circulate in close proximity to the vessel wall. However, anti-thrombotic agents such as nitric oxide (NO) and prostacyclin released from endothelial cells prevent platelet attachment to the endothelial lining and platelet aggregation. B: wounding stimulates injured cells to rapidly release vasoconstrictors that cause reflexive contracture of the smooth muscle and temporary stoppage of bleeding. C: blood vessel rupture during wound healing exposes the subendothelial matrix. Platelets bind this subendothelial matrix and to each other using G protein-coupled receptors, integrins, and glycoproteins on their surface. von Willebrand factor (vWF) released by platelets also attaches to the subendothelial matrix. Platelets bind extracellular vWF through their surface receptors, strengthening the platelet plug. D: the extrinsic and intrinsic pathways lead to the activation of Factor X, which ultimately results in the cleavage of fibrinogen to fibrin. Cross-linked fibrin binds the aggregated platelet plug to form the thrombus that stops blood flow and provides a provisional matrix for healing. The illustration is a simplified rendering based on current knowledge.
FIGURE 2.
FIGURE 2.
Role of neutrophils in wound healing. A: neutrophils are recruited to the wound in response to calcium waves, damage-associated molecular patterns (DAMPs), hydrogen peroxide, lipid mediators, and chemokines that are released by resident cells immediately after wounding. B: neutrophils combat pathogens through release of proteases from their intracellular granules. They also produce neutrophil extracellular traps (NETs) that capture pathogens through a process called NETosis. In this process, neutrophils extend chromatin filaments coated with proteases outside of the cell to aid in the elimination of pathogens. C: neutrophils also perform phagocytosis in the wound. They probe antigens using surface receptors and integrins and form a phagocytic cup that engulfs antigens. Internalized antigens are degraded by proteases within the neutrophil granules. D: timely clearance of neutrophils is critical for the resolution of inflammation. They are either engulfed by macrophages through efferocytosis or they can re-enter the circulation and leave the wound through a process called reverse migration. The illustration is a simplified rendering based on current knowledge.
FIGURE 3.
FIGURE 3.
Macrophage phenotypes in wound healing. A: in the uninjured skin, circulating monocytes from the bone marrow are constantly rolling over the inner endothelial wall within the vessel lumen and surveying for damage. The few macrophages that are resident in the skin are prevalent in the perivascular space and can be from embryonic sources. B: following skin injury, during the inflammatory phase of healing, macrophages release pro-inflammatory cytokines such as interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-1β to fight infection. Early macrophages in the wound release monocyte chemoattractant protein (MCP)-1 to draw in more monocytes from the bone marrow and heighten the macrophage response. These macrophages also actively participate in phagocytosis of pathogens. At the end of the inflammatory phase, macrophages engulf dying neutrophils, which marks the end of the inflammatory phase of wound healing. C: during the growth stage of wound healing, as granulation tissue forms, macrophages release growth factors such as vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) that are used to signal and activate endothelial cells to perform angiogenesis. Some macrophages deposit extracellular matrix (ECM) at this stage. Unregulated deposition of ECM can lead to fibrosis, and such scar-forming macrophages are called fibrocytes. D: during wound remodeling, macrophages again take on a phagocytic role where they engulf both cell debris and excessive ECM, to bring the healed skin to a homeostatic state. The illustration is a simplified rendering based on current knowledge.
FIGURE 4.
FIGURE 4.
Dendritic cells (DCs) and T cells in the wound healing response. A: dendritic cells within the murine dermis can be CD103+, which correspond to CD141+ DCs in humans, or CD11b+, which correspond to the CD1c+ and CD14+ subset in humans. The CD103+ DCs mainly activate CD8+ T cells, and the CD11b+ DCs mainly activate the CD4+ T cells in the draining lymph nodes. The wounded skin also contains plasmacytoid dendritic cells (pDCs) that are activated to release interferon (IFN)-α/β that is important to the acute inflammatory response. Within the epidermis, Langerhans cells with high expression of Langerin (CD207) are the main antigen presenting cells. Langerhans cells are derived from early myeloid progenitors in the embryo and persist in adult skin. B: T cells in the skin can either be γδ+ or αβ+. γδ+ T cells of the epidermis are also called dendritic epithelial cells (DETCs). These cells survey the epidermis for infection and produce growth factors that are critical for signaling epidermal cells during wound healing. γδ+ T cells of the dermis are either Vγ5-positive that release tumor necrosis factor (TNF)-α and activate dermal DCs to release interleukin (IL)-12, or they are Vγ5-negative that produce IL-17 following infection. These γδ+ T cells can migrate to the draining lymph nodes and continue to activate DCs. The αβ+ T cells in the dermis mainly consist of CD4+ subsets, while the αβ+ T cells of the epidermis are the CD8+ killer cells. The illustration is a simplified rendering based on current knowledge.
FIGURE 5.
FIGURE 5.
Angiogenesis during wound healing. New blood vessel formation is one of the most important stages of wound healing. Endothelial cells at the leading edge or tip branch out or “sprout” to form new capillaries in response to vascular endothelial growth factor (VEGF) and other growth factor signals from epidermal cells, macrophages, and the subcutaneous adipose tissue. The endothelial cells during angiogenesis are leaky to allow for immune cells and other circulating cells to extravasate from the blood vessel lumen into the wound. Pro-angiogenic macrophages release growth factors for endothelial cell growth and fuse newly forming capillaries. Activated endothelial cells upregulate surface markers intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, E-selectin, and P-selectin that help with cell-cell interactions with leukocytes. Deletion of these surface markers during wound healing impairs wound repair. The illustration is a simplified rendering based on current knowledge.
FIGURE 6.
FIGURE 6.
Re-epithelialization and fibroblast-epidermal cell interactions during wound healing. A: in the uninjured skin, the epidermis is multi-layered with the lowermost basal layer attached to the basement membrane. This layer contains K14+/β1-integrin positive stem cells that divide and differentiate to form the keratinocytes of the spinal and granular layers. The uppermost layer is the stratum corneum that contains cornified and impermeable cells. The epidermis also contains appendages of which the hair follicle and sebaceous gland are of particular interest since they contain several stem cell subsets with high activity even during homeostasis. The base of the hair follicle and hair germ, which is adjacent to the dermal papilla, contains LRG5+/ Gli1+ stem cells. The mid-bulge contains CD34+/Sox9+/keratin 15+ stem cells, and the upper bulge contains LRIG1+ stem cells. Melanocyte stem cells (McScs) are also dispersed in the hair bulge and germ. There are also stem cells that reconstitute the sebaceous glands. B: following wounding, unipotent stem cells within the hair follicle move in a linear fashion and take on a multipotent differentiation potential to reconstitute various cell types of the epidermis. Fibroblasts in the dermal papilla can signal these stem cells in the hair follicle through the Wnt/β-catenin pathway. In return, the epidermal stem cells signal the fibroblasts, converting them to myofibroblasts, to help in wound contraction. A subset of myofibroblasts become adipocytes, and this switch has been found to reduce scar formation. Another subset of fibroblasts with expression of CD26/En1 preferentially deposit higher levels of ECM and are responsible for fibrosis. Interfollicular stem cells in the basement membrane of the epidermis also proliferate to generate keratinocytes that lose their cell-cell junctions and migrate into the wound forming the epithelial tongue. The proliferation and migration of differentiated keratinocytes and stem cells into the wound, together lead to re-epithelialization of the wound. The illustration is a simplified rendering based on current knowledge.

References

    1. Aarabi S, Bhatt KA, Shi Y, Paterno J, Chang EI, Loh SA, Holmes JW, Longaker MT, Yee H, Gurtner GC. Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. FASEB J 21: 3250–3261, 2007. doi:10.1096/fj.07-8218com.
    1. Abbott JD, Huang Y, Liu D, Hickey R, Krause DS, Giordano FJ. Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation 110: 3300–3305, 2004. doi:10.1161/.
    1. Abe M, Kurosawa M, Ishikawa O, Miyachi Y. Effect of mast cell-derived mediators and mast cell-related neutral proteases on human dermal fibroblast proliferation and type I collagen production. J Allergy Clin Immunol 106: S78–S84, 2000. doi:10.1067/mai.2000.106058.
    1. Achauer BM, VanderKam VM, Celikoz B, Jacobson DG. Augmentation of facial soft-tissue defects with Alloderm dermal graft. Ann Plast Surg 41: 503–507, 1998. doi:10.1097/00000637-199811000-00009.
    1. Adzick NS, Longaker MT. Scarless fetal healing. Therapeutic implications. Ann Surg 215: 3–30, 1992. doi:10.1097/00000658-199201000-00004.
    1. Ahrens S, Zelenay S, Sancho D, Hanč P, Kjær S, Feest C, Fletcher G, Durkin C, Postigo A, Skehel M, Batista F, Thompson B, Way M, Reis e Sousa C, Schulz O. F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity 36: 635–645, 2012. doi:10.1016/j.immuni.2012.03.008.
    1. Akimoto S, Ishikawa O, Igarashi Y, Kurosawa M, Miyachi Y. Dermal mast cells in scleroderma: their skin density, tryptase/chymase phenotypes and degranulation. Br J Dermatol 138: 399–406, 1998. doi:10.1046/j.1365-2133.1998.02114.x.
    1. Alaish SM, Yager D, Diegelmann RF, Cohen IK. Biology of fetal wound healing: hyaluronate receptor expression in fetal fibroblasts. J Pediatr Surg 29: 1040–1043, 1994. doi:10.1016/0022-3468(94)90275-5.
    1. Ansell DM, Izeta A. Pericytes in wound healing: friend or foe? Exp Dermatol 24: 833–834, 2015. doi:10.1111/exd.12782.
    1. Armulik A, Genové G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21: 193–215, 2011. doi:10.1016/j.devcel.2011.07.001.
    1. Artuc M, Hermes B, Steckelings UM, Grützkau A, Henz BM. Mast cells and their mediators in cutaneous wound healing–active participants or innocent bystanders? Exp Dermatol 8: 1–16, 1999. doi:10.1111/j.1600-0625.1999.tb00342.x.
    1. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275: 964–966, 1997. doi:10.1126/science.275.5302.964.
    1. Barbosa FL, Chaurasia SS, Cutler A, Asosingh K, Kaur H, de Medeiros FW, Agrawal V, Wilson SE. Corneal myofibroblast generation from bone marrow-derived cells. Exp Eye Res 91: 92–96, 2010. doi:10.1016/j.exer.2010.04.007.
    1. Barker N, van Es JH, Jaks V, Kasper M, Snippert H, Toftgård R, Clevers H. Very long-term self-renewal of small intestine, colon, and hair follicles from cycling Lgr5+ve stem cells. Cold Spring Harb Symp Quant Biol 73: 351–356, 2008. doi:10.1101/sqb.2008.72.003.
    1. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen 16: 585–601, 2008. doi:10.1111/j.1524-475X.2008.00410.x.
    1. Bedoui S, Whitney PG, Waithman J, Eidsmo L, Wakim L, Caminschi I, Allan RS, Wojtasiak M, Shortman K, Carbone FR, Brooks AG, Heath WR. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat Immunol 10: 488–495, 2009. doi:10.1038/ni.1724.
    1. Belaaouaj A, McCarthy R, Baumann M, Gao Z, Ley TJ, Abraham SN, Shapiro SD. Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis. Nat Med 4: 615–618, 1998. doi:10.1038/nm0598-615.
    1. Bergmeier V, Etich J, Pitzler L, Frie C, Koch M, Fischer M, Rappl G, Abken H, Tomasek JJ, Brachvogel B. Identification of a myofibroblast-specific expression signature in skin wounds. Matrix Biol 65: 59–74, 2018. doi:10.1016/j.matbio.2017.07.005.
    1. Bergstresser PR, Tigelaar RE, Dees JH, Streilein JW. Thy-1 antigen-bearing dendritic cells populate murine epidermis. J Invest Dermatol 81: 286–288, 1983. doi:10.1111/1523-1747.ep12518332.
    1. Berk BC, Alexander RW, Brock TA, Gimbrone MA Jr, Webb RC. Vasoconstriction: a new activity for platelet-derived growth factor. Science 232: 87–90, 1986. doi:10.1126/science.3485309.
    1. Berndt MC, Shen Y, Dopheide SM, Gardiner EE, Andrews RK. The vascular biology of the glycoprotein Ib-IX-V complex. Thromb Haemost 86: 178–188, 2001. doi:10.1055/s-0037-1616216.
    1. Blair P, Flaumenhaft R. Platelet alpha-granules: basic biology and clinical correlates. Blood Rev 23: 177–189, 2009. doi:10.1016/j.blre.2009.04.001.
    1. Blanpain C, Fuchs E. Stem cell plasticity. Plasticity of epithelial stem cells in tissue regeneration. Science 344: 1242281, 2014. doi:10.1126/science.1242281.
    1. Blanpain C, Horsley V, Fuchs E. Epithelial stem cells: turning over new leaves. Cell 128: 445–458, 2007. doi:10.1016/j.cell.2007.01.014.
    1. Blocki A, Wang Y, Koch M, Goralczyk A, Beyer S, Agarwal N, Lee M, Moonshi S, Dewavrin JY, Peh P, Schwarz H, Bhakoo K, Raghunath M. Sourcing of an alternative pericyte-like cell type from peripheral blood in clinically relevant numbers for therapeutic angiogenic applications. Mol Ther 23: 510–522, 2015. doi:10.1038/mt.2014.232.
    1. Bodnar RJ. Chemokine Regulation of Angiogenesis During Wound Healing. Adv Wound Care (New Rochelle) 4: 641–650, 2015. doi:10.1089/wound.2014.0594.
    1. Bodnar RJ, Yates CC, Wells A. IP-10 blocks vascular endothelial growth factor-induced endothelial cell motility and tube formation via inhibition of calpain. Circ Res 98: 617–625, 2006. doi:10.1161/01.RES.0000209968.66606.10.
    1. Borregaard N, Cowland JB. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89: 3503–3521, 1997.
    1. Bos JD, Teunissen MB, Cairo I, Krieg SR, Kapsenberg ML, Das PK, Borst J. T-cell receptor gamma delta bearing cells in normal human skin. J Invest Dermatol 94: 37–42, 1990. doi:10.1111/1523-1747.ep12873333.
    1. Boyce DE, Ciampolini J, Ruge F, Murison MSC, Harding KG. Inflammatory-cell subpopulations in keloid scars. Br J Plast Surg 54: 511–516, 2001. doi:10.1054/bjps.2001.3638.
    1. Boyce ST, Warden GD. Principles and practices for treatment of cutaneous wounds with cultured skin substitutes. Am J Surg 183: 445–456, 2002. doi:10.1016/S0002-9610(02)00813-9.
    1. Boyman O, Hefti HP, Conrad C, Nickoloff BJ, Suter M, Nestle FO. Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-alpha. J Exp Med 199: 731–736, 2004. doi:10.1084/jem.20031482.
    1. Bratton DL, Henson PM. Neutrophil clearance: when the party is over, clean-up begins. Trends Immunol 32: 350–357, 2011. doi:10.1016/j.it.2011.04.009.
    1. Brewer DB. Max Schultze (1865), G. Bizzozero (1882) and the discovery of the platelet. Br J Haematol 133: 251–258, 2006. doi:10.1111/j.1365-2141.2006.06036.x.
    1. Bromley SK, Yan S, Tomura M, Kanagawa O, Luster AD. Recirculating memory T cells are a unique subset of CD4+ T cells with a distinct phenotype and migratory pattern. J Immunol 190: 970–976, 2013. doi:10.4049/jimmunol.1202805.
    1. Brown LF, Yeo KT, Berse B, Yeo TK, Senger DR, Dvorak HF, van de Water L. Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing. J Exp Med 176: 1375–1379, 1992. doi:10.1084/jem.176.5.1375.
    1. Brownell I, Guevara E, Bai CB, Loomis CA, Joyner AL. Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. Cell Stem Cell 8: 552–565, 2011. doi:10.1016/j.stem.2011.02.021.
    1. Buinewicz B, Rosen B. Acellular cadaveric dermis (AlloDerm): a new alternative for abdominal hernia repair. Ann Plast Surg 52: 188–194, 2004. doi:10.1097/01.sap.0000100895.41198.27.
