Sarcopenia and Menopause: The Role of Estradiol

Annalisa Geraci, Riccardo Calvani, Evelyn Ferri, Emanuele Marzetti, Beatrice Arosio, Matteo Cesari, Annalisa Geraci, Riccardo Calvani, Evelyn Ferri, Emanuele Marzetti, Beatrice Arosio, Matteo Cesari

Abstract

During aging and menopausal transition in women, a progressive muscle degeneration (i.e. decrease in quality and muscle function) occurs. This muscle dysfunction, caused by decreased proliferation of muscle satellite cells, increased levels of inflammatory markers, and altered levels of sex hormones, exposes women to a raised incidence of sarcopenia. In this regard, hormonal balance and, in particular, estradiol, seems to be essential in skeletal muscle function. The role of the estradiol on satellite cells and the release of inflammatory cytokines in menopausal women are reviewed. In particular, estradiol has a beneficial effect on the skeletal muscle by stimulating satellite cell proliferation. Skeletal muscle can respond to estrogenic hormonal control due to the presence of specific receptors for estradiol at the level of muscle fibers. Additionally, estradiol can limit inflammatory stress damage on skeletal muscle. In this review, we primarily focused on the role of estradiol in sarcopenia and on the possibility of using Estradiol Replacement Therapy, which combined with nutritional and physical activity programs, can counteract this condition representing a valid tool to treat sarcopenia in women.

Keywords: aging; endocrinology; hormones; menopause; muscle.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The reviewer BS declared a shared affiliation with some of the authors, RC and EM, to the handling editor at time of review.

Copyright © 2021 Geraci, Calvani, Ferri, Marzetti, Arosio and Cesari.

Figures

Figure 1
Figure 1
Reduction of estradiol concentrations, morphological changes, and cellular modifications affecting sarcopenia in women aging. E2, Estradiol.