    1. Burke JF, Yannas IV, Quinby WC Jr, Bondoc CC, Jung WK. Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg 194: 413–428, 1981. doi:10.1097/00000658-198110000-00005.
    1. Bursch LS, Wang L, Igyarto B, Kissenpfennig A, Malissen B, Kaplan DH, Hogquist KA. Identification of a novel population of Langerin+ dendritic cells. J Exp Med 204: 3147–3156, 2007. doi:10.1084/jem.20071966.
    1. Butler CE, Langstein HN, Kronowitz SJ. Pelvic, abdominal, and chest wall reconstruction with AlloDerm in patients at increased risk for mesh-related complications. Plast Reconstr Surg 116: 1263–1275, 2005. doi:10.1097/.
    1. Butzelaar L, Schooneman DP, Soykan EA, Talhout W, Ulrich MM, van den Broek LJ, Gibbs S, Beelen RH, Mink van der Molen AB, Niessen FB. Inhibited early immunologic response is associated with hypertrophic scarring. Exp Dermatol 25: 797–804, 2016. doi:10.1111/exd.13100.
    1. Cabrita MA, Christofori G. Sprouty proteins, masterminds of receptor tyrosine kinase signaling. Angiogenesis 11: 53–62, 2008. doi:10.1007/s10456-008-9089-1.
    1. Cai Y, Shen X, Ding C, Qi C, Li K, Li X, Jala VR, Zhang HG, Wang T, Zheng J, Yan J. Pivotal role of dermal IL-17-producing γδ T cells in skin inflammation. Immunity 35: 596–610, 2011. doi:10.1016/j.immuni.2011.08.001.
    1. Caley MP, Martins VL, O’Toole EA. Metalloproteinases and Wound Healing. Adv Wound Care (New Rochelle) 4: 225–234, 2015. doi:10.1089/wound.2014.0581.
    1. Carsin H, Ainaud P, Le Bever H, Rives J, Lakhel A, Stephanazzi J, Lambert F, Perrot J. Cultured epithelial autografts in extensive burn coverage of severely traumatized patients: a five year single-center experience with 30 patients. Burns 26: 379–387, 2000. doi:10.1016/S0305-4179(99)00143-6.
    1. Cass DL, Bullard KM, Sylvester KG, Yang EY, Longaker MT, Adzick NS. Wound size and gestational age modulate scar formation in fetal wound repair. J Pediatr Surg 32: 411–415, 1997. doi:10.1016/S0022-3468(97)90593-5.
    1. Cass DL, Bullard KM, Sylvester KG, Yang EY, Sheppard D, Herlyn M, Adzick NS. Epidermal integrin expression is upregulated rapidly in human fetal wound repair. J Pediatr Surg 33: 312–316, 1998. doi:10.1016/S0022-3468(98)90453-5.
    1. Castagnoli C, Stella M, Magliacani G, Alasia ST, Richiardi P. Anomalous expression of HLA class II molecules on keratinocytes and fibroblasts in hypertrophic scars consequent to thermal injury. Clin Exp Immunol 82: 350–354, 1990. doi:10.1111/j.1365-2249.1990.tb05451.x.
    1. Castagnoli C, Trombotto C, Ondei S, Stella M, Calcagni M, Magliacani G, Alasia ST. Characterization of T-cell subsets infiltrating post-burn hypertrophic scar tissues. Burns 23: 565–572, 1997. doi:10.1016/S0305-4179(97)00070-3.
    1. CDC National Diabetes Statistics Report (Online). . [16 June 2014].
    1. Cefalu WT, Rosenstock J, LeRoith D, Blonde L, Riddle MC. Getting to the “Heart” of the Matter on Diabetic Cardiovascular Disease: “Thanks for the Memory”. Diabetes Care 39: 664–667, 2016. doi:10.2337/dc16-0405.
    1. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10: 858–864, 2004. doi:10.1038/nm1075.
    1. Chang HY, Chi JT, Dudoit S, Bondre C, van de Rijn M, Botstein D, Brown PO. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci USA 99: 12877–12882, 2002. doi:10.1073/pnas.162488599.
    1. Charras G, Sahai E. Physical influences of the extracellular environment on cell migration. Nat Rev Mol Cell Biol 15: 813–824, 2014. doi:10.1038/nrm3897.
    1. Chen WY, Rogers AA. Recent insights into the causes of chronic leg ulceration in venous diseases and implications on other types of chronic wounds. Wound Repair Regen 15: 434–449, 2007. doi:10.1111/j.1524-475X.2007.00250.x.
    1. Cheresh DA, Berliner SA, Vicente V, Ruggeri ZM. Recognition of distinct adhesive sites on fibrinogen by related integrins on platelets and endothelial cells. Cell 58: 945–953, 1989. doi:10.1016/0092-8674(89)90946-X.
    1. Chiller K, Selkin BA, Murakawa GJ. Skin microflora and bacterial infections of the skin. J Investig Dermatol Symp Proc 6: 170–174, 2001. doi:10.1046/j.0022-202x.2001.00043.x.
    1. Chin GS, Lee S, Hsu M, Liu W, Kim WJH, Levinson H, Longaker MT. Discoidin domain receptors and their ligand, collagen, are temporally regulated in fetal rat fibroblasts in vitro. Plast Reconstr Surg 107: 769–776, 2001. doi:10.1097/00006534-200103000-00018.
    1. Chin YR, Toker A. Function of Akt/PKB signaling to cell motility, invasion and the tumor stroma in cancer. Cell Signal 21: 470–476, 2009. doi:10.1016/j.cellsig.2008.11.015.
    1. Chodaczek G, Papanna V, Zal MA, Zal T. Body-barrier surveillance by epidermal γδ TCRs. Nat Immunol 13: 272–282, 2012. doi:10.1038/ni.2240.
    1. Chou WC, Takeo M, Rabbani P, Hu H, Lee W, Chung YR, Carucci J, Overbeek P, Ito M. Direct migration of follicular melanocyte stem cells to the epidermis after wounding or UVB irradiation is dependent on Mc1r signaling. Nat Med 19: 924–929, 2013. doi:10.1038/nm.3194.
    1. Clark RA. Fibrin is a many splendored thing. J Invest Dermatol 121: xxi–xxii, 2003. doi:10.1046/j.1523-1747.2003.12575.x.
    1. Cogle CR, Wainman DA, Jorgensen ML, Guthrie SM, Mames RN, Scott EW. Adult human hematopoietic cells provide functional hemangioblast activity. Blood 103: 133–135, 2004. doi:10.1182/blood-2003-06-2101.
    1. Collins CA, Kretzschmar K, Watt FM. Reprogramming adult dermis to a neonatal state through epidermal activation of β-catenin. Development 138: 5189–5199, 2011. doi:10.1242/dev.064592.
    1. Compton CC, Hickerson W, Nadire K, Press W. Acceleration of skin regeneration from cultured epithelial autografts by transplantation to homograft dermis. J Burn Care Rehabil 14: 653–662, 1993. doi:10.1097/00004630-199311000-00010.
    1. Cook-Mills JM, Deem TL. Active participation of endothelial cells in inflammation. J Leukoc Biol 77: 487–495, 2005. doi:10.1189/jlb.0904554.
    1. Cooper ML, Hansbrough JF, Spielvogel RL, Cohen R, Bartel RL, Naughton G. In vivo optimization of a living dermal substitute employing cultured human fibroblasts on a biodegradable polyglycolic acid or polyglactin mesh. Biomaterials 12: 243–248, 1991. doi:10.1016/0142-9612(91)90207-Q.
    1. Corliss BA, Azimi MS, Munson JM, Peirce SM, Murfee WL. Macrophages: An Inflammatory Link Between Angiogenesis and Lymphangiogenesis. Microcirculation 23: 95–121, 2016. doi:10.1111/micc.12259.
    1. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 284: 1318–1322, 1999. doi:10.1126/science.284.5418.1318.
    1. Costin GE, Hearing VJ. Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J 21: 976–994, 2007. doi:10.1096/fj.06-6649rev.
    1. Covassin LD, Villefranc JA, Kacergis MC, Weinstein BM, Lawson ND. Distinct genetic interactions between multiple Vegf receptors are required for development of different blood vessel types in zebrafish. Proc Natl Acad Sci USA 103: 6554–6559, 2006. doi:10.1073/pnas.0506886103.
    1. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Péault B. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3: 301–313, 2008. doi:10.1016/j.stem.2008.07.003.
    1. Dang CM, Beanes SR, Lee H, Zhang X, Soo C, Ting K. Scarless fetal wounds are associated with an increased matrix metalloproteinase-to-tissue-derived inhibitor of metalloproteinase ratio. Plast Reconstr Surg 111: 2273–2285, 2003. doi:10.1097/01.PRS.0000060102.57809.DA.
    1. Dantzer E, Braye FM. Reconstructive surgery using an artificial dermis (Integra): results with 39 grafts. Br J Plast Surg 54: 659–664, 2001. doi:10.1054/bjps.2001.3684.
    1. Darby IA, Hewitson TD. Fibroblast differentiation in wound healing and fibrosis. Int Rev Cytol 257: 143–179, 2007. doi:10.1016/S0074-7696(07)57004-X.
    1. Darby IA, Laverdet B, Bonté F, Desmoulière A. Fibroblasts and myofibroblasts in wound healing. Clin Cosmet Investig Dermatol 7: 301–311, 2014. doi:10.2147/CCID.S50046.
    1. Davies LC, Jenkins SJ, Allen JE, Taylor PR. Tissue-resident macrophages. Nat Immunol 14: 986–995, 2013. doi:10.1038/ni.2705.
    1. Davies LC, Rosas M, Jenkins SJ, Liao CT, Scurr MJ, Brombacher F, Fraser DJ, Allen JE, Jones SA, Taylor PR. Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation. Nat Commun 4: 1886, 2013. doi:10.1038/ncomms2877.
    1. Davies PF. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med 6: 16–26, 2009. doi:10.1038/ncpcardio1397.
    1. De Falco E, Porcelli D, Torella AR, Straino S, Iachininoto MG, Orlandi A, Truffa S, Biglioli P, Napolitano M, Capogrossi MC, Pesce M. SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. Blood 104: 3472–3482, 2004. doi:10.1182/blood-2003-12-4423.
    1. De Oliveira S, Rosowski EE, Huttenlocher A. Neutrophil migration in infection and wound repair: going forward in reverse. Nat Rev Immunol 16: 378–391, 2016. doi:10.1038/nri.2016.49.
    1. Desmoulière A, Redard M, Darby I, Gabbiani G. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 146: 56–66, 1995.
    1. Di Nardo A, Yamasaki K, Dorschner RA, Lai Y, Gallo RL. Mast cell cathelicidin antimicrobial peptide prevents invasive group A Streptococcus infection of the skin. J Immunol 180: 7565–7573, 2008. doi:10.4049/jimmunol.180.11.7565.
    1. Dimmeler S, Zeiher AM. Endothelial cell apoptosis in angiogenesis and vessel regression. Circ Res 87: 434–439, 2000. doi:10.1161/01.RES.87.6.434.
    1. Ding Q, Gladson CL, Wu H, Hayasaka H, Olman MA. Focal adhesion kinase (FAK)-related non-kinase inhibits myofibroblast differentiation through differential MAPK activation in a FAK-dependent manner. J Biol Chem 283: 26839–26849, 2008. doi:10.1074/jbc.M803645200.
    1. Dinh TL, Veves A. The efficacy of Apligraf in the treatment of diabetic foot ulcers. Plast Reconstr Surg 117, Suppl: 152S–157S, 2006. doi:10.1097/01.prs.0000222534.79915.d3.
    1. DiPietro LA, Burdick M, Low QE, Kunkel SL, Strieter RM. MIP-1alpha as a critical macrophage chemoattractant in murine wound repair. J Clin Invest 101: 1693–1698, 1998. doi:10.1172/JCI1020.
    1. DiPietro LA, Polverini PJ, Rahbe SM, Kovacs EJ. Modulation of JE/MCP-1 expression in dermal wound repair. Am J Pathol 146: 868–875, 1995.
    1. Donati G, Rognoni E, Hiratsuka T, Liakath-Ali K, Hoste E, Kar G, Kayikci M, Russell R, Kretzschmar K, Mulder KW, Teichmann SA, Watt FM. Wounding induces dedifferentiation of epidermal Gata6+ cells and acquisition of stem cell properties. Nat Cell Biol 19: 603–613, 2017. doi:10.1038/ncb3532.
    1. Doupé DP, Jones PH. Interfollicular epidermal homeostasis: dicing with differentiation. Exp Dermatol 21: 249–253, 2012. doi:10.1111/j.1600-0625.2012.01447.x.
    1. Driskell RR, Lichtenberger BM, Hoste E, Kretzschmar K, Simons BD, Charalambous M, Ferron SR, Herault Y, Pavlovic G, Ferguson-Smith AC, Watt FM. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 504: 277–281, 2013. doi:10.1038/nature12783.
    1. Driskell RR, Watt FM. Understanding fibroblast heterogeneity in the skin. Trends Cell Biol 25: 92–99, 2015. doi:10.1016/j.tcb.2014.10.001.
    1. Duscher D, Januszyk M, Maan ZN, Whittam AJ, Hu MS, Walmsley GG, Dong Y, Khong SM, Longaker MT, Gurtner GC. Comparison of the Hydroxylase Inhibitor Dimethyloxalylglycine and the Iron Chelator Deferoxamine in Diabetic and Aged Wound Healing. Plast Reconstr Surg 139: 695e–706e, 2017. doi:10.1097/PRS.0000000000003072.
    1. Duscher D, Maan ZN, Whittam AJ, Sorkin M, Hu MS, Walmsley GG, Baker H, Fischer LH, Januszyk M, Wong VW, Gurtner GC. Fibroblast-Specific Deletion of Hypoxia Inducible Factor-1 Critically Impairs Murine Cutaneous Neovascularization and Wound Healing. Plast Reconstr Surg 136: 1004–1013, 2015. doi:10.1097/PRS.0000000000001699.
    1. Duscher D, Maan ZN, Wong VW, Rennert RC, Januszyk M, Rodrigues M, Hu M, Whitmore AJ, Whittam AJ, Longaker MT, Gurtner GC. Mechanotransduction and fibrosis. J Biomech 47: 1997–2005, 2014. doi:10.1016/j.jbiomech.2014.03.031.
    1. Duscher D, Neofytou E, Wong VW, Maan ZN, Rennert RC, Inayathullah M, Januszyk M, Rodrigues M, Malkovskiy AV, Whitmore AJ, Walmsley GG, Galvez MG, Whittam AJ, Brownlee M, Rajadas J, Gurtner GC. Transdermal deferoxamine prevents pressure-induced diabetic ulcers. Proc Natl Acad Sci USA 112: 94–99, 2015. doi:10.1073/pnas.1413445112.
    1. Dvorak AM. Mast cell-derived mediators of enhanced microvascular permeability, vascular permeability factor/vascular endothelial growth factor, histamine, and serotonin, cause leakage of macromolecules through a new endothelial cell permeability organelle, the vesiculo-vacuolar organelle. Chem Immunol Allergy 85: 185–204, 2005. doi:10.1159/000086517.
    1. Eaglstein WH, Iriondo M, Laszlo K. A composite skin substitute (graftskin) for surgical wounds. A clinical experience. Dermatol Surg 21: 839–843, 1995. doi:10.1111/j.1524-4725.1995.tb00709.x.
    1. Edwards AD, Diebold SS, Slack EM, Tomizawa H, Hemmi H, Kaisho T, Akira S, Reis e Sousa C. Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by CD8 alpha+ DC correlates with unresponsiveness to imidazoquinolines. Eur J Immunol 33: 827–833, 2003. doi:10.1002/eji.200323797.
    1. Edwards C, Marks R. Evaluation of biomechanical properties of human skin. Clin Dermatol 13: 375–380, 1995. doi:10.1016/0738-081X(95)00078-T.
    1. Edwards R, Harding KG. Bacteria and wound healing. Curr Opin Infect Dis 17: 91–96, 2004. doi:10.1097/00001432-200404000-00004.
    1. Ehrlich P. Beitrage zur Theorie und Praxis der histologischen Farbung (Thesis). Leipzig, Germany: Univ. of Leipzig, 1878.
    1. Eilken HM, Adams RH. Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol 22: 617–625, 2010. doi:10.1016/j.ceb.2010.08.010.
    1. Englander HR. Fluoridation protects occlusal areas. J Am Dent Assoc 98: 11, 1979. doi:10.14219/jada.archive.1979.0021.
    1. Falabella AF, Valencia IC, Eaglstein WH, Schachner LA. Tissue-engineered skin (Apligraf) in the healing of patients with epidermolysis bullosa wounds. Arch Dermatol 136: 1225–1230, 2000. doi:10.1001/archderm.136.10.1225.
    1. Falanga V, Sabolinski M. A bilayered living skin construct (APLIGRAF) accelerates complete closure of hard-to-heal venous ulcers. Wound Repair Regen 7: 201–207, 1999. doi:10.1046/j.1524-475X.1999.00201.x.
    1. Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S, Peri F, Wilson SW, Ruhrberg C. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116: 829–840, 2010. doi:10.1182/blood-2009-12-257832.
    1. Fathke C, Wilson L, Hutter J, Kapoor V, Smith A, Hocking A, Isik F. Contribution of bone marrow-derived cells to skin: collagen deposition and wound repair. Stem Cells 22: 812–822, 2004. doi:10.1634/stemcells.22-5-812.
    1. Ferguson JE III, Kelley RW, Patterson C. Mechanisms of endothelial differentiation in embryonic vasculogenesis. Arterioscler Thromb Vasc Biol 25: 2246–2254, 2005. doi:10.1161/01.ATV.0000183609.55154.44.
    1. Fife CE, Carter MJ. Wound Care Outcomes and Associated Cost Among Patients Treated in US Outpatient Wound Centers: Data From the US Wound Registry. Wounds 24: 10–17, 2012.
    1. FitzGerald GA. Mechanisms of platelet activation: thromboxane A2 as an amplifying signal for other agonists. Am J Cardiol 68: 11B–15B, 1991. doi:10.1016/0002-9149(91)90379-Y.
    1. Florin L, Maas-Szabowski N, Werner S, Szabowski A, Angel P. Increased keratinocyte proliferation by JUN-dependent expression of PTN and SDF-1 in fibroblasts. J Cell Sci 118: 1981–1989, 2005. doi:10.1242/jcs.02303.
    1. Foley TT, Ehrlich HP. Through gap junction communications, co-cultured mast cells and fibroblasts generate fibroblast activities allied with hypertrophic scarring. Plast Reconstr Surg 131: 1036–1044, 2013. doi:10.1097/PRS.0b013e3182865c3f.
    1. Folkman J, Klagsbrun M. Angiogenic factors. Science 235: 442–447, 1987. doi:10.1126/science.2432664.
    1. Forbes J, Fetterolf DE. Dehydrated amniotic membrane allografts for the treatment of chronic wounds: a case series. J Wound Care 21: 290–296, 2012. doi:10.12968/jowc.2012.21.6.290.
    1. Fortington LV, Geertzen JH, van Netten JJ, Postema K, Rommers GM, Dijkstra PU. Short and long term mortality rates after a lower limb amputation. Eur J Vasc Endovasc Surg 46: 124–131, 2013. doi:10.1016/j.ejvs.2013.03.024.
    1. Fox JE, Phillips DR. Inhibition of actin polymerization in blood platelets by cytochalasins. Nature 292: 650–652, 1981. doi:10.1038/292650a0.
    1. Frame JD, Still J, Lakhel-LeCoadou A, Carstens MH, Lorenz C, Orlet H, Spence R, Berger AC, Dantzer E, Burd A. Use of dermal regeneration template in contracture release procedures: a multicenter evaluation. Plast Reconstr Surg 113: 1330–1338, 2004. doi:10.1097/01.PRS.0000111883.93604.85.
    1. Freedberg IM, Tomic-Canic M, Komine M, Blumenberg M. Keratins and the keratinocyte activation cycle. J Invest Dermatol 116: 633–640, 2001. doi:10.1046/j.1523-1747.2001.01327.x.
    1. Fries KM, Blieden T, Looney RJ, Sempowski GD, Silvera MR, Willis RA, Phipps RP. Evidence of fibroblast heterogeneity and the role of fibroblast subpopulations in fibrosis. Clin Immunol Immunopathol 72: 283–292, 1994. doi:10.1006/clin.1994.1144.
    1. Frojmovic MM, Milton JG. Human platelet size, shape, and related functions in health and disease. Physiol Rev 62: 185–261, 1982. doi:10.1152/physrev.1982.62.1.185.
    1. Frykberg RG, Banks J. Challenges in the Treatment of Chronic Wounds. Adv Wound Care (New Rochelle) 4: 560–582, 2015. doi:10.1089/wound.2015.0635.
    1. Fuchs E. Epithelial Skin Biology: Three Decades of Developmental Biology, a Hundred Questions Answered and a Thousand New Ones to Address. Curr Top Dev Biol 116: 357–374, 2016. doi:10.1016/bs.ctdb.2015.11.033.
    1. Fuchs E. Finding one’s niche in the skin. Cell Stem Cell 4: 499–502, 2009. doi:10.1016/j.stem.2009.05.001.
    1. Fuchs E, Horsley V. Ferreting out stem cells from their niches. Nat Cell Biol 13: 513–518, 2011. doi:10.1038/ncb0511-513.
    1. Fujiwara H, Ferreira M, Donati G, Marciano DK, Linton JM, Sato Y, Hartner A, Sekiguchi K, Reichardt LF, Watt FM. The basement membrane of hair follicle stem cells is a muscle cell niche. Cell 144: 577–589, 2011. doi:10.1016/j.cell.2011.01.014.
    1. Fujiwara T, Kubo T, Kanazawa S, Shingaki K, Taniguchi M, Matsuzaki S, Gurtner GC, Tohyama M, Hosokawa K. Direct contact of fibroblasts with neuronal processes promotes differentiation to myofibroblasts and induces contraction of collagen matrix in vitro. Wound Repair Regen 21: 588–594, 2013. doi:10.1111/wrr.12059.
    1. Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med 359: 938–949, 2008. doi:10.1056/NEJMra0801082.
    1. Gabbiani G. The myofibroblast in wound healing and fibrocontractive diseases. J Pathol 200: 500–503, 2003. doi:10.1002/path.1427.
    1. Gabbiani G, Ryan GB, Majn0 G. Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 27: 549–550, 1971. doi:10.1007/BF02147594.
    1. Galiano RD, Michaels J V, Dobryansky M, Levine JP, Gurtner GC. Quantitative and reproducible murine model of excisional wound healing. Wound Repair Regen 12: 485–492, 2004. doi:10.1111/j.1067-1927.2004.12404.x.
    1. Galli SJ, Borregaard N, Wynn TA. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol 12: 1035–1044, 2011. doi:10.1038/ni.2109.
    1. Galligan CL, Fish EN. The role of circulating fibrocytes in inflammation and autoimmunity. J Leukoc Biol 93: 45–50, 2013. doi:10.1189/jlb.0712365.
    1. Gao FL, Jin R, Zhang L, Zhang YG. The contribution of melanocytes to pathological scar formation during wound healing. Int J Clin Exp Med 6: 609–613, 2013.
    1. Garbuzenko E, Nagler A, Pickholtz D, Gillery P, Reich R, Maquart FX, Levi-Schaffer F. Human mast cells stimulate fibroblast proliferation, collagen synthesis and lattice contraction: a direct role for mast cells in skin fibrosis. Clin Exp Allergy 32: 237–246, 2002. doi:10.1046/j.1365-2222.2002.01293.x.
    1. Gebhardt T, Whitney PG, Zaid A, Mackay LK, Brooks AG, Heath WR, Carbone FR, Mueller SN. Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature 477: 216–219, 2011. doi:10.1038/nature10339.
    1. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161: 1163–1177, 2003. doi:10.1083/jcb.200302047.
    1. Gibbons GW. Grafix®, a Cryopreserved Placental Membrane, for the Treatment of Chronic/Stalled Wounds. Adv Wound Care (New Rochelle) 4: 534–544, 2015. doi:10.1089/wound.2015.0647.
    1. Gierahn TM, Wadsworth MH II, Hughes TK, Bryson BD, Butler A, Satija R, Fortune S, Love JC, Shalek AK. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat Methods 14: 395–398, 2017. doi:10.1038/nmeth.4179.
    1. Gill SE, Pape MC, Khokha R, Watson AJ, Leco KJ. A null mutation for tissue inhibitor of metalloproteinases-3 (Timp-3) impairs murine bronchiole branching morphogenesis. Dev Biol 261: 313–323, 2003. doi:10.1016/S0012-1606(03)00318-X.
    1. Gillitzer R, Goebeler M. Chemokines in cutaneous wound healing. J Leukoc Biol 69: 513–521, 2001.
    1. Glass GE, Nanchahal J. The methodology of negative pressure wound therapy: separating fact from fiction. J Plast Reconstr Aesthet Surg 65: 989–1001, 2012. doi:10.1016/j.bjps.2011.12.012.
    1. Godfrey DI, Hammond KJ, Poulton LD, Smyth MJ, Baxter AG. NKT cells: facts, functions and fallacies. Immunol Today 21: 573–583, 2000. doi:10.1016/S0167-5699(00)01735-7.
    1. Godo S, Shimokawa H. Endothelial Functions. Arterioscler Thromb Vasc Biol 37: e108–e114, 2017. doi:10.1161/ATVBAHA.117.309813.
    1. Godwin JW, Pinto AR, Rosenthal NA. Macrophages are required for adult salamander limb regeneration. Proc Natl Acad Sci USA 110: 9415–9420, 2013. doi:10.1073/pnas.1300290110.
    1. Goffin JM, Pittet P, Csucs G, Lussi JW, Meister JJ, Hinz B. Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers. J Cell Biol 172: 259–268, 2006. doi:10.1083/jcb.200506179.
    1. Goldberg MT, Han YP, Yan C, Shaw MC, Garner WL. TNF-alpha suppresses alpha-smooth muscle actin expression in human dermal fibroblasts: an implication for abnormal wound healing. J Invest Dermatol 127: 2645–2655, 2007. doi:10.1038/sj.jid.5700890.
    1. Golebiewska EM, Poole AW. Platelet secretion: From haemostasis to wound healing and beyond. Blood Rev 29: 153–162, 2015. doi:10.1016/j.blre.2014.10.003.
    1. Gordley K, Cole P, Hicks J, Hollier L. A comparative, long term assessment of soft tissue substitutes: AlloDerm, Enduragen, and Dermamatrix. J Plast Reconstr Aesthet Surg 62: 849–850, 2009. doi:10.1016/j.bjps.2008.05.006.
    1. Goren I, Allmann N, Yogev N, Schürmann C, Linke A, Holdener M, Waisman A, Pfeilschifter J, Frank S. A transgenic mouse model of inducible macrophage depletion: effects of diphtheria toxin-driven lysozyme M-specific cell lineage ablation on wound inflammatory, angiogenic, and contractive processes. Am J Pathol 175: 132–147, 2009. doi:10.2353/ajpath.2009.081002.
    1. Goto S. Blood constitution: platelet aggregation, bleeding, and involvement of leukocytes. Rev Neurol Dis 5, Suppl 1: S22–S27, 2008.
    1. Gould L, Abadir P, Brem H, Carter M, Conner-Kerr T, Davidson J, DiPietro L, Falanga V, Fife C, Gardner S, Grice E, Harmon J, Hazzard WR, High KP, Houghton P, Jacobson N, Kirsner RS, Kovacs EJ, Margolis D, McFarland Horne F, Reed MJ, Sullivan DH, Thom S, Tomic-Canic M, Walston J, Whitney J, Williams J, Zieman S, Schmader K. Chronic wound repair and healing in older adults: current status and future research. Wound Repair Regen 23: 1–13, 2015. doi:10.1111/wrr.12245.
    1. Grant MB, May WS, Caballero S, Brown GA, Guthrie SM, Mames RN, Byrne BJ, Vaught T, Spoerri PE, Peck AB, Scott EW. Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med 8: 607–612, 2002. doi:10.1038/nm0602-607.
    1. Gray EE, Suzuki K, Cyster JG. Cutting edge: identification of a motile IL-17-producing gammadelta T cell population in the dermis. J Immunol 186: 6091–6095, 2011. doi:10.4049/jimmunol.1100427.
    1. Greco V, Chen T, Rendl M, Schober M, Pasolli HA, Stokes N, Dela Cruz-Racelis J, Fuchs E. A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell 4: 155–169, 2009. doi:10.1016/j.stem.2008.12.009.
    1. Green H, Kehinde O, Thomas J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci USA 76: 5665–5668, 1979. doi:10.1073/pnas.76.11.5665.
    1. Gregorio J, Meller S, Conrad C, Di Nardo A, Homey B, Lauerma A, Arai N, Gallo RL, Digiovanni J, Gilliet M. Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons. J Exp Med 207: 2921–2930, 2010. doi:10.1084/jem.20101102.
    1. Grice EA, Kong HH, Renaud G, Young AC, Bouffard GG, Blakesley RW, Wolfsberg TG, Turner ML, Segre JA; NISC Comparative Sequencing Program . A diversity profile of the human skin microbiota. Genome Res 18: 1043–1050, 2008. doi:10.1101/gr.075549.107.
    1. Grice EA, Segre JA. The skin microbiome. [Corrigendum in Nat Rev Microbiol 9: 626, 2011.] Nat Rev Microbiol 9: 244–253, 2011. doi:10.1038/nrmicro2537.
    1. Grice EA, Snitkin ES, Yockey LJ, Bermudez DM, Liechty KW, Segre JA, Mullikin J, Blakesley R, Young A, Chu G, Ramsahoye C, Lovett S, Han J, Legaspi R, Fuksenko T, Reddix-Dugue N, Sison C, Gregory M, Montemayor C, Gestole M, Hargrove A, Johnson T, Myrick J, Riebow N, Schmidt B, Novotny B, Gupti J, Benjamin B, Brooks S, Coleman H, Ho S, Schandler K, Smith L, Stantripop M, Maduro Q, Bouffard G, Dekhtyar M, Guan X, Masiello C, Maskeri B, McDowell J, Park M, Jacques Thomas P; NISC Comparative Sequencing Program . Longitudinal shift in diabetic wound microbiota correlates with prolonged skin defense response. Proc Natl Acad Sci USA 107: 14799–14804, 2010. doi:10.1073/pnas.1004204107.
    1. Grinnell F. Fibroblasts, myofibroblasts, and wound contraction. J Cell Biol 124: 401–404, 1994. doi:10.1083/jcb.124.4.401.
    1. Grinnell F, Petroll WM. Cell motility and mechanics in three-dimensional collagen matrices. Annu Rev Cell Dev Biol 26: 335–361, 2010. doi:10.1146/annurev.cellbio.042308.113318.
    1. Grose R, Hutter C, Bloch W, Thorey I, Watt FM, Fässler R, Brakebusch C, Werner S. A crucial role of beta 1 integrins for keratinocyte migration in vitro and during cutaneous wound repair. Development 129: 2303–2315, 2002.
    1. Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Yung S, Chimenti S, Landsman L, Abramovitch R, Keshet E. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells [Correction in Cell 126: 811, 2006.]. Cell 124: 175–189, 2006. doi:10.1016/j.cell.2005.10.036.
    1. Gurtner GC, Dauskardt RH, Wong VW, Bhatt KA, Wu K, Vial IN, Padois K, Korman JM, Longaker MT. Improving cutaneous scar formation by controlling the mechanical environment: large animal and phase I studies. Ann Surg 254: 217–225, 2011. doi:10.1097/SLA.0b013e318220b159.
    1. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature 453: 314–321, 2008. doi:10.1038/nature07039.
    1. Halim AS, Emami A, Salahshourifar I, Kannan TP. Keloid scarring: understanding the genetic basis, advances, and prospects. Arch Plast Surg 39: 184–189, 2012. doi:10.5999/aps.2012.39.3.184.
    1. Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O’Farrell FM, Buchan AM, Lauritzen M, Attwell D. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508: 55–60, 2014. doi:10.1038/nature13165.