References

    1. Landi F, Calvani R, Cesari M, Tosato M, Martone AM, Ortolani E, et al. . Sarcopenia: An Overview on Current Definitions, Diagnosis and Treatment. Curr Protein Pept Sci (2018) 19(7):633–8. 10.2174/1389203718666170607113459
    1. Walston JD. Sarcopenia in Older Adults. Curr Opin Rheumatol (2012) 24(6):623–7. 10.1097/BOR.0b013e328358d59b
    1. Yang L, Smith L, Hamer M. Gender-Specific Risk Factors for Incident Sarcopenia: 8-Year Follow-Up of the English Longitudinal Study of Ageing. J Epidemiol Community Health (2019) 73(1):86–8. 10.1136/jech-2018-211258
    1. Carr MC. The Emergence of the Metabolic Syndrome With Menopause. J Clin Endocrinol Metab (2003) 88(6):2404–11. 10.1210/jc.2003-030242
    1. Messier V, Rabasa-Lhoret R, Barbat-Artigas S, Elisha B, Karelis AD, Aubertin-Leheudre M. Menopause and Sarcopenia: A Potential Role for Sex Hormones. Maturitas (2011) 68(4):331–6. 10.1016/j.maturitas.2011.01.014
    1. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. . Sarcopenia: European Consensus on Definition and Diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing (2010) 39(4):412–23. 10.1093/ageing/afq034
    1. La Colla A, Pronsato L, Milanesi L, Vasconsuelo A. 17beta-Estradiol and Testosterone in Sarcopenia: Role of Satellite Cells. Ageing Res Rev (2015) 24(Pt B):166–77. 10.1016/j.arr.2015.07.011
    1. Forcina L, Miano C, Pelosi L, Musaro A. An Overview About the Biology of Skeletal Muscle Satellite Cells. Curr Genomics (2019) 20(1):24–37. 10.2174/1389202920666190116094736
    1. Shepherd R, Cheung AS, Pang K, Saffery R, Novakovic B. Sexual Dimorphism in Innate Immunity: The Role of Sex Hormones and Epigenetics. Front Immunol (2020) 11:604000. 10.3389/fimmu.2020.604000
    1. Baber RJ, Panay N, Fenton A. 2016 IMS Recommendations on Women’s Midlife Health and Menopause Hormone Therapy. Climacteric (2016) 19(2):109–50. 10.3109/13697137.2015.1129166
    1. Ezzat-Zadeh Z, Kim JS, Chase PB, Arjmandi BH. The Cooccurrence of Obesity, Osteoporosis, and Sarcopenia in the Ovariectomized Rat: A Study for Modeling Osteosarcopenic Obesity in Rodents. J Aging Res (2017) 2017:1454103. 10.1155/2017/1454103
    1. Lee H, Kim YI, Nirmala FS, Kim JS, Seo HD, Ha TY, et al. . MiR-141-3p Promotes Mitochondrial Dysfunction in Ovariectomy-Induced Sarcopenia Via Targeting Fkbp5 and Fibin. Aging (Albany NY) (2021) 13:4881–94. 10.18632/aging.202617
    1. Collins BC, Arpke RW, Larson AA, Baumann CW, Xie N, Cabelka CA, et al. . Estrogen Regulates the Satellite Cell Compartment in Females. Cell Rep (2019) 28(2):368–81 e6. 10.1016/j.celrep.2019.06.025
    1. Juppi HK, Sipila S, Cronin NJ, Karvinen S, Karppinen JE, Tammelin TH, et al. . Role of Menopausal Transition and Physical Activity in Loss of Lean and Muscle Mass: A Follow-Up Study in Middle-Aged Finnish Women. J Clin Med (2020) 9(5):1588. 10.3390/jcm9051588
    1. Cioffi M, Esposito K, Vietri MT, Gazzerro P, D’Auria A, Ardovino I, et al. . Cytokine Pattern in Postmenopause. Maturitas (2002) 41(3):187–92. 10.1016/s0378-5122(01)00286-9
    1. Arthur ST, Cooley ID. The Effect of Physiological Stimuli on Sarcopenia; Impact of Notch and Wnt Signaling on Impaired Aged Skeletal Muscle Repair. Int J Biol Sci (2012) 8(5):731–60. 10.7150/ijbs.4262
    1. Buford TW, Anton SD, Judge AR, Marzetti E, Wohlgemuth SE, Carter CS, et al. . Models of Accelerated Sarcopenia: Critical Pieces for Solving the Puzzle of Age-Related Muscle Atrophy. Ageing Res Rev (2010) 9(4):369–83. 10.1016/j.arr.2010.04.004
    1. Roth SM, Metter EJ, Ling S, Ferrucci L. Inflammatory Factors in Age-Related Muscle Wasting. Curr Opin Rheumatol (2006) 18(6):625–30. 10.1097/01.bor.0000245722.10136.6d
    1. Dobs AS, Nguyen T, Pace C, Roberts CP. Differential Effects of Oral Estrogen Versus Oral Estrogen-Androgen Replacement Therapy on Body Composition in Postmenopausal Women. J Clin Endocrinol Metab (2002) 87(4):1509–16. 10.1210/jcem.87.4.8362
    1. Iannuzzi-Sucich M, Prestwood KM, Kenny AM. Prevalence of Sarcopenia and Predictors of Skeletal Muscle Mass in Healthy, Older Men and Women. J] Gerontol A Biol Sci Med Sci (2002) 57(12):M772–7. 10.1093/gerona/57.12.m772
    1. Leveille SG. Musculoskeletal Aging. Curr Opin Rheumatol (2004) 16(2):114–8. 10.1097/00002281-200403000-00007
    1. Lambert KC, Curran EM, Judy BM, Lubahn DB, Estes DM. Estrogen Receptor-Alpha Deficiency Promotes Increased TNF-alpha Secretion and Bacterial Killing by Murine Macrophages in Response to Microbial Stimuli In Vitro. J Leukoc Biol (2004) 75(6):1166–72. 10.1189/jlb.1103589
    1. Li YP, Reid MB. NF-KappaB Mediates the Protein Loss Induced by TNF-alpha in Differentiated Skeletal Muscle Myotubes. Am J Physiol Regul Integr Comp Physiol (2000) 279(4):R1165–70. 10.1152/ajpregu.2000.279.4.R1165