    1. Haniffa M, Shin A, Bigley V, McGovern N, Teo P, See P, Wasan PS, Wang XN, Malinarich F, Malleret B, Larbi A, Tan P, Zhao H, Poidinger M, Pagan S, Cookson S, Dickinson R, Dimmick I, Jarrett RF, Renia L, Tam J, Song C, Connolly J, Chan JK, Gehring A, Bertoletti A, Collin M, Ginhoux F. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 37: 60–73, 2012. doi:10.1016/j.immuni.2012.04.012.
    1. Hart CE, Loewen-Rodriguez A, Lessem J. Dermagraft: Use in the Treatment of Chronic Wounds. Adv Wound Care (New Rochelle) 1: 138–141, 2012. doi:10.1089/wound.2011.0282.
    1. Havran WL, Jameson JM. Epidermal T cells and wound healing. J Immunol 184: 5423–5428, 2010. doi:10.4049/jimmunol.0902733.
    1. Hayashida T, Wu MH, Pierce A, Poncelet AC, Varga J, Schnaper HW. MAP-kinase activity necessary for TGFbeta1-stimulated mesangial cell type I collagen expression requires adhesion-dependent phosphorylation of FAK tyrosine 397. J Cell Sci 120: 4230–4240, 2007. doi:10.1242/jcs.03492.
    1. Hayes DW Jr, Webb GE, Mandracchia VJ, John KJ. Full-thickness burn of the foot: successful treatment with Apligraf. A case report. Clin Podiatr Med Surg 18: 179–188, 2001.
    1. He L, Huang X, Kanisicak O, Li Y, Wang Y, Li Y, Pu W, Liu Q, Zhang H, Tian X, Zhao H, Liu X, Zhang S, Nie Y, Hu S, Miao X, Wang QD, Wang F, Chen T, Xu Q, Lui KO, Molkentin JD, Zhou B. Preexisting endothelial cells mediate cardiac neovascularization after injury. J Clin Invest 127: 2968–2981, 2017. doi:10.1172/JCI93868.
    1. He L, Marneros AG. Macrophages are essential for the early wound healing response and the formation of a fibrovascular scar. Am J Pathol 182: 2407–2417, 2013. doi:10.1016/j.ajpath.2013.02.032.
    1. Heath WR, Carbone FR. Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nat Immunol 10: 1237–1244, 2009. doi:10.1038/ni.1822.
    1. Heath WR, Carbone FR. The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells. Nat Immunol 14: 978–985, 2013. doi:10.1038/ni.2680.
    1. Hellström M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N, Yoon K, Rossant J, Iruela-Arispe ML, Kalén M, Gerhardt H, Betsholtz C. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445: 776–780, 2007. doi:10.1038/nature05571.
    1. Hinz B. The extracellular matrix and transforming growth factor-β1: tale of a strained relationship. Matrix Biol 47: 54–65, 2015. doi:10.1016/j.matbio.2015.05.006.
    1. Hinz B. The myofibroblast: paradigm for a mechanically active cell. J Biomech 43: 146–155, 2010. doi:10.1016/j.jbiomech.2009.09.020.
    1. Hinz B, Gabbiani G. Cell-matrix and cell-cell contacts of myofibroblasts: role in connective tissue remodeling. Thromb Haemost 90: 993–1002, 2003. doi:10.1160/TH03-05-0328.
    1. Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmoulière A, Varga J, De Wever O, Mareel M, Gabbiani G. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol 180: 1340–1355, 2012. doi:10.1016/j.ajpath.2012.02.004.
    1. Hirobe T. Proliferation of epidermal melanocytes during the healing of skin wounds in newborn mice. J Exp Zool 227: 423–431, 1983. doi:10.1002/jez.1402270311.
    1. Hobbs RM, Silva-Vargas V, Groves R, Watt FM. Expression of activated MEK1 in differentiating epidermal cells is sufficient to generate hyperproliferative and inflammatory skin lesions. J Invest Dermatol 123: 503–515, 2004. doi:10.1111/j.0022-202X.2004.23225.x.
    1. Hodde JP, Ernst DM, Hiles MC. An investigation of the long-term bioactivity of endogenous growth factor in OASIS Wound Matrix. J Wound Care 14: 23–25, 2005. doi:10.12968/jowc.2005.14.1.26721.
    1. Høiby N, Ciofu O, Johansen HK, Song ZJ, Moser C, Jensen PO, Molin S, Givskov M, Tolker-Nielsen T, Bjarnsholt T. The clinical impact of bacterial biofilms. Int J Oral Sci 3: 55–65, 2011. doi:10.4248/IJOS11026.
    1. Hu MS, Maan ZN, Wu JC, Rennert RC, Hong WX, Lai TS, Cheung ATM, Walmsley GG, Chung MT, McArdle A, Longaker MT, Lorenz HP. Tissue engineering and regenerative repair in wound healing. Ann Biomed Eng 42: 1494–1507, 2014. doi:10.1007/s10439-014-1010-z.
    1. Hu MS, Walmsley GG, Barnes LA, Weiskopf K, Rennert RC, Duscher D, Januszyk M, Maan ZN, Hong WX, Cheung AT, Leavitt T, Marshall CD, Ransom RC, Malhotra S, Moore AL, Rajadas J, Lorenz HP, Weissman IL, Gurtner GC, Longaker MT. Delivery of monocyte lineage cells in a biomimetic scaffold enhances tissue repair. JCI Insight 2: e96260, 2017. doi:10.1172/jci.insight.96260.
    1. Hu SC, Lan CE. High-glucose environment disturbs the physiologic functions of keratinocytes: focusing on diabetic wound healing. J Dermatol Sci 84: 121–127, 2016. doi:10.1016/j.jdermsci.2016.07.008.
    1. Huang S, Lu G, Wu Y, Jirigala E, Xu Y, Ma K, Fu X. Mesenchymal stem cells delivered in a microsphere-based engineered skin contribute to cutaneous wound healing and sweat gland repair. J Dermatol Sci 66: 29–36, 2012. doi:10.1016/j.jdermsci.2012.02.002.
    1. Hume DA. Macrophages as APC and the dendritic cell myth. J Immunol 181: 5829–5835, 2008. doi:10.4049/jimmunol.181.9.5829.
    1. Huss FR, Nyman E, Gustafson CJ, Gisselfält K, Liljensten E, Kratz G. Characterization of a new degradable polymer scaffold for regeneration of the dermis: in vitro and in vivo human studies. Organogenesis 4: 195–200, 2008. doi:10.4161/org.4.3.6499.
    1. Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ, Cotsarelis G. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11: 1351–1354, 2005. doi:10.1038/nm1328.
    1. Jagadish M, McNally MM, Heidel RE, Teffeteller S, Arnold JD, Freeman M, Stevens SL, Grandas OH, Goldman MH. Diabetic Foot Ulcers: The Importance of Patient Comorbidity Recognition and Total Contact Casting in Successful Wound Care. Am Surg 82: 733–736, 2016.
    1. Jameson J, Havran WL. Skin gammadelta T-cell functions in homeostasis and wound healing. Immunol Rev 215: 114–122, 2007. doi:10.1111/j.1600-065X.2006.00483.x.
    1. Jameson J, Ugarte K, Chen N, Yachi P, Fuchs E, Boismenu R, Havran WL. A role for skin gammadelta T cells in wound repair. Science 296: 747–749, 2002. doi:10.1126/science.1069639.
    1. Jameson JM, Cauvi G, Sharp LL, Witherden DA, Havran WL. Gammadelta T cell-induced hyaluronan production by epithelial cells regulates inflammation. J Exp Med 201: 1269–1279, 2005. doi:10.1084/jem.20042057.
    1. Jameson JM, Cauvi G, Witherden DA, Havran WL. A keratinocyte-responsive gamma delta TCR is necessary for dendritic epidermal T cell activation by damaged keratinocytes and maintenance in the epidermis. J Immunol 172: 3573–3579, 2004. doi:10.4049/jimmunol.172.6.3573.
    1. Januszyk M, Gurtner GC. High-Throughput Single-Cell Analysis for Wound Healing Applications. Adv Wound Care (New Rochelle) 2: 457–469, 2013. doi:10.1089/wound.2012.0395.
    1. Januszyk M, Sorkin M, Glotzbach JP, Vial IN, Maan ZN, Rennert RC, Duscher D, Thangarajah H, Longaker MT, Butte AJ, Gurtner GC. Diabetes irreversibly depletes bone marrow-derived mesenchymal progenitor cell subpopulations. Diabetes 63: 3047–3056, 2014. doi:10.2337/db13-1366.
    1. Januszyk M, Kwon SK, Wong VW, Padmanabhan J, Maan ZN, Whittam AJ, Major MR, Gurtner GC. The Role of Focal Adhesion Kinase in Keratinocyte Fibrogenic Gene Expression. Int J Mol Sci 18: 1915, 2017. doi:10.3390/ijms18091915.
    1. Jensen KB, Collins CA, Nascimento E, Tan DW, Frye M, Itami S, Watt FM. Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell 4: 427–439, 2009. doi:10.1016/j.stem.2009.04.014.
    1. Jensen UB, Yan X, Triel C, Woo SH, Christensen R, Owens DM. A distinct population of clonogenic and multipotent murine follicular keratinocytes residing in the upper isthmus. J Cell Sci 121: 609–617, 2008. doi:10.1242/jcs.025502.
    1. Jinno H, Morozova O, Jones KL, Biernaskie JA, Paris M, Hosokawa R, Rudnicki MA, Chai Y, Rossi F, Marra MA, Miller FD. Convergent genesis of an adult neural crest-like dermal stem cell from distinct developmental origins. Stem Cells 28: 2027–2040, 2010. doi:10.1002/stem.525.
    1. Joncas V, Prado R, Price Ritchie C, Kaufman LM, Schober-Flores C, Arbuckle HA. The closure of a large chronic abdominal wound in a neonate utilizing a biologic dressing. Adv Skin Wound Care 23: 404–405, 2010. doi:10.1097/01.ASW.0000383212.95911.f5.
    1. Jones P, Simons BD. Epidermal homeostasis: do committed progenitors work while stem cells sleep? Nat Rev Mol Cell Biol 9: 82–88, 2008. doi:10.1038/nrm2292.
    1. Jones PH, Harper S, Watt FM. Stem cell patterning and fate in human epidermis. Cell 80: 83–93, 1995. doi:10.1016/0092-8674(95)90453-0.
    1. Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med 23: 279–287, 2017. doi:10.1038/nm.4294.
    1. Jun JI, Kim KH, Lau LF. The matricellular protein CCN1 mediates neutrophil efferocytosis in cutaneous wound healing. Nat Commun 6: 7386, 2015. doi:10.1038/ncomms8386.
    1. Jung K, Covington S, Sen CK, Januszyk M, Kirsner RS, Gurtner GC, Shah NH. Rapid identification of slow healing wounds. Wound Repair Regen 24: 181–188, 2016. doi:10.1111/wrr.12384.
    1. Kaplan KL, Broekman MJ, Chernoff A, Lesznik GR, Drillings M. Platelet alpha-granule proteins: studies on release and subcellular localization. Blood 53: 604–618, 1979.
    1. Karra R, Walter AO, Wu SM. The relationship between cardiac endothelium and fibroblasts: it’s complicated. J Clin Invest 127: 2892–2894, 2017. doi:10.1172/JCI95492.
    1. Kawai K, Suzuki S, Tabata Y, Ikada Y, Nishimura Y. Accelerated tissue regeneration through incorporation of basic fibroblast growth factor-impregnated gelatin microspheres into artificial dermis. Biomaterials 21: 489–499, 2000. doi:10.1016/S0142-9612(99)00207-0.
    1. Keyes BE, Liu S, Asare A, Naik S, Levorse J, Polak L, Lu CP, Nikolova M, Pasolli HA, Fuchs E. Impaired Epidermal to Dendritic T Cell Signaling Slows Wound Repair in Aged Skin. Cell 167: 1323–1338.e14, 2016. doi:10.1016/j.cell.2016.10.052.
    1. Khanna S, Biswas S, Shang Y, Collard E, Azad A, Kauh C, Bhasker V, Gordillo GM, Sen CK, Roy S. Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS One 5: e9539, 2010. doi:10.1371/journal.pone.0009539.
    1. Kim I, Bang SI, Lee SK, Park SY, Kim M, Ha H. Clinical implication of allogenic implantation of adipogenic differentiated adipose-derived stem cells. Stem Cells Transl Med 3: 1312–1321, 2014. doi:10.5966/sctm.2014-0109.
    1. Kischer CW, Bunce H III, Shetlah MR. Mast cell analyses in hypertrophic scars, hypertrophic scars treated with pressure and mature scars. J Invest Dermatol 70: 355–357, 1978. doi:10.1111/1523-1747.ep12543553.
    1. Kissenpfennig A, Henri S, Dubois B, Laplace-Builhé C, Perrin P, Romani N, Tripp CH, Douillard P, Leserman L, Kaiserlian D, Saeland S, Davoust J, Malissen B. Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22: 643–654, 2005. doi:10.1016/j.immuni.2005.04.004.
    1. Kokovay E, Li L, Cunningham LA. Angiogenic recruitment of pericytes from bone marrow after stroke. J Cereb Blood Flow Metab 26: 545–555, 2006. doi:10.1038/sj.jcbfm.9600214.
    1. Kong HH, Segre JA. Skin microbiome: looking back to move forward. J Invest Dermatol 132: 933–939, 2012. doi:10.1038/jid.2011.417.
    1. Koob TJ, Lim JJ, Massee M, Zabek N, Denozière G. Properties of dehydrated human amnion/chorion composite grafts: Implications for wound repair and soft tissue regeneration. J Biomed Mater Res B Appl Biomater 102: 1353–1362, 2014. doi:10.1002/jbm.b.33141.
    1. Koob TJ, Lim JJ, Massee M, Zabek N, Rennert R, Gurtner G, Li WW. Angiogenic properties of dehydrated human amnion/chorion allografts: therapeutic potential for soft tissue repair and regeneration. Vasc Cell 6: 10, 2014. doi:10.1186/2045-824X-6-10.
    1. Koob TJ, Rennert R, Zabek N, Massee M, Lim JJ, Temenoff JS, Li WW, Gurtner G. Biological properties of dehydrated human amnion/chorion composite graft: implications for chronic wound healing. Int Wound J 10: 493–500, 2013. doi:10.1111/iwj.12140.
    1. Kosaraju R, Rennert RC, Maan ZN, Duscher D, Barrera J, Whittam AJ, Januszyk M, Rajadas J, Rodrigues M, Gurtner GC. Adipose-Derived Stem Cell-Seeded Hydrogels Increase Endogenous Progenitor Cell Recruitment and Neovascularization in Wounds. Tissue Eng Part A 22: 295–305, 2016. doi:10.1089/ten.tea.2015.0277.
    1. Krampert M, Bloch W, Sasaki T, Bugnon P, Rülicke T, Wolf E, Aumailley M, Parks WC, Werner S. Activities of the matrix metalloproteinase stromelysin-2 (MMP-10) in matrix degradation and keratinocyte organization in wounded skin. Mol Biol Cell 15: 5242–5254, 2004. doi:10.1091/mbc.e04-02-0109.
    1. Kwon SH, Gurtner GC. Is early inflammation good or bad? Linking early immune changes to hypertrophic scarring. Exp Dermatol 26: 133–134, 2017. doi:10.1111/exd.13167.
    1. Lamke LO. The influence of different “skin grafts” on the evaporative water loss from burns. Scand J Plast Reconstr Surg 5: 82–86, 1971. doi:10.3109/02844317109042943.
    1. Lansdown AB. Calcium: a potential central regulator in wound healing in the skin. Wound Repair Regen 10: 271–285, 2002. doi:10.1046/j.1524-475X.2002.10502.x.
    1. Larson BJ, Longaker MT, Lorenz HP. Scarless fetal wound healing: a basic science review. Plast Reconstr Surg 126: 1172–1180, 2010. doi:10.1097/PRS.0b013e3181eae781.
    1. Lavery LA, Fulmer J, Shebetka KA, Regulski M, Vayser D, Fried D, Kashefsky H, Owings TM, Nadarajah J; Grafix Diabetic Foot Ulcer Study Group . The efficacy and safety of Grafix(®) for the treatment of chronic diabetic foot ulcers: results of a multi-centre, controlled, randomised, blinded, clinical trial. Int Wound J 11: 554–560, 2014. doi:10.1111/iwj.12329.
    1. Leask A. Integrin β1: A Mechanosignaling Sensor Essential for Connective Tissue Deposition by Fibroblasts. Adv Wound Care (New Rochelle) 2: 160–166, 2013. doi:10.1089/wound.2012.0365.
    1. Leask A. Potential therapeutic targets for cardiac fibrosis: TGFbeta, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Circ Res 106: 1675–1680, 2010. doi:10.1161/CIRCRESAHA.110.217737.
    1. Leavitt T, Hu MS, Marshall CD, Barnes LA, Lorenz HP, Longaker MT. Scarless wound healing: finding the right cells and signals. Cell Tissue Res 365: 483–493, 2016. doi:10.1007/s00441-016-2424-8.
    1. Leblond CP, Greulich RC, Pereira JPM. Relationship of cell formation and cell migration in the renewal of stratified squamous epithelia. Adv Biol Skin 5: 39–57, 1964.
    1. Lech M, Anders HJ. Macrophages and fibrosis: How resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair. Biochim Biophys Acta 1832: 989–997, 2013. doi:10.1016/j.bbadis.2012.12.001.
    1. Lee J, Tumbar T. Hairy tale of signaling in hair follicle development and cycling. Semin Cell Dev Biol 23: 906–916, 2012. doi:10.1016/j.semcdb.2012.08.003.
    1. Lee WL, Harrison RE, Grinstein S. Phagocytosis by neutrophils. Microbes Infect 5: 1299–1306, 2003. doi:10.1016/j.micinf.2003.09.014.
    1. Leibovich SJ, Polverini PJ, Shepard HM, Wiseman DM, Shively V, Nuseir N. Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature 329: 630–632, 1987. doi:10.1038/329630a0.
    1. Lerman OZ, Galiano RD, Armour M, Levine JP, Gurtner GC. Cellular dysfunction in the diabetic fibroblast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia. Am J Pathol 162: 303–312, 2003. doi:10.1016/S0002-9440(10)63821-7.
    1. Levin R, Grinstein S, Canton J. The life cycle of phagosomes: formation, maturation, and resolution. Immunol Rev 273: 156–179, 2016. doi:10.1111/imr.12439.
    1. Levy V, Lindon C, Zheng Y, Harfe BD, Morgan BA. Epidermal stem cells arise from the hair follicle after wounding. FASEB J 21: 1358–1366, 2007. doi:10.1096/fj.06-6926com.
    1. Lind KD. Excluding Older, Sicker Patients From Clinical Trials: Issues, Concerns and Solutions. In: Insight on the Issues. Washington, DC: AARP Public Policy Institute, 2011, p. 1–7.
    1. Liu W, Ma K, Kwon SH, Garg R, Patta YR, Fujiwara T, Gurtner GC. The Abnormal Architecture of Healed Diabetic Ulcers Is the Result of FAK Degradation by Calpain 1. J Invest Dermatol 137: 1155–1165, 2017. doi:10.1016/j.jid.2016.11.039.
    1. Liu ZJ, Shirakawa T, Li Y, Soma A, Oka M, Dotto GP, Fairman RM, Velazquez OC, Herlyn M. Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Mol Cell Biol 23: 14–25, 2003. doi:10.1128/MCB.23.1.14-25.2003.
    1. Longaker MT, Chiu ES, Adzick NS, Stern M, Harrison MR, Stern R. Studies in fetal wound healing. V. A prolonged presence of hyaluronic acid characterizes fetal wound fluid. Ann Surg 213: 292–296, 1991. doi:10.1097/00000658-199104000-00003.
    1. Longaker MT, Chiu ES, Harrison MR, Crombleholme TM, Langer JC, Duncan BW, Adzick NS, Verrier ED, Stern R. Studies in fetal wound healing. IV. Hyaluronic acid-stimulating activity distinguishes fetal wound fluid from adult wound fluid. Ann Surg 210: 667–672, 1989. doi:10.1097/00000658-198911000-00016.
    1. Longaker MT, Whitby DJ, Adzick NS, Crombleholme TM, Langer JC, Duncan BW, Bradley SM, Stern R, Ferguson MWJ, Harrison MR. Studies in fetal wound healing. VI. Second and early third trimester fetal wounds demonstrate rapid collagen deposition without scar formation. J Pediatr Surg 25: 63–69, 1990. doi:10.1016/S0022-3468(05)80165-4.
    1. Longaker MT, Whitby DJ, Jennings RW, Duncan BW, Ferguson MW, Harrison MR, Adzick NS. Fetal diaphragmatic wounds heal with scar formation. J Surg Res 50: 375–385, 1991. doi:10.1016/0022-4804(91)90206-2.
    1. Lorenz HP, Longaker MT, Perkocha LA, Jennings RW, Harrison MR, Adzick NS. Scarless wound repair: a human fetal skin model. Development 114: 253–259, 1992.
    1. Lovvorn HN III, Cheung DT, Nimni ME, Perelman N, Estes JM, Adzick NS. Relative distribution and crosslinking of collagen distinguish fetal from adult sheep wound repair. J Pediatr Surg 34: 218–223, 1999. doi:10.1016/S0022-3468(99)90261-0.
    1. Lucas T, Waisman A, Ranjan R, Roes J, Krieg T, Müller W, Roers A, Eming SA. Differential roles of macrophages in diverse phases of skin repair. J Immunol 184: 3964–3977, 2010. doi:10.4049/jimmunol.0903356.
    1. Lunderius-Andersson C, Enoksson M, Nilsson G. Mast cells respond to cell injury through the recognition of IL-33. Front Immunol 3: 82, 2012. doi:10.3389/fimmu.2012.00082.
    1. Mackay LK, Rahimpour A, Ma JZ, Collins N, Stock AT, Hafon ML, Vega-Ramos J, Lauzurica P, Mueller SN, Stefanovic T, Tscharke DC, Heath WR, Inouye M, Carbone FR, Gebhardt T. The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin. Nat Immunol 14: 1294–1301, 2013. doi:10.1038/ni.2744.
    1. Mackenzie IC. Relationship between mitosis and the ordered structure of the stratum corneum in mouse epidermis. Nature 226: 653–655, 1970. doi:10.1038/226653a0.
    1. Malissen B, Tamoutounour S, Henri S. The origins and functions of dendritic cells and macrophages in the skin. Nat Rev Immunol 14: 417–428, 2014. doi:10.1038/nri3683.
    1. Marangoni RG, Korman BD, Wei J, Wood TA, Graham LV, Whitfield ML, Scherer PE, Tourtellotte WG, Varga J. Myofibroblasts in murine cutaneous fibrosis originate from adiponectin-positive intradermal progenitors. Arthritis Rheumatol 67: 1062–1073, 2015. doi:10.1002/art.38990.
    1. Marler JJ, Upton J, Langer R, Vacanti JP. Transplantation of cells in matrices for tissue regeneration. Adv Drug Deliv Rev 33: 165–182, 1998. doi:10.1016/S0169-409X(98)00025-8.
    1. Marneros AG, Norris JE, Olsen BR, Reichenberger E. Clinical genetics of familial keloids. Arch Dermatol 137: 1429–1434, 2001. doi:10.1001/archderm.137.11.1429.
    1. Marston WA, Hanft J, Norwood P, Pollak R; Dermagraft Diabetic Foot Ulcer Study Group . The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. Diabetes Care 26: 1701–1705, 2003. doi:10.2337/diacare.26.6.1701.
    1. Martin JM, Zenilman JM, Lazarus GS. Molecular microbiology: new dimensions for cutaneous biology and wound healing. J Invest Dermatol 130: 38–48, 2010. doi:10.1038/jid.2009.221.
    1. Martin P. Wound healing–aiming for perfect skin regeneration. Science 276: 75–81, 1997. doi:10.1126/science.276.5309.75.
    1. Martins-Green M, Petreaca M, Wang L. Chemokines and Their Receptors Are Key Players in the Orchestra That Regulates Wound Healing. Adv Wound Care (New Rochelle) 2: 327–347, 2013. doi:10.1089/wound.2012.0380.
    1. Maruyama K, Asai J, Ii M, Thorne T, Losordo DW, D’Amore PA. Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing. Am J Pathol 170: 1178–1191, 2007. doi:10.2353/ajpath.2007.060018.
    1. Mascré G, Dekoninck S, Drogat B, Youssef KK, Broheé S, Sotiropoulou PA, Simons BD, Blanpain C. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 489: 257–262, 2012. doi:10.1038/nature11393.
    1. Mast BA, Diegelmann RF, Krummel TM, Cohen IK. Hyaluronic acid modulates proliferation, collagen and protein synthesis of cultured fetal fibroblasts. Matrix 13: 441–446, 1993. doi:10.1016/S0934-8832(11)80110-1.
    1. McGranahan N, Swanton C. Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future. Cell 168: 613–628, 2017. doi:10.1016/j.cell.2017.01.018.
    1. McLachlan JB, Catron DM, Moon JJ, Jenkins MK. Dendritic cell antigen presentation drives simultaneous cytokine production by effector and regulatory T cells in inflamed skin. Immunity 30: 277–288, 2009. doi:10.1016/j.immuni.2008.11.013.
    1. Merad M, Ginhoux F, Collin M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol 8: 935–947, 2008. doi:10.1038/nri2455.
    1. Merad M, Manz MG, Karsunky H, Wagers A, Peters W, Charo I, Weissman IL, Cyster JG, Engleman EG. Langerhans cells renew in the skin throughout life under steady-state conditions. [Corrigendum in Nat Immunol 4: 92, 2003.] Nat Immunol 3: 1135–1141, 2002. doi:10.1038/ni852.
    1. Merkel JR, DiPaolo BR, Hallock GG, Rice DC. Type I and type III collagen content of healing wounds in fetal and adult rats. Proc Soc Exp Biol Med 187: 493–497, 1988. doi:10.3181/00379727-187-42694.
    1. Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. J Immunol 172: 2731–2738, 2004. doi:10.4049/jimmunol.172.5.2731.
    1. Mirastschijski U, Haaksma CJ, Tomasek JJ, Agren MS. Matrix metalloproteinase inhibitor GM 6001 attenuates keratinocyte migration, contraction and myofibroblast formation in skin wounds. Exp Cell Res 299: 465–475, 2004. doi:10.1016/j.yexcr.2004.06.007.
    1. Mirza R, DiPietro LA, Koh TJ. Selective and specific macrophage ablation is detrimental to wound healing in mice. Am J Pathol 175: 2454–2462, 2009. doi:10.2353/ajpath.2009.090248.
    1. Morris RJ, Liu Y, Marles L, Yang Z, Trempus C, Li S, Lin JS, Sawicki JA, Cotsarelis G. Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 22: 411–417, 2004. doi:10.1038/nbt950.
    1. Mostow EN, Haraway GD, Dalsing M, Hodde JP, King D; OASIS Venus Ulcer Study Group . Effectiveness of an extracellular matrix graft (OASIS Wound Matrix) in the treatment of chronic leg ulcers: a randomized clinical trial. J Vasc Surg 41: 837–843, 2005. doi:10.1016/j.jvs.2005.01.042.
    1. Muller WA, Weigl SA, Deng X, Phillips DM. PECAM-1 is required for transendothelial migration of leukocytes. J Exp Med 178: 449–460, 1993. doi:10.1084/jem.178.2.449.
    1. Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8: 618–631, 2008. doi:10.1038/nrc2444.
    1. Nagaoka T, Kaburagi Y, Hamaguchi Y, Hasegawa M, Takehara K, Steeber DA, Tedder TF, Sato S. Delayed wound healing in the absence of intercellular adhesion molecule-1 or L-selectin expression. Am J Pathol 157: 237–247, 2000. doi:10.1016/S0002-9440(10)64534-8.
    1. Nahabedian MY. AlloDerm performance in the setting of prosthetic breast surgery, infection, and irradiation. Plast Reconstr Surg 124: 1743–1753, 2009. doi:10.1097/PRS.0b013e3181bf8087.
    1. Naik S, Larsen SB, Gomez NC, Alaverdyan K, Sendoel A, Yuan S, Polak L, Kulukian A, Chai S, Fuchs E. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature 550: 475–480, 2017. doi:10.1038/nature24271.
    1. Nakamizo S, Egawa G, Tomura M, Sakai S, Tsuchiya S, Kitoh A, Honda T, Otsuka A, Nakajima S, Dainichi T, Tanizaki H, Mitsuyama M, Sugimoto Y, Kawai K, Yoshikai Y, Miyachi Y, Kabashima K. Dermal Vγ4(+) γδ T cells possess a migratory potency to the draining lymph nodes and modulate CD8(+) T-cell activity through TNF-α production. J Invest Dermatol 135: 1007–1015, 2015. doi:10.1038/jid.2014.516.
    1. Nakamura K, Williams IR, Kupper TS. Keratinocyte-derived monocyte chemoattractant protein 1 (MCP-1): analysis in a transgenic model demonstrates MCP-1 can recruit dendritic and Langerhans cells to skin. J Invest Dermatol 105: 635–643, 1995. doi:10.1111/1523-1747.ep12324061.
    1. Nakano T, Sonoda T, Hayashi C, Yamatodani A, Kanayama Y, Yamamura T, Asai H, Yonezawa T, Kitamura Y, Galli SJ. Fate of bone marrow-derived cultured mast cells after intracutaneous, intraperitoneal, and intravenous transfer into genetically mast cell-deficient W/Wv mice. Evidence that cultured mast cells can give rise to both connective tissue type and mucosal mast cells. J Exp Med 162: 1025–1043, 1985. doi:10.1084/jem.162.3.1025.
    1. Nathan DM; DCCT/EDIC Research Group . The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes Care 37: 9–16, 2014. doi:10.2337/dc13-2112.
    1. Nauta AC, Grova M, Montoro DT, Zimmermann A, Tsai M, Gurtner GC, Galli SJ, Longaker MT. Evidence that mast cells are not required for healing of splinted cutaneous excisional wounds in mice. PLoS One 8: e59167, 2013. doi:10.1371/journal.pone.0059167.
    1. Nehls V, Drenckhahn D. Heterogeneity of microvascular pericytes for smooth muscle type alpha-actin. J Cell Biol 113: 147–154, 1991. doi:10.1083/jcb.113.1.147.
    1. Niezgoda JA, Van Gils CC, Frykberg RG, Hodde JP. Randomized clinical trial comparing OASIS Wound Matrix to Regranex Gel for diabetic ulcers. Adv Skin Wound Care 18: 258–266, 2005. doi:10.1097/00129334-200506000-00012.
    1. Nijhof JG, Braun KM, Giangreco A, van Pelt C, Kawamoto H, Boyd RL, Willemze R, Mullenders LH, Watt FM, de Gruijl FR, van Ewijk W. The cell-surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells. Development 133: 3027–3037, 2006. doi:10.1242/dev.02443.
    1. Nishimura EK, Jordan SA, Oshima H, Yoshida H, Osawa M, Moriyama M, Jackson IJ, Barrandon Y, Miyachi Y, Nishikawa S. Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416: 854–860, 2002. doi:10.1038/416854a.
    1. Nishimura EK, Suzuki M, Igras V, Du J, Lonning S, Miyachi Y, Roes J, Beermann F, Fisher DE. Key roles for transforming growth factor beta in melanocyte stem cell maintenance. Cell Stem Cell 6: 130–140, 2010. doi:10.1016/j.stem.2009.12.010.
    1. Nishimura R, Hayashi M, Wu GJ, Kouchi H, Imaizumi-Anraku H, Murakami Y, Kawasaki S, Akao S, Ohmori M, Nagasawa M, Harada K, Kawaguchi M. HAR1 mediates systemic regulation of symbiotic organ development. Nature 420: 426–429, 2002. doi:10.1038/nature01231.
    1. Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. [Correction in Immunity 41: 866, 2014.] Immunity 41: 49–61, 2014. doi:10.1016/j.immuni.2014.06.010.
    1. Ogawa R, Akaishi S, Huang C, Dohi T, Aoki M, Omori Y, Koike S, Kobe K, Akimoto M, Hyakusoku H. Clinical applications of basic research that shows reducing skin tension could prevent and treat abnormal scarring: the importance of fascial/subcutaneous tensile reduction sutures and flap surgery for keloid and hypertrophic scar reconstruction. J Nippon Med Sch 78: 68–76, 2011. doi:10.1272/jnms.78.68.