    1. Gambacciani M, Ciaponi M, Cappagli B, De Simone L, Orlandi R, Genazzani AR. Prospective Evaluation of Body Weight and Body Fat Distribution in Early Postmenopausal Women With and Without Hormonal Replacement Therapy. Maturitas (2001) 39(2):125–32. 10.1016/s0378-5122(01)00194-3
    1. Le G, Novotny SA, Mader TL, Greising SM, Chan SSK, Kyba M, et al. . A Moderate Oestradiol Level Enhances Neutrophil Number and Activity in Muscle After Traumatic Injury But Strength Recovery is Accelerated. J Physiol (2018) 596(19):4665–80. 10.1113/JP276432
    1. Hawke TJ, Garry DJ. Myogenic Satellite Cells: Physiology to Molecular Biology. J Appl Physiol (1985) (2001) 91(2):534–51. 10.1152/jappl.2001.91.2.534
    1. Kadi F, Charifi N, Denis C, Lexell J. Satellite Cells and Myonuclei in Young and Elderly Women and Men. Muscle Nerve (2004) 29(1):120–7. 10.1002/mus.10510
    1. Keefe AC, Lawson JA, Flygare SD, Fox ZD, Colasanto MP, Mathew SJ, et al. . Muscle Stem Cells Contribute to Myofibres in Sedentary Adult Mice. Nat Commun (2015) 6:7087. 10.1038/ncomms8087
    1. Kuang S, Kuroda K, Le Grand F, Rudnicki MA. Asymmetric Self-Renewal and Commitment of Satellite Stem Cells in Muscle. Cell (2007) 129(5):999–1010. 10.1016/j.cell.2007.03.044
    1. Hindi SM, Kumar A. TRAF6 Regulates Satellite Stem Cell Self-Renewal and Function During Regenerative Myogenesis. J Clin Invest (2016) 126(1):151–68. 10.1172/JCI81655
    1. Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA. Satellite Cells and Skeletal Muscle Regeneration. Compr Physiol (2015) 5(3):1027–59. 10.1002/cphy.c140068
    1. Velders M, Schleipen B, Fritzemeier KH, Zierau O, Diel P. Selective Estrogen Receptor-Beta Activation Stimulates Skeletal Muscle Growth and Regeneration. FASEB J (2012) 26(5):1909–20. 10.1096/fj.11-194779
    1. Morley JE, Malmstrom TK. Frailty, Sarcopenia, and Hormones. Endocrinol Metab Clin North Am (2013) 42(2):391–405. 10.1016/j.ecl.2013.02.006
    1. Collins BC, Mader TL, Cabelka CA, Inigo MR, Spangenburg EE, Lowe DA. Deletion of Estrogen Receptor Alpha in Skeletal Muscle Results in Impaired Contractility in Female Mice. J Appl Physiol (1985) (2018) 124(4):980–92. 10.1152/japplphysiol.00864.2017
    1. Kenny AM, Dawson L, Kleppinger A, Iannuzzi-Sucich M, Judge JO. Prevalence of Sarcopenia and Predictors of Skeletal Muscle Mass in Nonobese Women Who are Long-Term Users of Estrogen-Replacement Therapy. J Gerontol A Biol Sci Med Sci (2003) 58(5):M436–40. 10.1093/gerona/58.5.m436
    1. Kase NG, Gretz Friedman E, Brodman M, Kang C, Gallagher EJ, LeRoith D. The Midlife Transition and the Risk of Cardiovascular Disease and Cancer Part I: Magnitude and Mechanisms. Am J Obstet Gynecol (2020) 223(6):820–33. 10.1016/j.ajog.2020.05.051
    1. Maki PM, Girard LM, Manson JE. Menopausal Hormone Therapy and Cognition. Bmj (2019) 364:l877. 10.1136/bmj.l877
    1. Sorensen MB, Rosenfalck AM, Hojgaard L, Ottesen B. Obesity and Sarcopenia After Menopause are Reversed by Sex Hormone Replacement Therapy. Obes Res (2001) 9(10):622–6. 10.1038/oby.2001.81
    1. Mangan G, Iqbal S, Hubbard A, Hamilton V, Bombardier E, Tiidus PM. Delay in Post-Ovariectomy Estrogen Replacement Negates Estrogen-Induced Augmentation of Post-Exercise Muscle Satellite Cell Proliferation. Can J Physiol Pharmacol (2015) 93(11):945–51. 10.1139/cjpp-2015-0106
    1. Ronkainen PH, Kovanen V, Alen M, Pollanen E, Palonen EM, Ankarberg-Lindgren C, et al. . Postmenopausal Hormone Replacement Therapy Modifies Skeletal Muscle Composition and Function: A Study With Monozygotic Twin Pairs. J Appl Physiol (1985) (2009) 107(1):25–33. 10.1152/japplphysiol.91518.2008
    1. Kim S, Ko Y, Lee HJ, Lim JE. Menopausal Hormone Therapy and the Risk of Breast Cancer by Histological Type and Race: A Meta-Analysis of Randomized Controlled Trials and Cohort Studies. Breast Cancer Res Treat (2018) 170(3):667–75. 10.1007/s10549-018-4782-2
    1. Basaria S, Coviello AD, Travison TG, Storer TW, Farwell WR, Jette AM, et al. . Adverse Events Associated With Testosterone Administration. N Engl J Med (2010) 363(2):109–22. 10.1056/NEJMoa1000485
    1. Azzolino D, Damanti S, Bertagnoli L, Lucchi T, Cesari M. Sarcopenia and Swallowing Disorders in Older People. Aging Clin Exp Res (2019) 31(6):799–805. 10.1007/s40520-019-01128-3
    1. Marzetti E, Calvani R, Tosato M, Cesari M, Di Bari M, Cherubini A, et al. . Sarcopenia: An Overview. Aging Clin Exp Res (2017) 29(1):11–7. 10.1007/s40520-016-0704-5
    1. Cesari M, Landi F, Calvani R, Cherubini A, Di Bari M, Kortebein P, et al. . Rationale for a Preliminary Operational Definition of Physical Frailty and Sarcopenia in the SPRINTT Trial. Aging Clin Exp Res (2017) 29(1):81–8. 10.1007/s40520-016-0716-1
    1. Del Signore S, Roubenoff R. Physical Frailty and Sarcopenia (PF&S): A Point of View From the Industry. Aging Clin Exp Res (2017) 29(1):69–74. 10.1007/s40520-016-0710-7

Source: PubMed

3
Se inscrever