    1. Okuno Y, Nakamura-Ishizu A, Kishi K, Suda T, Kubota Y. Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing. Blood 117: 5264–5272, 2011. doi:10.1182/blood-2011-01-330720.
    1. Okuse T, Chiba T, Katsuumi I, Imai K. Differential expression and localization of WNTs in an animal model of skin wound healing. Wound Repair Regen 13: 491–497, 2005. doi:10.1111/j.1067-1927.2005.00069.x.
    1. Olutoye OO, Zhu X, Cass DL, Smith CW. Neutrophil recruitment by fetal porcine endothelial cells: implications in scarless fetal wound healing. Pediatr Res 58: 1290–1294, 2005. doi:10.1203/01.pdr.0000184326.01884.bc.
    1. Ong CJ, Ip S, Teh SJ, Wong C, Jirik FR, Grusby MJ, Teh HS. A role for T helper 2 cells in mediating skin fibrosis in tight-skin mice. Cell Immunol 196: 60–68, 1999. doi:10.1006/cimm.1999.1537.
    1. Orgill DP, Manders EK, Sumpio BE, Lee RC, Attinger CE, Gurtner GC, Ehrlich HP. The mechanisms of action of vacuum assisted closure: more to learn. Surgery 146: 40–51, 2009. doi:10.1016/j.surg.2009.02.002.
    1. Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 104: 233–245, 2001. doi:10.1016/S0092-8674(01)00208-2.
    1. Oskeritzian CA. Mast Cells and Wound Healing. Adv Wound Care (New Rochelle) 1: 23–28, 2012. doi:10.1089/wound.2011.0357.
    1. Outtz HH, Tattersall IW, Kofler NM, Steinbach N, Kitajewski J. Notch1 controls macrophage recruitment and Notch signaling is activated at sites of endothelial cell anastomosis during retinal angiogenesis in mice. Blood 118: 3436–3439, 2011. doi:10.1182/blood-2010-12-327015.
    1. Ozerdem U, Alitalo K, Salven P, Li A. Contribution of bone marrow-derived pericyte precursor cells to corneal vasculogenesis. Invest Ophthalmol Vis Sci 46: 3502–3506, 2005. doi:10.1167/iovs.05-0309.
    1. Parenteau N. Skin: the first tissue-engineered products. Sci Am 280: 83–84, 1999. doi:10.1038/scientificamerican0499-83.
    1. Park JE, Barbul A. Understanding the role of immune regulation in wound healing. Am J Surg 187, 5A: 11S–16S, 2004. doi:10.1016/S0002-9610(03)00296-4.
    1. Parsek MR, Singh PK. Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57: 677–701, 2003. doi:10.1146/annurev.micro.57.030502.090720.
    1. Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, Patel SB, Khalid L, Isseroff RR, Tomic-Canic M. Epithelialization in Wound Healing: A Comprehensive Review. Adv Wound Care (New Rochelle) 3: 445–464, 2014. doi:10.1089/wound.2013.0473.
    1. Pastar I, Wong LL, Egger AN, Tomic-Canic M. Descriptive vs mechanistic scientific approach to study wound healing and its inhibition: Is there a value of translational research involving human subjects? Exp Dermatol 27: 551–562, 2018. doi:10.1111/exd.13663.
    1. Paterno J, Vial IN, Wong VW, Rustad KC, Sorkin M, Shi Y, Bhatt KA, Thangarajah H, Glotzbach JP, Gurtner GC. Akt-mediated mechanotransduction in murine fibroblasts during hypertrophic scar formation. Wound Repair Regen 19: 49–58, 2011. doi:10.1111/j.1524-475X.2010.00643.x.
    1. Paus R. Migrating melanocyte stem cells: masters of disaster? Nat Med 19: 818–819, 2013. doi:10.1038/nm.3264.
    1. Perdiguero EG, Geissmann F. The development and maintenance of resident macrophages. Nat Immunol 17: 2–8, 2016. doi:10.1038/ni.3341.
    1. Phillips TJ, Manzoor J, Rojas A, Isaacs C, Carson P, Sabolinski M, Young J, Falanga V. The longevity of a bilayered skin substitute after application to venous ulcers. Arch Dermatol 138: 1079–1081, 2002. doi:10.1001/archderm.138.8.1079.
    1. Pierce GF, Mustoe TA, Altrock BW, Deuel TF, Thomason A. Role of platelet-derived growth factor in wound healing. J Cell Biochem 45: 319–326, 1991. doi:10.1002/jcb.240450403.
    1. Pilling D, Fan T, Huang D, Kaul B, Gomer RH. Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS One 4: e7475, 2009. doi:10.1371/journal.pone.0007475.
    1. Plafki C, Peters P, Almeling M, Welslau W, Busch R. Complications and side effects of hyperbaric oxygen therapy. Aviat Space Environ Med 71: 119–124, 2000.
    1. Plikus MV, Guerrero-Juarez CF, Ito M, Li YR, Dedhia PH, Zheng Y, Shao M, Gay DL, Ramos R, Hsi TC, Oh JW, Wang X, Ramirez A, Konopelski SE, Elzein A, Wang A, Supapannachart RJ, Lee HL, Lim CH, Nace A, Guo A, Treffeisen E, Andl T, Ramirez RN, Murad R, Offermanns S, Metzger D, Chambon P, Widgerow AD, Tuan TL, Mortazavi A, Gupta RK, Hamilton BA, Millar SE, Seale P, Pear WS, Lazar MA, Cotsarelis G. Regeneration of fat cells from myofibroblasts during wound healing. Science 355: 748–752, 2017. doi:10.1126/science.aai8792.
    1. Ploeger DT, Hosper NA, Schipper M, Koerts JA, de Rond S, Bank RA. Cell plasticity in wound healing: paracrine factors of M1/ M2 polarized macrophages influence the phenotypical state of dermal fibroblasts. Cell Commun Signal 11: 29, 2013. doi:10.1186/1478-811X-11-29.
    1. Pool JG. Normal hemostatic mechanisms: a review. Am J Med Technol 43: 776–780, 1977.
    1. Pradhan S, Khatlani T, Nairn AC, Vijayan KV. The heterotrimeric G protein Gβ1 interacts with the catalytic subunit of protein phosphatase 1 and modulates G protein-coupled receptor signaling in platelets. J Biol Chem 292: 13133–13142, 2017. doi:10.1074/jbc.M117.796656.
    1. Purhonen S, Palm J, Rossi D, Kaskenpää N, Rajantie I, Ylä-Herttuala S, Alitalo K, Weissman IL, Salven P. Bone marrow-derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proc Natl Acad Sci USA 105: 6620–6625, 2008. doi:10.1073/pnas.0710516105.
    1. Rabbani P, Takeo M, Chou W, Myung P, Bosenberg M, Chin L, Taketo MM, Ito M. Coordinated activation of Wnt in epithelial and melanocyte stem cells initiates pigmented hair regeneration. Cell 145: 941–955, 2011. doi:10.1016/j.cell.2011.05.004.
    1. Rajantie I, Ilmonen M, Alminaite A, Ozerdem U, Alitalo K, Salven P. Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood 104: 2084–2086, 2004. doi:10.1182/blood-2004-01-0336.
    1. Rao KN, Brown MA. Mast cells: multifaceted immune cells with diverse roles in health and disease. Ann N Y Acad Sci 1143: 83–104, 2008. doi:10.1196/annals.1443.023.
    1. Reeves EP, Lu H, Jacobs HL, Messina CG, Bolsover S, Gabella G, Potma EO, Warley A, Roes J, Segal AW. Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416: 291–297, 2002. doi:10.1038/416291a.
    1. Regulski M, Jacobstein DA, Petranto RD, Migliori VJ, Nair G, Pfeiffer D. A retrospective analysis of a human cellular repair matrix for the treatment of chronic wounds. Ostomy Wound Manage 59: 38–43, 2013.
    1. Rehman J, Li J, Orschell CM, March KL. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107: 1164–1169, 2003. doi:10.1161/01.CIR.0000058702.69484.A0.
    1. Rennert RC, Januszyk M, Sorkin M, Rodrigues M, Maan ZN, Duscher D, Whittam AJ, Kosaraju R, Chung MT, Paik K, Li AY, Findlay M, Glotzbach JP, Butte AJ, Gurtner GC. Microfluidic single-cell transcriptional analysis rationally identifies novel surface marker profiles to enhance cell-based therapies. Nat Commun 7: 11945, 2016. doi:10.1038/ncomms11945.
    1. Rennert RC, Rodrigues M, Wong VW, Duscher D, Hu M, Maan Z, Sorkin M, Gurtner GC, Longaker MT. Biological therapies for the treatment of cutaneous wounds: phase III and launched therapies. Expert Opin Biol Ther 13: 1523–1541, 2013. doi:10.1517/14712598.2013.842972.
    1. Rennert RC, Sorkin M, Januszyk M, Duscher D, Kosaraju R, Chung MT, Lennon J, Radiya-Dixit A, Raghvendra S, Maan ZN, Hu MS, Rajadas J, Rodrigues M, Gurtner GC. Diabetes impairs the angiogenic potential of adipose-derived stem cells by selectively depleting cellular subpopulations. Stem Cell Res Ther 5: 79, 2014. doi:10.1186/scrt468.
    1. Reynolds LE, Conti FJ, Silva R, Robinson SD, Iyer V, Rudling R, Cross B, Nye E, Hart IR, Dipersio CM, Hodivala-Dilke KM. alpha3beta1 integrin-controlled Smad7 regulates reepithelialization during wound healing in mice. J Clin Invest 118: 965–974, 2008. doi:10.1172/JCI33538.
    1. Rinkevich Y, Lindau P, Ueno H, Longaker MT, Weissman IL. Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip. Nature 476: 409–413, 2011. doi:10.1038/nature10346.
    1. Rinkevich Y, Walmsley GG, Hu MS, Maan ZN, Newman AM, Drukker M, Januszyk M, Krampitz GW, Gurtner GC, Lorenz HP, Weissman IL, Longaker MT. Skin fibrosis. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science 348: aaa2151, 2015. doi:10.1126/science.aaa2151.
    1. Robles DT, Berg D. Abnormal wound healing: keloids. Clin Dermatol 25: 26–32, 2007. doi:10.1016/j.clindermatol.2006.09.009.
    1. Rodrigues M, Gurtner GC. Black, White and Gray: Macrophages in Skin Repair and Disease. Curr Pathobiol Rep 5: 333–342, 2017. doi:10.1007/s40139-017-0152-8.
    1. Rodrigues M, Wong VW, Rennert RC, Davis CR, Longaker MT, Gurtner GC. Progenitor cell dysfunctions underlie some diabetic complications. Am J Pathol 185: 2607–2618, 2015. doi:10.1016/j.ajpath.2015.05.003.
    1. Rodrigues M, Yates CC, Nuschke A, Griffith L, Wells A. The matrikine tenascin-C protects multipotential stromal cells/mesenchymal stem cells from death cytokines such as FasL. Tissue Eng Part A 19: 1972–1983, 2013. doi:10.1089/ten.tea.2012.0568.
    1. Rognoni E, Gomez C, Pisco AO, Rawlins EL, Simons BD, Watt FM, Driskell RR. Inhibition of β-catenin signalling in dermal fibroblasts enhances hair follicle regeneration during wound healing. Development 143: 2522–2535, 2016. doi:10.1242/dev.131797.
    1. Rohde E, Malischnik C, Thaler D, Maierhofer T, Linkesch W, Lanzer G, Guelly C, Strunk D. Blood monocytes mimic endothelial progenitor cells. Stem Cells 24: 357–367, 2006. doi:10.1634/stemcells.2005-0072.
    1. Romanelli M, Dini V, Bertone M, Barbanera S, Brilli C. OASIS wound matrix versus Hyaloskin in the treatment of difficult-to-heal wounds of mixed arterial/venous aetiology. Int Wound J 4: 3–7, 2007. doi:10.1111/j.1742-481X.2007.00300.x.
    1. Romanelli M, Dini V, Bertone MS. Randomized comparison of OASIS wound matrix versus moist wound dressing in the treatment of difficult-to-heal wounds of mixed arterial/venous etiology. Adv Skin Wound Care 23: 34–38, 2010. doi:10.1097/01.ASW.0000363485.17224.26.
    1. Romani N, Holzmann S, Tripp CH, Koch F, Stoitzner P. Langerhans cells: dendritic cells of the epidermis. APMIS 111: 725–740, 2003. doi:10.1034/j.1600-0463.2003.11107805.x.
    1. Rompolas P, Deschene ER, Zito G, Gonzalez DG, Saotome I, Haberman AM, Greco V. Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature 487: 496–499, 2012. doi:10.1038/nature11218.
    1. Rompolas P, Mesa KR, Greco V. Spatial organization within a niche as a determinant of stem-cell fate. Nature 502: 513–518, 2013. doi:10.1038/nature12602.
    1. Roubelakis MG, Trohatou O, Roubelakis A, Mili E, Kalaitzopoulos I, Papazoglou G, Pappa KI, Anagnou NP. Platelet-rich plasma (PRP) promotes fetal mesenchymal stem/stromal cell migration and wound healing process. Stem Cell Rev 10: 417–428, 2014. doi:10.1007/s12015-013-9494-8.
    1. Rowlatt U. Intrauterine wound healing in a 20 week human fetus. Virchows Arch A Pathol Anat Histol 381: 353–361, 1979. doi:10.1007/BF00432477.
    1. Ruhrberg C, Gerhardt H, Golding M, Watson R, Ioannidou S, Fujisawa H, Betsholtz C, Shima DT. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16: 2684–2698, 2002. doi:10.1101/gad.242002.
    1. Rumbaut RE, Thiagarajan P. Platelet-Vessel Wall Interactions in Hemostasis and Thrombosis. San Rafael, CA: Morgan & Claypool Life Sciences, 2010.
    1. Salonurmi T, Parikka M, Kontusaari S, Pirilä E, Munaut C, Salo T, Tryggvason K. Overexpression of TIMP-1 under the MMP-9 promoter interferes with wound healing in transgenic mice. Cell Tissue Res 315: 27–37, 2004. doi:10.1007/s00441-003-0814-1.
    1. Santoro SA. Identification of a 160,000 dalton platelet membrane protein that mediates the initial divalent cation-dependent adhesion of platelets to collagen. Cell 46: 913–920, 1986. doi:10.1016/0092-8674(86)90073-5.
    1. Santucci M, Borgognoni L, Reali UM, Gabbiani G. Keloids and hypertrophic scars of Caucasians show distinctive morphologic and immunophenotypic profiles. Virchows Arch 438: 457–463, 2001. doi:10.1007/s004280000335.
    1. Sappino AP, Schürch W, Gabbiani G. Differentiation repertoire of fibroblastic cells: expression of cytoskeletal proteins as marker of phenotypic modulations. Lab Invest 63: 144–161, 1990.
    1. Satish L, Kathju S. Cellular and Molecular Characteristics of Scarless versus Fibrotic Wound Healing. Dermatol Res Pract 2010: 790234, 2010. doi:10.1155/2010/790234.
    1. Satoh T, Nakagawa K, Sugihara F, Kuwahara R, Ashihara M, Yamane F, Minowa Y, Fukushima K, Ebina I, Yoshioka Y, Kumanogoh A, Akira S. Identification of an atypical monocyte and committed progenitor involved in fibrosis. Nature 541: 96–101, 2017. doi:10.1038/nature20611.
    1. Savagner P, Kusewitt DF, Carver EA, Magnino F, Choi C, Gridley T, Hudson LG. Developmental transcription factor slug is required for effective re-epithelialization by adult keratinocytes. J Cell Physiol 202: 858–866, 2005. doi:10.1002/jcp.20188.
    1. Savill J, Fadok V. Corpse clearance defines the meaning of cell death. Nature 407: 784–788, 2000. doi:10.1038/35037722.
    1. Schmidt BA, Horsley V. Intradermal adipocytes mediate fibroblast recruitment during skin wound healing. Development 140: 1517–1527, 2013. doi:10.1242/dev.087593.
    1. Schrimpf C, Duffield JS. Mechanisms of fibrosis: the role of the pericyte. Curr Opin Nephrol Hypertens 20: 297–305, 2011. doi:10.1097/MNH.0b013e328344c3d4.
    1. Schultz GS, Davidson JM, Kirsner RS, Bornstein P, Herman IM. Dynamic reciprocity in the wound microenvironment. Wound Repair Regen 19: 134–148, 2011. doi:10.1111/j.1524-475X.2011.00673.x.
    1. Sclafani AP, Romo T III, Jacono AA. Rejuvenation of the aging lip with an injectable acellular dermal graft (Cymetra). Arch Facial Plast Surg 4: 252–257, 2002. doi:10.1001/archfaci.4.4.252.
    1. Sedmak DD, Orosz CG. The role of vascular endothelial cells in transplantation. Arch Pathol Lab Med 115: 260–265, 1991.
    1. Segel GB, Halterman MW, Lichtman MA. The paradox of the neutrophil’s role in tissue injury. J Leukoc Biol 89: 359–372, 2011. doi:10.1189/jlb.0910538.
    1. Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, Gottrup F, Gurtner GC, Longaker MT. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 17: 763–771, 2009. doi:10.1111/j.1524-475X.2009.00543.x.
    1. Senzel L, Gnatenko DV, Bahou WF. The platelet proteome. Curr Opin Hematol 16: 329–333, 2009. doi:10.1097/MOH.0b013e32832e9dc6.
    1. Serini G, Bochaton-Piallat ML, Ropraz P, Geinoz A, Borsi L, Zardi L, Gabbiani G. The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. J Cell Biol 142: 873–881, 1998. doi:10.1083/jcb.142.3.873.
    1. Sheikh ES, Sheikh ES, Fetterolf DE. Use of dehydrated human amniotic membrane allografts to promote healing in patients with refractory non healing wounds. Int Wound J 11: 711–717, 2014. doi:10.1111/iwj.12035.
    1. Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface 7: 229–258, 2010. doi:10.1098/rsif.2009.0403.
    1. Shook B, Xiao E, Kumamoto Y, Iwasaki A, Horsley V. CD301b+ Macrophages Are Essential for Effective Skin Wound Healing. J Invest Dermatol 136: 1885–1891, 2016. doi:10.1016/j.jid.2016.05.107.
    1. Shores JT, Gabriel A, Gupta S. Skin substitutes and alternatives: a review. Adv Skin Wound Care 20: 493–508, 2007. doi:10.1097/01.ASW.0000288217.83128.f3.
    1. Sibbald RG, Zuker R, Coutts P, Coelho S, Williamson D, Queen D. Using a dermal skin substitute in the treatment of chronic wounds secondary to recessive dystrophic epidermolysis bullosa: a case series. Ostomy Wound Manage 51: 22–46, 2005.
    1. Siebenhaar F, Syska W, Weller K, Magerl M, Zuberbier T, Metz M, Maurer M. Control of Pseudomonas aeruginosa skin infections in mice is mast cell-dependent. Am J Pathol 170: 1910–1916, 2007. doi:10.2353/ajpath.2007.060770.
    1. Siekmann AF, Lawson ND. Notch signalling and the regulation of angiogenesis. Cell Adhes Migr 1: 104–105, 2007. doi:10.4161/cam.1.2.4488.
    1. Silver FH, Freeman JW, DeVore D. Viscoelastic properties of human skin and processed dermis. Skin Res Technol 7: 18–23, 2001. doi:10.1034/j.1600-0846.2001.007001018.x.
    1. Simpson RM, Meran S, Thomas D, Stephens P, Bowen T, Steadman R, Phillips A. Age-related changes in pericellular hyaluronan organization leads to impaired dermal fibroblast to myofibroblast differentiation. Am J Pathol 175: 1915–1928, 2009. doi:10.2353/ajpath.2009.090045.
    1. Sindrilaru A, Scharffetter-Kochanek K. Disclosure of the Culprits: Macrophages-Versatile Regulators of Wound Healing. Adv Wound Care (New Rochelle) 2: 357–368, 2013. doi:10.1089/wound.2012.0407.
    1. Singhal PK, Sassi S, Lan L, Au P, Halvorsen SC, Fukumura D, Jain RK, Seed B. Mouse embryonic fibroblasts exhibit extensive developmental and phenotypic diversity. Proc Natl Acad Sci USA 113: 122–127, 2016. doi:10.1073/pnas.1522401112.
    1. Sinha R, Stanley G, Gulati GS, Ezran C, Travaglini KJ, Wei E, Chan CKF, Nabhan AN, Su T, Morganti RM, Conley SD, Chaib H, Red-Horse K, Longaker MT, Snyder MP, Krasnow MA, Weissman IL. Index switching causes “spreading-of-signal” among multiplexed samples in Illumina HiSeq 4000 DNA sequencing. bioRxiv 2017. doi:10.1101/125724.
    1. Sirimahachaiyakul P, Sood RF, Muffley LA, Seaton M, Lin CT, Qiao L, Armaly JS, Hocking AM, Gibran NS. Race Does Not Predict Melanocyte Heterogeneous Responses to Dermal Fibroblast-Derived Mediators. PLoS One 10: e0139135, 2015. doi:10.1371/journal.pone.0139135.
    1. Slauch JM. How does the oxidative burst of macrophages kill bacteria? Still an open question. Mol Microbiol 80: 580–583, 2011. doi:10.1111/j.1365-2958.2011.07612.x.
    1. Slemp AE, Kirschner RE. Keloids and scars: a review of keloids and scars, their pathogenesis, risk factors, and management. Curr Opin Pediatr 18: 396–402, 2006. doi:10.1097/01.mop.0000236389.41462.ef.
    1. Snell RS. A study of the melanocytes and melanin in a healing deep wound. J Anat 97: 243–253, 1963.
    1. Snippert HJ, Haegebarth A, Kasper M, Jaks V, van Es JH, Barker N, van de Wetering M, van den Born M, Begthel H, Vries RG, Stange DE, Toftgård R, Clevers H. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327: 1385–1389, 2010. doi:10.1126/science.1184733.
    1. Solanas G, Benitah SA. Regenerating the skin: a task for the heterogeneous stem cell pool and surrounding niche. Nat Rev Mol Cell Biol 14: 737–748, 2013. doi:10.1038/nrm3675.
    1. Song S, Ewald AJ, Stallcup W, Werb Z, Bergers G. PDGFRbeta+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nat Cell Biol 7: 870–879, 2005. doi:10.1038/ncb1288.
    1. Sonoda T, Kitamura Y, Haku Y, Hara H, Mori KJ. Mast-cell precursors in various haematopoietic colonies of mice produced in vivo and in vitro. Br J Haematol 53: 611–620, 1983. doi:10.1111/j.1365-2141.1983.tb07312.x.
    1. Sorokin L. The impact of the extracellular matrix on inflammation. Nat Rev Immunol 10: 712–723, 2010. doi:10.1038/nri2852.
    1. Sorrell JM, Caplan AI. Fibroblast heterogeneity: more than skin deep. J Cell Sci 117: 667–675, 2004. doi:10.1242/jcs.01005.
    1. Sorrentino S, Studt JD, Medalia O, Tanuj Sapra K. Roll, adhere, spread and contract: structural mechanics of platelet function. Eur J Cell Biol 94: 129–138, 2015. doi:10.1016/j.ejcb.2015.01.001.
    1. Spadoni I, Zagato E, Bertocchi A, Paolinelli R, Hot E, Di Sabatino A, Caprioli F, Bottiglieri L, Oldani A, Viale G, Penna G, Dejana E, Rescigno M. A gut-vascular barrier controls the systemic dissemination of bacteria. Science 350: 830–834, 2015. doi:10.1126/science.aad0135.
    1. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137: 1142–1162, 1973. doi:10.1084/jem.137.5.1142.
    1. Steinman RM, Gutchinov B, Witmer MD, Nussenzweig MC. Dendritic cells are the principal stimulators of the primary mixed leukocyte reaction in mice. J Exp Med 157: 613–627, 1983. doi:10.1084/jem.157.2.613.
    1. Strecker-McGraw MK, Jones TR, Baer DG. Soft tissue wounds and principles of healing. Emerg Med Clin North Am 25: 1–22, 2007. doi:10.1016/j.emc.2006.12.002.
    1. Su Y, Richmond A. Chemokine Regulation of Neutrophil Infiltration of Skin Wounds. Adv Wound Care (New Rochelle) 4: 631–640, 2015. doi:10.1089/wound.2014.0559.
    1. Subramaniam M, Saffaripour S, Van De Water L, Frenette PS, Mayadas TN, Hynes RO, Wagner DD. Role of endothelial selectins in wound repair. Am J Pathol 150: 1701–1709, 1997.
    1. Suchting S, Freitas C, del Toro R, le Noble F, Benedito R, Breant C, Duarte A, Eichmann A. The Notch ligand Delta-like 4 (Dll4) negatively regulates endothelial tip cell formation and vessel branching. FASEB J 21: A15, 2007.
    1. Suga H, Rennert RC, Rodrigues M, Sorkin M, Glotzbach JP, Januszyk M, Fujiwara T, Longaker MT, Gurtner GC. Tracking the elusive fibrocyte: identification and characterization of collagen-producing hematopoietic lineage cells during murine wound healing. Stem Cells 32: 1347–1360, 2014. doi:10.1002/stem.1648.
    1. Sumaria N, Roediger B, Ng LG, Qin J, Pinto R, Cavanagh LL, Shklovskaya E, Fazekas de St Groth B, Triccas JA, Weninger W. Cutaneous immunosurveillance by self-renewing dermal gammadelta T cells. J Exp Med 208: 505–518, 2011. doi:10.1084/jem.20101824.
    1. Sun G, Zhang X, Shen YI, Sebastian R, Dickinson LE, Fox-Talbot K, Reinblatt M, Steenbergen C, Harmon JW, Gerecht S. Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proc Natl Acad Sci USA 108: 20976–20981, 2011. doi:10.1073/pnas.1115973108.
    1. Szpaderska AM, Egozi EI, Gamelli RL, DiPietro LA. The effect of thrombocytopenia on dermal wound healing. J Invest Dermatol 120: 1130–1137, 2003. doi:10.1046/j.1523-1747.2003.12253.x.
    1. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5: 434–438, 1999. doi:10.1038/7434.
    1. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 140: 805–820, 2010. doi:10.1016/j.cell.2010.01.022.
    1. Tamoutounour S, Guilliams M, Montanana Sanchis F, Liu H, Terhorst D, Malosse C, Pollet E, Ardouin L, Luche H, Sanchez C, Dalod M, Malissen B, Henri S. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 39: 925–938, 2013. doi:10.1016/j.immuni.2013.10.004.
    1. Tang A, Amagai M, Granger LG, Stanley JR, Udey MC. Adhesion of epidermal Langerhans cells to keratinocytes mediated by E-cadherin. Nature 361: 82–85, 1993. doi:10.1038/361082a0.
    1. Tanimura S, Tadokoro Y, Inomata K, Binh NT, Nishie W, Yamazaki S, Nakauchi H, Tanaka Y, McMillan JR, Sawamura D, Yancey K, Shimizu H, Nishimura EK. Hair follicle stem cells provide a functional niche for melanocyte stem cells. Cell Stem Cell 8: 177–187, 2011. doi:10.1016/j.stem.2010.11.029.
    1. Tanno H, Kawakami K, Kanno E, Suzuki A, Takagi N, Yamamoto H, Ishii K, Imai Y, Maruyama R, Tachi M. Invariant NKT cells promote skin wound healing by preventing a prolonged neutrophilic inflammatory response. Wound Repair Regen 25: 805–815, 2017. doi:10.1111/wrr.12588.
    1. Tanno H, Kawakami K, Ritsu M, Kanno E, Suzuki A, Kamimatsuno R, Takagi N, Miyasaka T, Ishii K, Imai Y, Maruyama R, Tachi M. Contribution of Invariant Natural Killer T Cells to Skin Wound Healing. Am J Pathol 185: 3248–3257, 2015. doi:10.1016/j.ajpath.2015.08.012.
    1. Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102: 451–461, 2000. doi:10.1016/S0092-8674(00)00050-7.
    1. Telgenhoff D, Shroot B. Cellular senescence mechanisms in chronic wound healing. Cell Death Differ 12: 695–698, 2005. doi:10.1038/sj.cdd.4401632.
    1. Tellechea A, Leal EC, Kafanas A, Auster ME, Kuchibhotla S, Ostrovsky Y, Tecilazich F, Baltzis D, Zheng Y, Carvalho E, Zabolotny JM, Weng Z, Petra A, Patel A, Panagiotidou S, Pradhan-Nabzdyk L, Theoharides TC, Veves A. Mast Cells Regulate Wound Healing in Diabetes. Diabetes 65: 2006–2019, 2016. doi:10.2337/db15-0340.
    1. Teller P, White TK. The physiology of wound healing: injury through maturation. Surg Clin North Am 89: 599–610, 2009. doi:10.1016/j.suc.2009.03.006.
    1. Tennent GA, Brennan SO, Stangou AJ, O’Grady J, Hawkins PN, Pepys MB. Human plasma fibrinogen is synthesized in the liver. Blood 109: 1971–1974, 2007. doi:10.1182/blood-2006-08-040956.
    1. Tepper OM, Capla JM, Galiano RD, Ceradini DJ, Callaghan MJ, Kleinman ME, Gurtner GC. Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells. Blood 105: 1068–1077, 2005. doi:10.1182/blood-2004-03-1051.
    1. Thangarajah H, Vial IN, Grogan RH, Yao D, Shi Y, Januszyk M, Galiano RD, Chang EI, Galvez MG, Glotzbach JP, Wong VW, Brownlee M, Gurtner GC. HIF-1alpha dysfunction in diabetes. Cell Cycle 9: 75–79, 2010. doi:10.4161/cc.9.1.10371.
    1. Thangarajah H, Yao D, Chang EI, Shi Y, Jazayeri L, Vial IN, Galiano RD, Du XL, Grogan R, Galvez MG, Januszyk M, Brownlee M, Gurtner GC. The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues. Proc Natl Acad Sci USA 106: 13505–13510, 2009. doi:10.1073/pnas.0906670106.
    1. Tobin HA, Karas ND. Lip augmentation using an alloderm graft. J Oral Maxillofac Surg 56: 722–727, 1998. doi:10.1016/S0278-2391(98)90805-9.
    1. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3: 349–363, 2002. doi:10.1038/nrm809.
    1. Tomasek JJ, Haaksma CJ, Schwartz RJ, Howard EW. Whole animal knockout of smooth muscle alpha-actin does not alter excisional wound healing or the fibroblast-to-myofibroblast transition. Wound Repair Regen 21: 166–176, 2013. doi:10.1111/wrr.12001.
    1. Tonnesen MG, Feng X, Clark RA. Angiogenesis in wound healing. J Investig Dermatol Symp Proc 5: 40–46, 2000. doi:10.1046/j.1087-0024.2000.00014.x.
    1. Truong AT, Kowal-Vern A, Latenser BA, Wiley DE, Walter RJ. Comparison of dermal substitutes in wound healing utilizing a nude mouse model. J Burns Wounds 4: e4, 2005.
    1. Tsukada S, Westwick JK, Ikejima K, Sato N, Rippe RA. SMAD and p38 MAPK signaling pathways independently regulate alpha1(I) collagen gene expression in unstimulated and transforming growth factor-beta-stimulated hepatic stellate cells. J Biol Chem 280: 10055–10064, 2005. doi:10.1074/jbc.M409381200.
    1. Tuan TL, Nichter LS. The molecular basis of keloid and hypertrophic scar formation. Mol Med Today 4: 19–24, 1998. doi:10.1016/S1357-4310(97)80541-2.
    1. Tupin E, Kinjo Y, Kronenberg M. The unique role of natural killer T cells in the response to microorganisms. Nat Rev Microbiol 5: 405–417, 2007. doi:10.1038/nrmicro1657.
    1. Tura O, Skinner EM, Barclay GR, Samuel K, Gallagher RC, Brittan M, Hadoke PW, Newby DE, Turner ML, Mills NL. Late outgrowth endothelial cells resemble mature endothelial cells and are not derived from bone marrow. Stem Cells 31: 338–348, 2013. doi:10.1002/stem.1280.
    1. Van den Broek LJ, van der Veer WM, de Jong EH, Gibbs S, Niessen FB. Suppressed inflammatory gene expression during human hypertrophic scar compared to normotrophic scar formation. Exp Dermatol 24: 623–629, 2015. doi:10.1111/exd.12739.
    1. Van der Veer WM, Bloemen MC, Ulrich MM, Molema G, van Zuijlen PP, Middelkoop E, Niessen FB. Potential cellular and molecular causes of hypertrophic scar formation. Burns 35: 15–29, 2009. doi:10.1016/j.burns.2008.06.020.
    1. Van der Vliet A, Janssen-Heininger YM. Hydrogen peroxide as a damage signal in tissue injury and inflammation: murderer, mediator, or messenger? J Cell Biochem 115: 427–435, 2014. doi:10.1002/jcb.24683.
    1. Varkey M, Ding J, Tredget EE. Advances in Skin Substitutes-Potential of Tissue Engineered Skin for Facilitating Anti-Fibrotic Healing. J Funct Biomater 6: 547–563, 2015. doi:10.3390/jfb6030547.
    1. Veves A, Sheehan P, Pham HT. A randomized, controlled trial of Promogran (a collagen/oxidized regenerated cellulose dressing) vs standard treatment in the management of diabetic foot ulcers. Arch Surg 137: 822–827, 2002. doi:10.1001/archsurg.137.7.822.
    1. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92: 827–839, 2003. doi:10.1161/01.RES.0000070112.80711.3D.
    1. Wagner CL, Mascelli MA, Neblock DS, Weisman HF, Coller BS, Jordan RE. Analysis of GPIIb/IIIa receptor number by quantification of 7E3 binding to human platelets. Blood 88: 907–914, 1996.
    1. Wainwright DJ. Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns 21: 243–248, 1995. doi:10.1016/0305-4179(95)93866-I.
    1. Wallace VA, Kondo S, Kono T, Xing Z, Timms E, Furlonger C, Keystone E, Gauldie J, Sauder DN, Mak TW, Paige CJ. A role for CD4+ T cells in the pathogenesis of skin fibrosis in tight skin mice. Eur J Immunol 24: 1463–1466, 1994. doi:10.1002/eji.1830240634.
    1. Wallis S, Lloyd S, Wise I, Ireland G, Fleming TP, Garrod D. The alpha isoform of protein kinase C is involved in signaling the response of desmosomes to wounding in cultured epithelial cells. Mol Biol Cell 11: 1077–1092, 2000. doi:10.1091/mbc.11.3.1077.
    1. Walmsley GG, Maan ZN, Wong VW, Duscher D, Hu MS, Zielins ER, Wearda T, Muhonen E, McArdle A, Tevlin R, Atashroo DA, Senarath-Yapa K, Lorenz HP, Gurtner GC, Longaker MT. Scarless wound healing: chasing the holy grail. Plast Reconstr Surg 135: 907–917, 2015. doi:10.1097/PRS.0000000000000972.
    1. Wang J, Zhang Y, Zhang N, Wang C, Herrler T, Li Q. An updated review of mechanotransduction in skin disorders: transcriptional regulators, ion channels, and microRNAs. Cell Mol Life Sci 72: 2091–2106, 2015. doi:10.1007/s00018-015-1853-y.
    1. Wang Z, Lai Y, Bernard JJ, Macleod DT, Cogen AL, Moss B, Di Nardo A. Skin mast cells protect mice against vaccinia virus by triggering mast cell receptor S1PR2 and releasing antimicrobial peptides. J Immunol 188: 345–357, 2012. doi:10.4049/jimmunol.1101703.
    1. Watt FM. Mammalian skin cell biology: at the interface between laboratory and clinic. Science 346: 937–940, 2014. doi:10.1126/science.1253734.
    1. Watt FM. Role of integrins in regulating epidermal adhesion, growth and differentiation. EMBO J 21: 3919–3926, 2002. doi:10.1093/emboj/cdf399.
    1. Watt FM. The stem cell compartment in human interfollicular epidermis. J Dermatol Sci 28: 173–180, 2002. doi:10.1016/S0923-1811(02)00003-8.
    1. Weller A, Isenmann S, Vestweber D. Cloning of the mouse endothelial selectins. Expression of both E- and P-selectin is inducible by tumor necrosis factor alpha. J Biol Chem 267: 15176–15183, 1992.
    1. Weller K, Foitzik K, Paus R, Syska W, Maurer M. Mast cells are required for normal healing of skin wounds in mice. FASEB J 20: 2366–2368, 2006. doi:10.1096/fj.06-5837fje.
    1. Wenes M, Shang M, Di Matteo M, Goveia J, Martín-Pérez R, Serneels J, Prenen H, Ghesquière B, Carmeliet P, Mazzone M. Macrophage Metabolism Controls Tumor Blood Vessel Morphogenesis and Metastasis. Cell Metab 24: 701–715, 2016. doi:10.1016/j.cmet.2016.09.008.
    1. Werner S, Krieg T, Smola H. Keratinocyte-fibroblast interactions in wound healing. J Invest Dermatol 127: 998–1008, 2007. doi:10.1038/sj.jid.5700786.
    1. Werner S, Peters KG, Longaker MT, Fuller-Pace F, Banda MJ, Williams LT. Large induction of keratinocyte growth factor expression in the dermis during wound healing. Proc Natl Acad Sci USA 89: 6896–6900, 1992. doi:10.1073/pnas.89.15.6896.
    1. Werner S, Smola H, Liao X, Longaker MT, Krieg T, Hofschneider PH, Williams LT. The function of KGF in morphogenesis of epithelium and reepithelialization of wounds. Science 266: 819–822, 1994. doi:10.1126/science.7973639.
    1. Wernig G, Chen SY, Cui L, Van Neste C, Tsai JM, Kambham N, Vogel H, Natkunam Y, Gilliland DG, Nolan G, Weissman IL. Unifying mechanism for different fibrotic diseases. Proc Natl Acad Sci USA 114: 4757–4762, 2017. doi:10.1073/pnas.1621375114.
    1. Wetzler C, Kämpfer H, Stallmeyer B, Pfeilschifter J, Frank S. Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: prolonged persistence of neutrophils and macrophages during the late phase of repair. J Invest Dermatol 115: 245–253, 2000. doi:10.1046/j.1523-1747.2000.00029.x.
    1. Whitby DJ, Longaker MT, Harrison MR, Adzick NS, Ferguson MWJ. Rapid epithelialisation of fetal wounds is associated with the early deposition of tenascin. J Cell Sci 99: 583–586, 1991.
    1. Wieman TJ, Smiell JM, Su Y. Efficacy and safety of a topical gel formulation of recombinant human platelet-derived growth factor-BB (becaplermin) in patients with chronic neuropathic diabetic ulcers. A phase III randomized placebo-controlled double-blind study. Diabetes Care 21: 822–827, 1998. doi:10.2337/diacare.21.5.822.
    1. Wietecha MS, Cerny WL, DiPietro LA. Mechanisms of vessel regression: toward an understanding of the resolution of angiogenesis. Curr Top Microbiol Immunol 367: 3–32, 2013. doi:10.1007/82_2012_287.
    1. Wilgus TA, Roy S, McDaniel JC. Neutrophils and Wound Repair: Positive Actions and Negative Reactions. Adv Wound Care (New Rochelle) 2: 379–388, 2013. doi:10.1089/wound.2012.0383.
    1. Wilgus TA, Wulff BC. The Importance of Mast Cells in Dermal Scarring. Adv Wound Care (New Rochelle) 3: 356–365, 2014. doi:10.1089/wound.2013.0457.
    1. Wilkins LM, Watson SR, Prosky SJ, Meunier SF, Parenteau NL. Development of a bilayered living skin construct for clinical applications. Biotechnol Bioeng 43: 747–756, 1994. doi:10.1002/bit.260430809.
    1. Willenborg S, Lucas T, van Loo G, Knipper JA, Krieg T, Haase I, Brachvogel B, Hammerschmidt M, Nagy A, Ferrara N, Pasparakis M, Eming SA. CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair. Blood 120: 613–625, 2012. doi:10.1182/blood-2012-01-403386.
    1. Williamson JS, Snelling CF, Clugston P, Macdonald IB, Germann E. Cultured epithelial autograft: five years of clinical experience with twenty-eight patients. J Trauma 39: 309–319, 1995. doi:10.1097/00005373-199508000-00020.
    1. Witherden DA, Watanabe M, Garijo O, Rieder SE, Sarkisyan G, Cronin SJ, Verdino P, Wilson IA, Kumanogoh A, Kikutani H, Teyton L, Fischer WH, Havran WL. The CD100 receptor interacts with its plexin B2 ligand to regulate epidermal γδ T cell function. Immunity 37: 314–325, 2012. doi:10.1016/j.immuni.2012.05.026.
    1. Wollenberg A, Wagner M, Günther S, Towarowski A, Tuma E, Moderer M, Rothenfusser S, Wetzel S, Endres S, Hartmann G. Plasmacytoid dendritic cells: a new cutaneous dendritic cell subset with distinct role in inflammatory skin diseases. J Invest Dermatol 119: 1096–1102, 2002. doi:10.1046/j.1523-1747.2002.19515.x.
    1. Wong VW, Akaishi S, Longaker MT, Gurtner GC. Pushing back: wound mechanotransduction in repair and regeneration. J Invest Dermatol 131: 2186–2196, 2011. doi:10.1038/jid.2011.212.
    1. Wong VW, Garg RK, Sorkin M, Rustad KC, Akaishi S, Levi K, Nelson ER, Tran M, Rennert R, Liu W, Longaker MT, Dauskardt RH, Gurtner GC. Loss of keratinocyte focal adhesion kinase stimulates dermal proteolysis through upregulation of MMP9 in wound healing. Ann Surg 260: 1138–1146, 2014. doi:10.1097/SLA.0000000000000219.
    1. Wong VW, Longaker MT, Gurtner GC. Soft tissue mechanotransduction in wound healing and fibrosis. Semin Cell Dev Biol 23: 981–986, 2012. doi:10.1016/j.semcdb.2012.09.010.
    1. Wong VW, Paterno J, Sorkin M, Glotzbach JP, Levi K, Januszyk M, Rustad KC, Longaker MT, Gurtner GC. Mechanical force prolongs acute inflammation via T-cell-dependent pathways during scar formation. FASEB J 25: 4498–4510, 2011. doi:10.1096/fj.10-178087.
    1. Wong VW, Rustad KC, Akaishi S, Sorkin M, Glotzbach JP, Januszyk M, Nelson ER, Levi K, Paterno J, Vial IN, Kuang AA, Longaker MT, Gurtner GC. Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nat Med 18: 148–152, 2012. doi:10.1038/nm.2574.
    1. Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B, Rothenberg ME, Mburu FM, Mantalas GL, Sim S, Clarke MF, Quake SR. Quantitative assessment of single-cell RNA-sequencing methods. Nat Methods 11: 41–46, 2014. doi:10.1038/nmeth.2694.
    1. Wu H, Wang C, Wu Z. PROPER: comprehensive power evaluation for differential expression using RNA-seq. Bioinformatics 31: 233–241, 2015. doi:10.1093/bioinformatics/btu640.
    1. Wukich DK, Raspovic KM. What Role Does Function Play in Deciding on Limb Salvage versus Amputation in Patients With Diabetes? Plast Reconstr Surg 138, Suppl: 188S–195S, 2016. doi:10.1097/PRS.0000000000002713.
    1. Wulff BC, Parent AE, Meleski MA, DiPietro LA, Schrementi ME, Wilgus TA. Mast cells contribute to scar formation during fetal wound healing. J Invest Dermatol 132: 458–465, 2012. doi:10.1038/jid.2011.324.
    1. Wulff BC, Wilgus TA. Mast cell activity in the healing wound: more than meets the eye? Exp Dermatol 22: 507–510, 2013. doi:10.1111/exd.12169.
    1. Wynn TA. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol 4: 583–594, 2004. doi:10.1038/nri1412.
    1. Wynn TA, Cheever AW, Jankovic D, Poindexter RW, Caspar P, Lewis FA, Sher A. An IL-12-based vaccination method for preventing fibrosis induced by schistosome infection. Nature 376: 594–596, 1995. doi:10.1038/376594a0.
    1. Xiong N, Raulet DH. Development and selection of gammadelta T cells. Immunol Rev 215: 15–31, 2007. doi:10.1111/j.1600-065X.2006.00478.x.
    1. Yamaguchi Y, Okazaki Y, Seta N, Satoh T, Takahashi K, Ikezawa Z, Kuwana M. Enhanced angiogenic potency of monocytic endothelial progenitor cells in patients with systemic sclerosis. Arthritis Res Ther 12: R205, 2010. doi:10.1186/ar3180.
    1. Yan C, Grimm WA, Garner WL, Qin L, Travis T, Tan N, Han YP. Epithelial to mesenchymal transition in human skin wound healing is induced by tumor necrosis factor-alpha through bone morphogenic protein-2. Am J Pathol 176: 2247–2258, 2010. doi:10.2353/ajpath.2010.090048.
    1. Yanez DA, Lacher RK, Vidyarthi A, Colegio OR. The role of macrophages in skin homeostasis. Pflugers Arch 469: 455–463, 2017. doi:10.1007/s00424-017-1953-7.
    1. Yates CC, Krishna P, Whaley D, Bodnar R, Turner T, Wells A. Lack of CXC chemokine receptor 3 signaling leads to hypertrophic and hypercellular scarring. Am J Pathol 176: 1743–1755, 2010. doi:10.2353/ajpath.2010.090564.
    1. Yipp BG, Kubes P. NETosis: how vital is it? Blood 122: 2784–2794, 2013. doi:10.1182/blood-2013-04-457671.
    1. Younan G, Suber F, Xing W, Shi T, Kunori Y, Abrink M, Pejler G, Schlenner SM, Rodewald HR, Moore FD Jr, Stevens RL, Adachi R, Austen KF, Gurish MF. The inflammatory response after an epidermal burn depends on the activities of mouse mast cell proteases 4 and 5. J Immunol 185: 7681–7690, 2010. doi:10.4049/jimmunol.1002803.
    1. Yukna RA, Turner DW, Robinson LJ. Variable antigenicity of lyophilized allogeneic and lyophilized xenogeneic skin in guinea pigs. J Periodontal Res 12: 197–203, 1977. doi:10.1111/j.1600-0765.1977.tb00122.x.
    1. Zelen CM, Serena TE, Denoziere G, Fetterolf DE. A prospective randomised comparative parallel study of amniotic membrane wound graft in the management of diabetic foot ulcers. Int Wound J 10: 502–507, 2013. doi:10.1111/iwj.12097.
    1. Zhang JG, Czabotar PE, Policheni AN, Caminschi I, Wan SS, Kitsoulis S, Tullett KM, Robin AY, Brammananth R, van Delft MF, Lu J, O’Reilly LA, Josefsson EC, Kile BT, Chin WJ, Mintern JD, Olshina MA, Wong W, Baum J, Wright MD, Huang DC, Mohandas N, Coppel RL, Colman PM, Nicola NA, Shortman K, Lahoud MH. The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. Immunity 36: 646–657, 2012. doi:10.1016/j.immuni.2012.03.009.
    1. Zhu J, Peng T, Johnston C, Phasouk K, Kask AS, Klock A, Jin L, Diem K, Koelle DM, Wald A, Robins H, Corey L. Immune surveillance by CD8αα+ skin-resident T cells in human herpes virus infection. Nature 497: 494–497, 2013. doi:10.1038/nature12110.
    1. Zhu Z, Ding J, Ma Z, Iwashina T, Tredget EE. Alternatively activated macrophages derived from THP-1 cells promote the fibrogenic activities of human dermal fibroblasts. Wound Repair Regen 25: 377–388, 2017. doi:10.1111/wrr.12532.
    1. Zhu Z, Ding J, Ma Z, Iwashina T, Tredget EE. Systemic depletion of macrophages in the subacute phase of wound healing reduces hypertrophic scar formation. Wound Repair Regen 24: 644–656, 2016. doi:10.1111/wrr.12442.
    1. Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, Leonhardt H, Heyn H, Hellmann I, Enard W. Comparative analysis of single-cell RNA-sequencing methods. Mol Cell 65: 631–643.e4, 2017. doi:10.1016/j.molcel.2017.01.023.

Source: PubMed

3
Se inscrever